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Lecture 1

An interlude of basic probability theory

These notes are not a replacement for any proper textbook on the sub-
ject. You are encouraged to review (or cover) material from proper
sources, such as the textbooks suggested at the end.

1.1 What is a probability space?

A probability space (or sample space) is two things:

i. a set Ω, together with

ii. a function f : Ω→ [0, 1]

For simplicity, say that Ω is finite, e.g. it has 10 elements.
We only require f to have the property: f (1st element in Ω) +
f (2nd element in Ω) + · · ·+ f (10th element in Ω) = 1. Sometimes,
we say “the space Ω” and by this we always mean the pair (Ω, f ).
We allow ourselves to be sloppy when f is well-understood from the
context. Furthermore, in most cases we write Pr instead of f . Using
the same symbol “Pr” for measuring probability for all probability
spaces may cause confusion. For example, when in a calculation two
distinct probability spaces are involved – i.e. the same symbol Pr is
used for each of the different spaces. In this case we try to infer things
from context. The main reason we use the same symbol Pr to refer to
different measure functions is tradition.

1



2 LECTURE 1. AN INTERLUDE OF BASIC PROBABILITY THEORY

For now, we will focus on finite Ω’s.
An event is just a subset of Ω, e.g. E ⊆ Ω. We define Pr[E ] =

Pr[e1] + Pr[e2] + · · · + Pr[ek], where E = {e1, e2, . . . , ek}. Each ei is
called an elementary event or elementary outcome and corresponds to
the event {ei}.

Probability theory aims to precisely model our real-world intuition
in formal (i.e. unambiguous) terms.

Example 1. Consider the following statement we wish to evaluate:

“The probability that the outcome of rolling a fair die is even”

Our real-world intuition is that this probability is 50%, which as
a fraction is 1

2 . What if we try to write this less informally as
Pr[fair die outcome is 2 or 4 or 6]? Is this a correct probability expression?
No, unless there is a rigorously defined probability space it is wrong (and
meaningless) to write Pr[. . . ] (probability of what? over what? what is the
exact thing we wish to measure?). The notation Pr performs a measurement
only over a probability space.

In real life we may say “formal statistical model” instead of “probability
space” (same thing). Let us now define the formal model.1

Fair die: this means that the space consists of all faces of the die out-
comes Ω = {face 1, face 2, . . . , face 6} and all faces2 are equiprobable,
i.e. Pr[face 1] = 1

6 , . . . , Pr[face 6] = 1
6 . This is our model of the world.

The event that the outcome is an even face is E = {face 2, face 4, face 6}.
Then, Pr[E ] = 1

6 +
1
6 +

1
6 = 1

2 .

The original intuitive “Pr[fair die outcome is 2 or 4 or 6] = 1
2” co-

incides with the detailed formal treatment. It is immediate how to
go from informal to formal. When the details are completely under-
stood from context we will trade formality for readability.

1 The gain in having a formal model is that we can forget about the real-world (real-world is complex). Now, all calcu-
lations and inferences can be done unambiguously (any disagreement can only be raised before the mathematical modeling).

2Usually, in a die “face 1” is a dot • , “face 2” is • • , and so on.
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Remark: It is very important to remember that a probability space
describes exactly one realization of an experiment. Given the space
Ω = {face 1, face 2, . . . , face 6} defined as above can we measure in
this Ω the probability that when the die is rolled twice and the first
time the outcome is face 1 and the second time the outcome is face 2?
No, in this space Ω the probabilistic question does not even make
sense. The elements of the space are outcomes of a single die roll. For
example the event {face 1, face 2} corresponds to the probabilistic
event that in a single (same) die roll the outcome is face 1 or face 2. If
we want to formally measure two rolls of a die then we should have
used a more complicated Ω. That is, a different model of the world; for
example, a joint model, i.e. modeling jointly two successive die rolls.
In this case every elementary event consists of two outcomes of a die
roll. Instead of {face 1, . . . , face 6} the new space consists of pairs{
(face 1, face 1), (face 1, face 2), . . . , (face 6, face 5), (face 6, face 6)

}
.

Question Given one probability space can we construct other, more
interesting spaces?

1.2 Product spaces

Let (Ω, PrΩ) be a probability space.3 Let us now define the product
space. This is just a definition (i.e. “definitions” can even be arbitrary
notions – no room for disagreement). We define the product space Ω2

as: (i) Ω2 = Ω × Ω and (ii) PrΩ2[(x, y)] = PrΩ[x]PrΩ[y], for every
x, y ∈ Ω.

Remark on terminology 2. Recall that Ω2 is just one set. That is, Ω2 is
one symbol (similar to Ω) that denotes a single set.

3Note that we change notation a little bit and write PrΩ, instead of the plain Pr, just to put emphasis on the fact that PrΩ
is associated with this specific Ω.
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Remark on terminology 3. We decided to subscript Pr with each of
the corresponding probability spaces to avoid confusion (one space is Ω2

whereas the other two, each is a copy of Ω).

Example 4. Let Ω = {H, T} be the space of the outcomes when flipping
once a fair (unbiased) coin. Then, Ω2 = {(H, H), (H, T), (T, H), (T, T)}
is the set where each elementary outcome has probability 1

2 ·
1
2 = 1

4 .

Therefore, the product of uniform probability spaces is itself a uni-
form space. Recall, that “uniform” is a probability space where each
elementary event has the same probability.

So far a “product space” appears to be an arbitrary mathematical
definition. Arbitrariness is due to the multiplication of probabilities
of the original spaces. Why “multiply” the probabilities of Pr[H] and
Pr[T] when defining the probability of Pr[(H, T)] and not do some-
thing else?4 There is a very natural connection of product spaces with
the notion of “chance” and “probability” in real-life.

What is a product space in practice? It corresponds to an idealized
experiment where one flips an unbiased coin once, records its out-
come, and “independently” flips another unbiased coin (or the same
– doesn’t matter) and records its outcome. For example, if the first
outcome is “heads” and the second is “tails” this corresponds to the
element (H, T) is the above product space. But there is something
much deeper about (H, T), which has to do with the fact that the
“coin flips are independent”. We will see that the theory captures
amazingly well our real-world perception. A product space is a spe-
cial case of what we call statistical independence (there are many ways
in which statistical independence arises and “product spaces” is one
such way).

4 For example, why not adding the probabilities, or why not to multiply Pr[H] by 2 and Pr[T] by 42 and then add them
up? One problem is that the new set must be a probability space; e.g. after we define the probabilities of the elementary
events it should be the case Pr[(H, H)] +Pr[(H, T)] +Pr[(T, H)] +Pr[(T, T)] = 1. But this is not a serious problem at all. We
can always add everything up and then normalize each individual elementary event. There is a far more important reason
why we decided to define Pr[(H, T)] as Pr[H]Pr[T].
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We are not restricted to define the product space over the same
Ω. For two probability spaces Ω1 and Ω2, define Ω′ = Ω1 ×Ω2 and
PrΩ′ [(x, y)] = PrΩ1[x]PrΩ2[y].

For instance, Ω1 may correspond to rolling a die and Ω2 to flipping
a coin. Then, Ω′ is the joint model of the experiment of rolling a die
and independently flipping a coin.5

1.3 From intuition to definition

Humans have some intuitive idea about what is “independence”. It
means that the (statistical) realization of one event does not “affect”
the (statistical) realization of the other. For example, if I flip “inde-
pendently” the same unbiased coin twice I expect the outcome of
both the first and the second time to be 50-50 heads and tails, even if
I know the outcome of the other coin flip.

The quantitative problem we have to solve now is to give a for-
mal definition of independence. Whichever definition we give, this
should formalize precisely (i.e. with numbers regarding probabilistic
calculations), the above intuitive idea we have about independence.

Statistical independence

Let (Ω, Pr) be a probability space. We say that E , E ′ ⊆ Ω are indepen-
dent (or statistically independent) if Pr[E ∩ E ′] = Pr[E ]Pr[E ′].

It is not immediately obvious whether this formalizes the idea that
the realization of E does not affect the realization of E ′.

Have we succeeded in transferring our intuition into quantitative
reasoning?

5This term, “independently” does not yet make sense. We haven’t said what “independence” formally means. We do
this below (and then everything will make sense).
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1.4 Disjoint versus independent events

Two events E , E ′ ⊆ Ω are disjoint when E ∩ E ′ = ∅. Are disjoint
events similar to the previous intuitive idea of independence?

It is a common mistake to confuse “disjointness” and “indepen-
dence”.

Consider an experiment and two disjoint events E , E ′ expressed af-
ter we formalize the experiment in terms of probability spaces. Intu-
itively, disjoint events give rise to very strong dependence. If E hap-
pens then we know that E ′ cannot happen (for sure). In a sense, this
is the opposite of being independent (they are “fully dependent”).

Statistically disjoint events

How about disjoint events? For disjoint events E ∩ E ′ = ∅ by def-
inition Pr[E ∩ E ′] = 0. Formally speaking, E and E ′ can never be
independent because their product has to be zero (i.e. unless one of
them is nothing – the empty set). Note that for E , E ′ disjoint events
we have Pr[E ∪ E ′] = Pr[E ] + Pr[E ′].

You should formally explain using the definition of probability
that for disjoint E and E ′ we have Pr[E ∪ E ′] = Pr[E ] + Pr[E ′].

We stress out that:

• Pr[E ∪ E ′] = Pr[E ] + Pr[E ′] is a property of disjoint sets E and
E ′. Property means that this is a provable consequence of the
definition of probability space.

• In contrast, for independent E , E ′ we have Pr[E ∩ E ′] =
Pr[E ]Pr[E ′], which was a definition (not some provable conse-
quence).

Remark 5. It helps to remember that the “AND” (the intersection = com-
mon points) of independent events corresponds to a product, and the “OR”
(the union = put everything together) of disjoint events to a sum.
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These definitions work extremely well together with reality. Let us
consider the experiment “independently flip two unbiased coins”.
Consider the event E = “the outcome of the first coin in HEADS”,
and the event E ′ = “the outcome of the second coin in HEADS”.
What is the probability that when we finish flipping both coins both
events have happened?

Intuition: The first event E refers only to the first coin and the event E ′
refers only to the second coin. At an intuitive level if the coin flips
where “independent” then the outcome of the first coin flip should
not affect the outcome of the second.

Formal verification of independence: We have E = {(H, H), (H, T)}, and
E ′ = {(H, H), (T, H)}. Note that Pr[E ] = Pr[E ′] = 1

2 . Therefore,
Pr[E ]Pr[E ′] = 1

4 . Furthermore, the event E ′′ = E ∩ E ′ = {(H, H)},
and thus Pr[E ′′] = 1

4 . Therefore, Pr[E ∩ E ′] = Pr[E ]Pr[E ′], which
according to our definition of independence means that E , E ′ are (for-
mally) independent.

Here is what we did so far. We gave two definitions: one for prod-
uct space and one for independence. Then, we modeled two intuitive
events, one that was referring only to the first coin flip and the sec-
ond only to the second. Finally, we observed that it happened that
the definition of product space satisfied the definition of indepen-
dence for these two events. Therefore, under these formal definitions
our “intuition about independence” coincides with our “definition of
independence”.

Note that this 1
4 is not the same 1

4 in the definition of
product space 1

4 = “probability of heads in a single flip” ×
“probability of heads in a single flip” = 1

2 ·
1
2 . Rather, it is

Pr[E ] · Pr[E ′] = 1
2 ·

1
2 and thus E and E ′ are formally indepen-

dent.
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Never confuse: the probability Pr[“HEADS in a single flip”] is a
probability calculated in the space Ω1 = {H, T}, whereas the prob-
ability Pr[“first coin comes HEADS”] is calculated over the space
Ω′ = {(H, H), (H, T), (T, H), (T, T)}. The first 1

2 is the probability
of the event {H} in Ω1, whereas the second 1

2 is the probability of the
event {(H, T), (H, H)} in Ω′.

Let us take things further. We can get a better understand-
ing when working with an Ω, which has more than two el-
ements. Say that Ω1 = {face 1, . . . , face 6} where all ele-
mentary probabilities are equal and say the same for Ω2 =
{face 1, . . . , face 6}. Now, consider the product space Ω′ =
Ω1 × Ω2. The event E = “the first die’s outcome is 1” is E =
{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Then, Pr[E ] = 1

36 +
1
36 +

1
36 +

1
36 +

1
36 +

1
36 = 1

6 . This sum of 1
36’s is not as boring as it looks like. By

definition Pr[(1, 1)] = 1
6 ·

1
6 and thus Pr[E ] = 1

6 ·
1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 +

1
6 ·

1
6 = 1

6

(1
6 +

1
6 +

1
6 +

1
6 +

1
6 +

1
6

)
= 1

6 · 1. This factorization
where one term equals to 1 is not a coincidence.

Say, more generally, that (Ω1 = {e1, . . . , ek}, PrΩ1) and (Ω2 =
{h1, . . . , h`}, PrΩ2), and let the product space Ω′ = Ω1 ×
Ω2. An event which refers to only the first part of the
joint experiment in the product space can be always written as
“event in the single space Ω1”︸ ︷︷ ︸

Ein Ω1

×Ω2. But since Ω2 is a probability

space PrΩ2[Ω2] = 1. Therefore, for any event in Ω1, say for exam-
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ple Ein Ω1 = {e1, e2, e3} we have6

Pr
Ω′
[Ein Ω1 ×Ω2] = Pr

Ω′
[(e1, h1)] + Pr

Ω′
[(e1, h2)] + · · ·+ Pr

Ω′
[(e1, h`)]

+Pr
Ω′
[(e2, h1)] + Pr

Ω′
[(e2, h2)] + · · ·+ Pr

Ω′
[(e2, h`)]

+Pr
Ω′
[(e3, h1)] + Pr

Ω′
[(e3, h2)] + · · ·+ Pr

Ω′
[(e3, h`)]

Now, we proceed similarly to the above and factor out appropri-
ately.

Pr
Ω′
[Ein Ω1 ×Ω2] = Pr

Ω1
[e1]
(

Pr
Ω2
[h1] + · · ·+ Pr

Ω2
[h`]︸ ︷︷ ︸

this is the entire Ω2

)
+Pr

Ω1
[e2]
(

Pr
Ω2
[h1] + · · ·+ Pr

Ω2
[h`]
)

+Pr
Ω1
[e3]
(

Pr
Ω2
[h1] + · · ·+ Pr

Ω2
[h`]
)

= Pr
Ω1
[e1] · 1 + Pr

Ω1
[e2] · 1 + Pr

Ω1
[e3] · 1

= Pr
Ω1
[{e1, e2, e3}] = Pr

Ω1
[Ein Ω1]

That is,
Pr
Ω′
[Ein Ω1 ×Ω2] = Pr

Ω1
[Ein Ω1]

Some attention is needed here. The probability we started to cal-
culate PrΩ′ [Ein Ω1 × Ω2] is over the product space Ω′, whereas the
probability we ended up with in this calculation PrΩ1[Ein Ω1] is the
probability computed over Ω1.

None of these remarks is surprising. When we define a product
space we multiply each element of the first Ω1 space with all the ele-
ments in Ω2 and furthermore we multiply the corresponding proba-
bilities. Therefore, for every event that refers only to the first space in

6Recall that Ein Ω1 ×Ω2 is just a set. The subsets of the space Ω′ = Ω1 ×Ω2 are the events whose probabilities we are
measuring.
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the final product space its second part gets multiplied with all possi-
ble outcomes of the second space (in the product). But, “all possible
outcomes” themselves sum up to 1 and thus in a precise sense the
second space does not affect the final calculation.

All told, a product space by definition corresponds to a space
that has statistical independence between the constituent spaces –
i.e. we can think of product spaces having “built-in” independence.
For an event E = Ein Ω1 ×Ω2 and a second event E ′ = Ω1 × Ein Ω2,
a calculation similar to the one we did above yields PrΩ′ [E ∩ E ′] =
PrΩ1[Ein Ω1] · PrΩ2[Ein Ω2]. You should make this calculation in its gen-
erality (try first for spaces that have 3-4 elements each) and formally
derive PrΩ′ [E ∩ E ′] = PrΩ1[Ein Ω1] · PrΩ2[Ein Ω2], which shows that E ,
E ′ are formally independent.7

Therefore, the two definitions, the definition of product space and
the definition of statistical independence, are very well related.

Do not go any further before you understand all of the above.

Let us now come back to the general notion of independence.

Example 6. Often times a probability space will only be defined implic-
itly. That is, instead of a detailed measure-theoretic description, we may
only have some properties of the space. This is not an informal treat-
ment. In fact, in many common practical situations this will be the
case. The information provided will be sufficient to carry out exact, for-
mal calculations. Consider an experiment where we choose an individ-
ual who studies at right now. This choice is made using a given sam-
pling method according to which the probability that a random Columbia
University student is “left-brained” is 0.6 and “right-brained” is 0.4.
Say also that the probability that the student studies “sciences” is 0.25,
and say also that the probability of being both left-brained and study-
ing sciences is 0.15. Then, we can see that if we sample one student

7This statement doesn’t make sense because E and E ′ do not appear in the RHS of PrΩ′ [E ∩ E ′] = PrΩ1 [Ein Ω1 ] ·
PrΩ2 [Ein Ω2 ]. But, it’s easy to see that PrΩ1 [Ein Ω1 ] = PrΩ′ [E ] and PrΩ2 [Ein Ω2 ] = PrΩ′ [E ′].
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Pr[student studies sciences AND student is left-brained] = 0.15 = 0.6 ·
0.25. That is, the two events “student studies sciences” and “student is
left-brained” are statistically independent.

It just “happened” that the probability measurements worked in a way
that happened to satisfy the definition of statistical independence (in which
case we informally say that there is no statistical correlation between the
events “student studies sciences” and “student is left-brained”).

A few remarks are in order.
First, note that Pr[student studies sciences] is perfectly formal.

There is some probability space, which is associated with the sam-
pling method (maybe given to us as a black box to use – this black
box fully determines the space). We may not know the exact de-
scription of the sampling method, but still it formally exists.8 In the
previous example we could do formal calculations without know-
ing its description. In particular, it does not prevent us from writing
e.g. Pr[E ] where E = “student studies sciences”, because E , formally
speaking, is a subset of something that is implicitly defined and thus
itself is implicit. Still, everything is well-defined.

Second, here statistical independence was not induced by the way
we defined any product space (there is no product space in Exam-
ple 6). Rather, it is “hidden” in the nature of the experiment. This,
“hidden” is an intuitive notion and not a mathematical notion (math-
ematically the events are just called “independent”).

A much more interesting example of “hidden” statistical indepen-
dence is given latter on in Section 1.8 on p. 22.

8For example, I may tell you that outside the building there were 5 RBS students and then another 5 joined them. From
this I can formally infer that there are 10 students. I do not need to know their names, neither to see their IDs to correctly
do this calculation. Even if I told you before that an RBS student is an individual defined by her/his registration, ID, etc, I
simply do not need any of these to add up two numbers. Here I just used one property of them (their numbers) in order to
calculate some other property (the total number). Clearly, I do not have to know all of their properties in order to do that.
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1.5 Conditional spaces

Let us start with a picture (cf. Figure 1.1) that gives us a new perspec-
tive to what statistical independence means.

Ω Ω

Α Α Β

“percentage” of A inside Ω “percentage” of A inside Β

Figure 1.1: The percentage (fraction) of A inside Ω (left figure) is equal to the percentage of A inside
B (right figure). That is, we can now think of B as a new probability space and this corresponds
to the real-world intuition that we are measuring the probability of A happening after we know
that B already occurred. But because the percentages in the left figure (the percentage of A inside Ω)
are the same as the one in the right one (the percentage of A inside B) we do not experience any
difference regarding the realization of A in the experiment even if someone tells us in advance that
B has happened. Intuitively, this seems to be another way to say that B is independent of A.

The idea of events that affect or not the possibility of realization
of other events brings us to conditional probability spaces. We wish
to quantify the statement “given that event A happens what is the
probability of event B happenning?”. For example, “conditioned on
(given) the fact that the outcome is an even face of a fair die, what
is the probability that the outcome is ‘face 2 or face 1’ ?”. This con-
cept is not as simple as it originally sounds9. Somehow, we care only

9The first philosophical treatise of the subject was about 250 years ago by reverend Bayes; published in the Philosophical
Transactions of the Royal Society of London and is available online http://rstl.royalsocietypublishing.org/content/53/370.

http://rstl.royalsocietypublishing.org/content/53/370
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to measure the probability A within the context of B, which means
that in a sense event B now itself becomes a probability space. Prob-
ability spaces have measure 1, therefore a simple way to address this
is to re-weight things by normalizing by Pr[B]. The definition10 of
“probability of A given B” denoted as Pr[A|B] is

Pr[A|B] = Pr[A ∩ B]
Pr[B]

This is exactly what we intuitively expect (the part of A inside B).
Then, Pr[the outcome of rolling a fair die is ‘face 2 or face 1’, given that

the outcome is an even face] =
1
6
1
2
= 1

3 .

The notation Pr[A|B] is not a probability measure when both A, B
vary. But, if we fix B then Pr[·|B] measures things that sum up to 1.

In fact, if we fix B to be a constant and we run over different events
A then we have the following Pr[B|A] = Pr[A∩B]

Pr[A] =⇒ Pr[A ∩ B] =

Pr[A]Pr[B|A]. But then, Pr[A|B] = Pr[A∩B]
Pr[B] = 1

Pr[B] Pr[A]Pr[B|A].
This immediate consequence of the definition is called Bayes Theo-
rem. Since, in our specific application “Pr[B] = constant” we have
that Pr[A|B] ∝ Pr[A]Pr[B|A]. Let us just mention that the probabili-
ties Pr[A|B] and Pr[B|A] sometimes gain physical meaning and then
we talk about the “a priori” and “a posteriori” probabilities.

Independence and conditional probability By our definitions of statistical inde-
pendence and conditional probability, if A, B are independent and
if Pr[B] > 0, then Pr[A|B] = Pr[A∩B]

Pr[B] = Pr[A]Pr[B]
Pr[B] = Pr[A]. This

Pr[A|B] = Pr[A] formalizes better the concept that the outcome of
B “does not affect” the probability of A happening. Again, we stress
out that statistical independence is somewhat cumbersome. In some
sense, it expresses that the “proportion of A stays the same inside the

10For an event B with non-zero support Pr[B] > 0.



14 LECTURE 1. AN INTERLUDE OF BASIC PROBABILITY THEORY

original space and inside B”. The notion of statistical independence is
the most important notion over all probability theory. It gives proba-
bility theory meaning and context in places where the so-called gen-
eral Measure Theory never cares to look at11.

Conditional probability and an important consequence The formula Pr[A|B] =
Pr[A∩B]

Pr[B] is sometimes called “definition of conditional probability”.
This is just a definition and nothing more than that. Now, we state
and prove Theorem 7. This is a mathematical statement (i.e. a prop-
erty derived by manipulating the definitions).

We say that A1, . . . , Ak ⊆ Ω is a partition of Ω if for every i 6= j ∈
{1, . . . , k} we have that Ai ∩ Aj = ∅ and A1 ∪ A2 ∪ · · · ∪ Ak = Ω.

Here is an easy exercise (just use the definition of Pr[E ]). Let dis-
joint E , E ′, i.e. E ∩ E ′ = ∅. Then, Pr[E ∪ E ′] = Pr[E ] + Pr[event′].
Furthermore, show that in general (i.e. not necessarily for disjoint
E ′′, E ′′′) it holds that Pr[E ′′ ∪ E ′′′] = Pr[E ′′] + Pr[E ′′′] − Pr[E ′′ ∩ E ′′′]
(in particular, Pr[E ′′ ∪ E ′′′] ≤ Pr[E ′′] + Pr[E ′′′]).

Theorem 7. Let a probability space Ω, a partition of the space A1, . . . , Ak,
and an event E ⊆ Ω. Then,

Pr[E ] = Pr[E|A1]Pr[A1] + Pr[E|A2]Pr[A2] + . . . + Pr[E|Ak]Pr[Ak]

Proof. Note, that we can use the partition of Ω to partition E . That is,
E =

(
E ∩ A1

)⋃ · · ·⋃ (E ∩ Ak
)

and any two
(
E ∩ Ai

)
∩
(
E ∩ Aj

)
= ∅

(draw a picture with three sets A1, A2, A3 to visually verify this).
Since for two disjoint events A and B, Pr[A ∪ B] = Pr[A] + Pr[B]

and the same rule generalizes to unions of more than two sets, we
have Pr[E ] = Pr[

(
E ∩ A1

)⋃ · · ·⋃ (E ∩ Ak
)
] = Pr[E ∩ A1] + . . . +

11Measure Theory is a branch of modern mathematics to which probability theory can be understood as a special case.
What we discuss here may become problematic when instead of a finite Ω we have an infinite one. Several types of infinity
then become of interest. Furthermore, even over “simple” Ω’s, e.g. Ω = [−1, 1], not every subset of Ω can be associated
with probability measure. You read this and now you can promptly forget it.
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Α1

Α2

Α3

Α4

Α5

Α6

partition of Ω using 6 subsets

Α1

Α2

Α3

Α4

Α5

Α6

E

how does the event E looks like 
inside the partition of Ω

E

the partition of Ω induces a partition on E

the part of E inside A6
the part of E inside A5

the part of E inside A3

Figure 1.2: A partition A1, A2, . . . , A6 of Ω induces the partition E ∩ A1, E ∩ A2, . . . , E ∩ A6 of E .

Pr[E ∩ Ak]. Now, apply the condition probability definition: Pr[E ] =
Pr[E|A1]Pr[A1] + . . . + Pr[E|Ak]Pr[Ak].

Later on, we will see uses of this theorem. Theorem 7 is used when
we can easily compute E conditioned on the fact that say A1 and A2

has occurred, and we also know the probability measure of A1, A2.
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1.6 Random variables

The spaces we encountered so far contain elements without any nu-
merical meaning. For example, the space of a fair die roll Ω =
{face 1, face 2, . . . , face 6} does not consist of numbers. Of course,
we could have written it as Ω = {1, 2, . . . , 6}, but it would have been
the same. The reason is that so far we did not use the outcomes as numbers;
e.g. we did not add them up.

For us, “use as numbers” means to add them up, multiply them,
and compute averages. We kept writing “face 1” instead of 1 to em-
phasize that there was no other intended calculation with the out-
come.

A random variable X is a function X : Ω → R. We use the term
“variable” to talk about an object, which is a function not because we
want to cause confusion but for historical reasons.

For example, X(face 1) = 1, X(face 2) = 2, . . ., X(face 6) = 6.
Not all random variables have such trivial connection to probabil-

ity spaces. We typically care about one experiment, i.e. one probabil-
ity space, over which we define many random variables.

We denote by X(Ω) the set of all possible values of X (aka the
image of X). The expected value (or expectation) of X is defined as

E[X] = ∑
α∈X(Ω)

Pr[X = α] · α

That is, E[X] is the average value of X weighted with probability.

Remark on terminology 8. In addition to the historical reason, we call X
a “variable” because when it appears inside the “Pr[. . . ]” notation it looks
like a variable. For example, Pr[X(ω) = 5]. An ω ∈ Ω is sampled and we
consider the event associated with X(ω) = 5. This looks like as if we sample
at random a value directly from X(Ω). To make things more intuitive we
abuse notation and write X instead of X(ω). Then, X really looks like a
variable that assumes a random value, and we can instead write Pr[X = 5].
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In our fair die example E[X] = 1 · 1
6 + . . . + 6 · 1

6 = 3.5.

Remark 9. Our first example is an anti-example12. In this case the expec-
tation is meaningless. There is no interesting physical meaning in the value
3.5; in the sense that we do not really “expect” that a fair die outcome is 3.5.
We will see there is a reason for this.

Another “averaging” quantity is that of variance of X defined as

Var[X] = E
[
(X− E[X])2]

We stress out that E[X] is just a number, e.g. E[X] = 42. Whenever
we see an “E” in front of a random variable then this “E” acts like an
integral (or summation if you like) turning X into a number.

The expression “(X− E[X])2” is a new random variable. If E[X] =
42, then we have a new function: Y(ω) = (X(ω)− 42)2. New ran-
dom variables are built by composing simpler ones.

The variable Y = (X − E[X])2 measures the distance of a X from
its average (expected value). Roughly speaking, E[(X − E[X])2] is
the average of the distances of X from its average.

Here is why Remark 9 happens. In case of the fair die this number
is very large, i.e. Var[X] ≈ 2.91. “Very large” compared to its possible
assumed values in the interval [1, 6].

Variance is a very important parameter that describes the behavior
of a random variable. If the variance (i.e. the expected squared dis-
tance from the expectation) is high then the value of the expectation
tells nothing too interesting. Read over Remark 9.

Interesting examples will be developed in the sequel (Sections 1.11
and 1.12).

One property of expectation is that by definition is a linear operator.

12 This set of notes is not a replacement for any good textbook in probability and statistics. It lacks examples.
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Lemma 10. Let X, Y be random variables over the same space Ω and c ∈ R.
Then,

E[cX] = cE[X] and E[X + Y] = E[X] + E[Y]

(or equivalently E[cX + Y] = cE[X] + E[Y]).

The proof is immediate by definition of E.
The same is not true for variance. Recall that formally when we

say “Let X, Y” we mean “for all X, Y”. Therefore, to prove13 that the
statement is not true for variance we should prove that the following
is true:

NOT
(
∀X, Y we have Var[X + Y] = Var[X] + Var[Y]

)
=∃X, Y such that we have Var[X + Y] 6= Var[X] + Var[Y]

An example (formally) proves existence. You should make sure that
you can give an example showing that Lemma 10 does not hold for
variance.

Independent random variables Suppose that X, Y are random variables de-
fined over the same probability space Ω. We will say that X, Y are
independent if the following corresponding events are independent14

that is

∀x, y ∈ Ω, Pr[X = x AND Y = y] = Pr[X = x]Pr[Y = y]

Therefore, in order to say that two variables are independent this
should hold for every possible value the random variables assume.

If X, Y are independent then we can show that E[XY] = E[X]E[Y].
You should verify that this equality holds before going any further.
Note that this does not hold for arbitrary X, Y (show this!). Starting

13Recall that “NOT (for all + logical statement)”= “there exists + NOT(logical statement)”. For example, “the negation of
every day in New Jersey is sunny” is equivalent to “there exists a day in New Jersey, which is not sunny”.

14Before we defined independent events. Now, we use random variables to designate events.
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from here, it does not take long to see that if X, Y are independent
then Var[X + Y] = Var[X] + Var[Y].

These simple facts are left to the reader to verify.

Random variables we care about The random variable that uniformly ranges
over {1, 2, 3, 4, 5, 6} (i.e. the fair die) is uninteresting. There are many
interesting random variables in Statistics, which we are not going to
discuss. For the courses where this set of notes is used, we have some
very specific random variables of interest.

We say that X is an indicator random variable (RV)15 if it takes values
0, 1. Say that Pr[X = 1] = p and Pr[X = 0] = 1− p. Then, observe
that E[X] = p.

The reason we care about indicator variables is because they will
indicate success (=1) and failure (=0) of various events of interest.

Also, by summing up indicator variables we can count the number
of successes. For example, suppose that we have the indicator RVs
X1, X2, X3, X4, X5, say all of them parameterized with probability p =
0.1. Then, the “number of successes” is a new random variable X =
X1 + X2 + X3 + X4 + X5. The expectation of X is easy to compute by
the linearity of expectation: E[X] = E[X1 + X2 + X3 + X4 + X5] =
E[X1] + E[X2] + E[X3] + E[X4] + E[X5] = 0.1 · 5 = 0.5. If instead we
had n indicator variables each distributed with probability p then
E[X1 + . . . + Xn] = n · p.

The variance of an indicator variable X1 with parameter p is
Var[X1] = E

[
(X1− E[X1])2

]
= E[X2

1]− E[X1]2. Observe that X2
1 = X1

because X1 takes only values 0 and 1. That is, Var[X1] = E[X1] −
E[X1]2 = p− p2 = p(1− p).

Is it true that Var[X1 + . . . + Xn] = np(1− p)?
No, not in general16, unless the Xi’s are pairwise (i.e. every two

15In the literature these are also called Bernoulli trials.
16For example, if X1 = X2 and Pr[X1 = 1] = 1/2 then E[X1 + X2] = 2 · 1

2 = 1, but Var[X1 + X2] = Var[2X1] =

E[4X2
1 ]− E[2X1]

2 = 4Var[X1] 6= 2Var[X1].
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of them) independent. This is a really very important point in our
narrative.

It is not sufficient to know that the Xi’s follow a certain probability
distribution when we look each of them in isolation.

For example, it may be the case that X1 = X2. Then, E[X1 + X2] = 2p,
because expectation is linear regardless of any correlations between
the random variables. But is it true that Var[X1 + X2] = Var[X1] +
Var[X2]?

We conclude this section leaving two tasks to the reader.
First, you should verify that if the Xi’s are pairwise independent

then Var[X1 + . . . + Xn] = np(1− p).
Second, try to understand if there exist variables, which are pair-

wise independent but they are not three-wise independent17.

1.7 How do we express things and why do we write them as such

Probability theory was properly formalized (axiomatized) by Kol-
mogorov18 in the 1930s. Before 1930s people were also reasoning
about probability. For example, Bayes’ article was written 150 years
before Kolmogorov’s work. When the world was young, probability
was a mess, often times wrong, and not usable. The pre-Kolmogorov
era inherited us the notation Pr[. . .]. In fact, it inherited us more than
the notation – a way of expressing ourselves about probabilities.

Think about it. We can define Ω = {face 1, face 2, . . . , face 6}, then
Pr[face i] = 1

6 for every i = 1, 2, . . . , 6. Then, say that X(face i) = i.
Finally, define the event E =

{
ω | X(ω) is even

}
= {2, 4, 6}. That is,

the event is defined by the predicate “X(ω) is even”. At the end, we
calculate Pr[E ] = 1

6 +
1
6 +

1
6 = 1

2 .
17A collection of random variables X1, . . . , Xn is three-wise independent if for every distinct three variables Xi , Xj, Xk ∈

{X1, . . . , Xn} and for every x, y, z ∈ Ω we have Pr[X = x AND Y = y AND Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]. Note
that pair-wise, three-wise, four-wise, and so on, notion of independence are restrictions of the notion of independence of all
variables (which coincides with n-wise independence).

18See http://www.kolmogorov.com/Foundations.html.

http://www.kolmogorov.com/Foundations.html
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Now, instead of all these we could have simply written,
Pr[X is even] = 1

2 , which means exactly the same thing and can replace
the whole small paragraph above. Even those obsessed with math-
ematical formalism would have found “Pr[X is even] = 1

2” much
cleaner than the detailed formal description. We loose nothing in
formality if the translation of “Pr[X is even] = 1

2” can be done in our
heads.

Often times we may begin by writing, for example: “Consider
the random variables X, Y”. This implies that there is an underly-
ing probability space associated with these random variables. When
obvious we will not explicitly mention the space (but it is always
there).

Another point of confusion is when one says “random variable”
instead of simply saying a “sample”. For example, consider a space
that consists of binary strings {00, 01, 10, 11} each with the same
probability. Then, someone may write Pr[X = 00], calling X a “ran-
dom variable” (instead of calling it “sample”). X is not real-valued19

and we cannot compute expectations or variances for such an X.
However, we will occasionally abuse terminology and call X a “ran-
dom variable”.

Finally, we will use the terms “distribution” and “random vari-
able” interchangeably. In fact, one could have introduced terms such
as “probability mass/density”, “probability distribution”, and so on.
This type of terminology is unnecessary for our purposes. We will
also not explain why a function is different from a distribution. None
of these are hard to explain, but they are not necessary for us.

19Advanced comment: we can define X’s over measurable spaces (not necessarily R), but this X in the example is not
measurable in any interesting way.
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1.8 Examples of “hidden” statistical dependence and independence

Let us now discuss some very interesting examples.20.
Consider three indicator random variables X1, X2, X3, and their

sum, which is calculated over the integers, X = X1 + X2 + X3.
Now, let us define two other random variables. Consider the rep-

resentation of the sum of the Xi’s in binary notation. Their sum can
be 0, 1, 2, 3, which in binary is 00, 01, 10, 11. We associate the first
(most significant) digit of X with the random variable b1 and the sec-
ond digit with b0. That is, X is written in binary as b1b0; i.e. the new
random variables b1 and b0 take {0, 1} values and put together they
form the binary numbers 00, 01, 10, 11.

Do you think that the digits of the sum of independent random
variables are independent?

Are the digits of the sum statistically correlated with each other? If b0 and b1 are inde-
pendent21 then for all α, β ∈ {0, 1} holds

Pr[b0 = α, b1 = β] = Pr[b0 = α]Pr[b1 = β]

(or that Pr[b0 = α|b1 = β] = Pr[b0 = α]).
We begin by determining the probability that X equals

00, 01, 10, 11. X = 00 (i.e. b1 = 0 and b0 = 0) only when X1 = X2 =
X3 = 0, i.e. Pr[X = 00] = 1

8 ; X = 01 if exactly one of the Xi’s is 1, i.e.
Pr[X = 01] = 3

8 ; similarly, Pr[X = 10] = 3
8 and Pr[X = 11] = 1

8 .

Now, let us come back to checking independence of b1 and b0.
First check, b0 = 0 and b1 = 0. The summations that correspond to

b1 = 0 are {00, 01} and to b0 = 0 are {00, 10}, and thus Pr[b0 = 0, b1 =
0] = Pr[X = 00] = 1

8 6=
1
4 = 1

2 ·
1
2 = Pr[b0 = 0]Pr[b1 = 0]. Since there

exist α and β such that Pr[b0 = α, b1 = β] 6= Pr[b0 = α]Pr[b1 = β]
20REMINDER: This material is copyrighted (10/2015) and in particular the treatment in this example. Any use is prohib-

ited, unless this set of notes is explicitly cited or with the written permission of the author.
21In Pr[X = 1, Y = 2] comma means “AND”. That is, Pr[X = 1 AND Y = 2].
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the variables b0, b1 are statistically dependent. Therefore, although
the digits b0 and b1 are the sum of statistically independent random
variables, these digits statistically depend on each other. This is the
first non-trivial fact about statistical intuition. It deepens our under-
standing how a random sum statistically looks like22.

All told, as random variables the digits b0 and b1 depend on each
other, because we can find values for b0 and b1 where the definition
of independence does not hold. On the other hand, there are certain
pairs of values for which the two digits do not depend on each other.

Mastering the above two examples significantly boosts one’s un-
derstanding of statistical dependence and independence.

Let us take things just one step further. Digit b0 depends on b1 and
this is witnessed by a difference between 1/4 and 1/8. What if the
number of variables in the summation increases? Do the following
exercise. Consider four indicator variables X1, X2, X3, X4. The pos-
sible sums written in binary are 000, 001, 010, 011, 100. Let us now
associate the most significant bit with b2, the middle with b1, and the
least significant one with b0. Then, are b0 and b1 statistically depen-
dent? If yes, does this “dependence” look less important to you than
the one before?

Are the digits b1, b0 of the sum X = X1 + X2 + X3 statistically dependent with the variables

Xi that form the sum? This question is extremelly interesting for someone
who wants to understand what statistical independence means (“sta-
tistical independence” is not the same at all as some casual notion of
independence).

Intuitively, we would expect that the variables X1, X2, X3 are re-
lated to b0 and b1 (after all these Xi’s determine b0, b1). The truth is
not as simple as this intuition suggests.

22For example, if it were the case that the digits of a random sum were independent then it would have been the case
that we could have put together a simple statistical model to sample a random sum directly! (i.e. without first sampling
random Xi’s and then adding them up!)



24 LECTURE 1. AN INTERLUDE OF BASIC PROBABILITY THEORY

Does b0 statistically depends on X1? We calculate Pr[b0 = 0, X1 =
0] = 1

4 = Pr[b0 = 0]Pr[X1 = 0]. Same for Pr[b0 = 0, X1 = 1] and
Pr[b0 = 1, X1 = 0] and Pr[b0 = 1, X1 = 1]. Therefore, the least signifi-
cant digit is independent of the value of X1 (or of any other variable).
Can you see why intuitively this is the case?

The same observation does not hold if instead of b0 we consider b1.
It also does not hold if instead of only one variable X1 we consider
more, e.g. X1, X2, X3 (i.e. when we consider the probability condi-
tioned on X1 = β1, X2 = β2, X3 = β3).

Study all these examples very carefully.

Remark 11. The examples in this section (Section 1.8) are probably the
most indicative examples of statistical independence in the probability lit-
erature! Why does the least signficant digit of the number representing the
sum does not statistically depend on what we are summing? Why every
other digit does? Why when the first and the second digits differ then they
are statistically independent and when they are equal they depend on each
other? The formal explanations (through calculations) are all given above,
but developping intuition about all these will probably take time.

1.9 Common distributions and useful tools

The most basic distribution is the Bernoulli trial, it assumes values
{0, 1} with parameter p, where p is the probability of 1.

The distribution that quantifies the probability of k successes
(i.e. k-many 1s) “until the first failure” using i.i.d. Bernouli trials is
called geometric distribution.

We have a special interest in the behavior of sums of i.i.d. Bernoulli
trials. This measures the number of 1s in X = X1 + X2 + · · · + Xn,
and is called the binomial distribution.

Task for the reader Given n and p the probability of Xi = 1 make a plot
(e.g. use R or Mathematica) of the magnitude of f (k) = Pr[X = k]
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and explain where this distribution assumes its highest value. Which
of the continuous distributions you learned in your first class that
involved statistics has a similar shape?

For the geometric and the binomial distribution we are interested
in understanding their “tails” (tail = what happens away from E[X]).

Here are some very useful expressions and inequalities.

• For an event E ⊆ Ω and its complement (with respect to Ω) ,
i.e. Ē = Ω− E , we have Pr[Ē ] = 1− Pr[E ].

• (union bound) For any collection (i.e. arbitrarily correlated) of
events E1, . . . , En we have Pr[E1∪ · · · ∪ En] ≤ Pr[E1] + · · ·+Pr[En]

•
(n

e

)k ≤ (n
k) ≤ nk, where e ≈ 2.718

• limn→∞
(
1− 1

n

)n
= 1

e

• 1
4 ≤

(
1− 1

n

)n ≤ 1
e

1.10 Important inequalities

The most basic inequality is Markov’s.

Theorem 12 (Markov’s inequality). Let X be a non-negative random
variable and c > 0 and arbitrary real number. Then,

Pr[X ≥ c] ≤ E[X]

c

This inequality relates probability of a random variable attaining
high values with its expectation.

This probability is as measuring what happens when we “do the
experiment once”, whereas the expectation is an average23.

23In fact, “probability” is also an averaging quantity of some short, but if this remark confuses you, then you read it and
promptly forget it.
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Markov’s inequality is so general that it cannot be super useful on
its own (there are only a few restricted cases where it is used on its
own). For example, let us replace c with another constant c = kE[X].
Then, Pr[X ≥ kE[X]] ≤ 1

k . This quantifies how unlikely is for a single
execution of the experiment to yield a value for the variable that is k
times away its expectation.

Here is what restricts its applicability. Let X = X1 + X2 + . . . +
X10, where E[Xi] = 0.5 for Xi’s, where each Xi is an independent
coin flip of an unbiased coin (say 1=HEADS and 0=TAILS). Then, X
counts the number of HEADS. Note that E[X] = 5. Then, Pr[X ≥
k · 5] ≤ 1

c . Think of c as indicating a probability of error — i.e. how
far away from the expectation we go. To bound this probability using
Markov by less than 50% we should set k > 2. This means that that
the event is X > 10 which can never happen. It is amusing that
Markov is telling us that this event can happen with probability at
most e.g. 49%. But we already know that this event can happen with
probability at most 0% because we only have 10 variables. We do not
need any inequality to tell us this.

Markov is definitely not useless. It is useful in certain cases. More-
over, it is very important in deriving new, stronger inequalities, but
in more restricted settings 24.

If we have information about the variance of a variable, and this
variance is small, then much more can be achieved.

Theorem 13 (Chebyshev’s inequality). For every a random variable X
and c > 0 holds that

Pr[|X− E[X]| ≥ c] ≤ Var[X]

c2

This inequality relates: (i) the probability of the value of X in one
realization of the experiment, (ii) its expectation, and (iii) its variance.

24A restricted setting is an interesting one. Generic/abstract and unrestricted mathematical settings typically describe
generic/kind-of-obvious facts.
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We can prove Chebyshev’s by directly substituting a new random
variable Y = (X− E[X])2 for X in Markov’s inequality (do this).

To prove Markov’s is also not hard (this proof can be skipped at a
first reading).

Proof of Theorem 12 for discrete random variables. Define f (x) = 0 for
all x < c, and f (x) = 1 for all x ≥ c. Then, although we think
of X taking random values it always holds that c · f (X) ≤ X. It is
easy to see that for RVs Y, Z if Y ≤ Z then E[Y] ≤ E[Z]. Therefore,
c · f (X) ≤ X =⇒ E[c f (X)] ≤ E[X] =⇒ cE[ f (X)] ≤ E[X].

E[ f (X)] = ∑
x

Pr[ f (X) = x]x = Pr[ f (X) = 1]1 + Pr[ f (X) = 0]0

= Pr[ f (X) = 1] = Pr[X ≥ c]

Therefore, cE[ f (X)] ≤ E[X] =⇒ Pr[X ≥ c] ≤ E[X]
c .

1.11 The concentration of measure phenomenon

Suppose that we perform 1000 independent, unbiased coin flips. If X
is the random variable whose value is the total number of HEADS,
then E[X] = 500. In practice, we do not care only about the average
but mostly about the value of X with high probability.

Remark on terminology 14. “High probability” is loosely defined and
is determined by context. In some cases it means any constant above 1

2 ,
e.g. 2

3 . The term “constant” is also undefined unless there is some quantity
growing to infinity. For example, consider a probabilistic experiment25, pa-
rameterized by n, where n is the number of coin flips. More often, “high
probability” means probability 1− 1

n or 1− 1
n2 or 1− 1

10n ; e.g. for n = 10
we have 1− 1

n = 0.9 whereas 1− 1
10n = 0.9999999999. Depending on the

context we may want the “high probability” to converge polynomially fast
25We already saw that every intuitively described experiment corresponds to a formal probability space
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to 1, or in other contexts “high” means exponential fast convergence to 1.
Also, we may write almost surely (a.s.) instead of “with high probability”.

We continue with the goal of understanding the value of X a.s. in
the experiment where we i.i.d. flip n unbiased coins. Let Xi ∈ {0, 1}
be the random variable, which is 1 if and only if the i-th coin flip
is “HEADS”. Then, we have X = X1 + · · · + Xn and thus E[X] =
E[X1] + · · ·+ E[Xn] =

1
2 + · · ·+

1
2 = n

2 .
We are ready to derive our first probability measure concentration

result, which is on its own quite impressive. By measure concentra-
tion we mean that most of the probability is around its expectation.
“Around” means in a small interval centered at expectation.

For the calculation with Chebyshev we will need two facts. First,
the variance of each Xi is Var[Xi] = E[X2

i ] − E[Xi]2, and since Xi ∈
{0, 1}, we have Var[Xi] = E[Xi] − E[Xi]2 = 1

2 −
(1

2

)2
= 1

2 −
1
4 =

1
4 . Finally, since the Xi’s are independent we have that Var[X] =
Var[X1] + · · ·+ Var[Xn] =

n
4 .

Now, let us put everything together.

Theorem 15 (Chebyshev sampling). Let ε, p > 0 be constants. Consider
n i.i.d. Bernoulli trials X1, . . . , Xn, where E[Xi] = p. Let X = ∑n

i=1 Xi,
then,

Pr
[
X > (1 + ε)E[X]

]
< O

(
1
n

)
Proof. Note that Pr

[
X > (1 + ε)E[X]

]
< Pr

[
X > (1 + ε)E[X] or X <

(1− ε)E[X]
]
= Pr

[∣∣X− E[X]
∣∣ > εE[X]

]
. Therefore, by Chebyshev

we have Pr
[∣∣X− E[X]

∣∣ > εE[X]
]
≤ Var[X]

(εE[X])2 = nVar[X1]

(εnE[X1])
2 = Var[X1]

nε2E[X1]2
=

1
n ·

p−p2

ε2 p2 = 1−p
ε2 · 1

n = O
( 1

n

)
, since ε and p are constants.

Thus, just computing the variance we can show that the probabil-
ity of going e.g. 0.1% above the average decreases polynomially with
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the number of variables (in practice, each variable Xi corresponds to
a repetition of an experiment, or a coin flip, or . . . ).

Similarly, to Theorem 15 we obtain that Pr
[
X < (1− ε)E[X]

]
<

O
( 1

n

)
. Therefore, after “one full trial” for X (which consists of n

small trials, one for each Xi), the probability that X falls outside
[(1 − ε)E[X], (1 + ε)E[X]] is at most O(1/n) and thus with proba-
bility 1−O( 1

n), X is inside [(1− ε)E[X], (1 + ε)E[X]] (“concentrated
around E[X]”).

The probability measure, which in total is 1, is sharply concentrated
around E[X].

The calculation in the proof says in fact more (in this document
“proofs” are just calculations). Even if the variables are pairwise in-
dependent (i.e. not fully independent) we still have the same conclu-
sion. The reason is that pairwise independence implies E[XiXj] =
E[Xi]E[Xj], which in turn suffices for showing Var[X] = Var[X1] +
· · ·+Var[Xn]. Recall that the latter in particular means that the covari-
ance is Cov[Xi, Xj] = E[XiXj]− E[Xi]E[Xj] = 0. In other words, vari-
ables that are uncorrelated, as measured by covariance26, do exhibit
measure concentration phenomena. We will see in the next section
that full independence (i.e. stronger than pairwise independence)
suffices to obtain exponential convergence to 1 (not only 1− 1

n).

How close to the true concentration of n i.i.d. variables is this bound? Concentration
around the expectation with probability 1−O( 1

n) is very high, but
it may be the case that we can do even better when we have inde-
pendent random variables – recall that the bound holds even if the
variables are pairwise independent.

Here is a computer experiment (in Mathematica) which goes as
follows: (i) sample independent Bernoulli trials Xi, for i = 1, . . . , 105

with probability parameter 1
2 ; (ii) at the end sum them up; (iii) repeat

26Note that zero covariance does not preclude statistical correlations of other forms.
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fresh starting from (i) for 1000 times. That is, sample X = X1 + · · ·+
X105 for 1000 times and then plot a histogram (Figure 1.3).

0 20000 40000 60000 80000 100000
value of X

0.001

0.002

0.003

0.004
relative frequency

Figure 1.3: Histogram for the value of X = X1 + · · ·+ X105

We can see that all the mass of the histogram we plotted is sharply
concentrated around the expectation point. Now, if we magnify the
region around the expectation we get a clearer picture of the same
experiment (Figure 1.4).
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Figure 1.4: Same histogram as in Figure 1.3 but now magnified around X = 50000. Observe that
no single one among these 1000 repetitions of the expriement resulted anything smaller than 49500
or bigger than 50500.
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We observe that in this computer experiment sharp concentration
did happen around the expectation. In the proof of Theorem 15 we
have that the precise constant (in front of 1/n) we calculated in the
bound is 1−p

ε2 . Here, p = 1/2 and let us set ε = 0.01. Then, by
applying Theorem 15 we have that with probability which is at most

1
20000 = 0.00005 we can have the value of X is bigger than 50500 or
smaller than 49500.

All these sound very good, since probability 0.00005 of being out-
side the concentration interval appears to be very small. But, our
theorem calculates that this happens with probability at most 0.00005.
Can it be that our theorem is not very strong? Maybe a better analy-
sis could have resulted in a better (better=smaller) upper bound. For
instace, maybe the truth is that the real upper bound on this proba-
bility is even smaller, e.g. 0.0000000000000000005. Of course, at most
0.0000000000000000005 also means at most 0.00005, i.e. the questions
we ask here do not challenge whether we have proved Theorem 15
correctly. We challenge whether this bound can be improved.

Let us make the following thought experiment. Let us suppose
that 0.00005 is the true upper bound; i.e. the probability is exactly
equal to 0.00005. Then, the probability that X ∈ [49500, 50500] is(
1− 1

20000

)
and the probability that all of 100000 independent execu-

tions are all inside [49500, 50500] would have been
(
1− 1

20000

)100000
=((

1− 1
20000

)20000
)5
≈ 1

e5 ≈ 0.0067. That is, the probability that
all 100000 independent executions of the experiment are inside
[49500, 50500] is about 0.67%. Recall that in our computer simula-
tion/experiment it happened to be the case that all of the executions
were inside [49500, 50500]. Now, one of two things has happened.
Either we were unlucky and we just hit the event that happens with
0.67% or it is just the case that the 0.00005 is not a “tight” upper
bound (“not tight” = “can be improved to something smaller”).
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1.12 Strong measure concentration from independence

We saw that repeating an experiment with two outcomes (0 and 1)
can result in concentration 1 −O(1/n) around the expected value.
Recall that for this it was not necessary to have “full independence”.
Rather, pairwise independence between the executions was suffi-
cient. Now, we show that there is an amazingly strong concentration
around the expectation when we make “full use” of independence
among the Xi’s.

Let X1, . . . , Xn be independent and identically distributed (i.i.d)
Bernoulli trials with parameter p (i.e. {0, 1} distributed random vari-
ables that come 1 with probability p). Let also X = X1 + · · ·+ Xn be
their sum. We also have that E[X] = np. We wish to upper bound
the probability Pr[X > ∆], for a ∆ that we will choose conveniently
later on. We remark that if we have any monotonically increasing
function F then Pr[X > ∆] = Pr[F(X) > F(∆)], because the event
“X > ∆” is just a set that satisfies “. . .” inside “Pr[. . . ]” for the cor-
responding values of X, which are exactly the same as the values in
e.g. “X + 1 > ∆+ 1” or “2X > 2∆” or more generally “F(X) > F(∆)”.
Therefore, for any λ > 0 we have

Pr[X > ∆] = Pr[eλX > eλ∆] ≤ E[eλX]

eλ∆ (1.1)

Now, the problem of bounding this probability reduces to the
problem of bounding the average E[eλX], where X = X1 + · · ·+ Xn.
Now, the independence among the Xi’s is used to assert that

E[eλX] = E[eλ(X1+···+Xn)] = E[eλX1 . . . eλXn ] = E[eλX1] . . . E[eλXn ] (1.2)

, where the last equality is because of independence (this is the only
place where we use independence – will be used nowhere else). By
definition of expectation: E[eλX1] = peλ·1 + (1 − p)eλ·0 = peλ + q,
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where we set q = 1− p. Therefore, by (1.2) we have that E[eλX] =
(peλ + q)n.

We intentionally left up until now ∆ not set to a specific value be-
cause this is the first time that it matters what it is. Let us set ∆ to
(1 + ε)E[X] = np + εpn, i.e. ∆ = (p + t)n, which is a slightly more
convenient form for the calculation that follows. Then, by (1.1) we
have

Pr[X > (p + t)n] ≤ (peλ + q)n

eλ(p+t)n
=

(
peλ + q
eλ(p+t)

)n

The reason that we introduced a λ is the same reason that λ > 0 is
introduced in Laplace Transform (the serious reader should check the
literature about Laplace Transform and understand why the choice
of introducing a free parameter λ in the exponent is not “magic”).
Since, the expression holds for all λ > 0 we apply the monotonic-
ity study (see Calculus 101) to find the λ that minimizes f (λ) =(

peλ+q
eλ(p+t)

)n
. By finding and substituting this λ back to (1.1) we have

that for t > 0

Pr[X > (p + t)n] ≤ e−n
(
(p+t) ln p+t

p +(q−t) ln q−t
q

)
This probability bound is called Chernoff bound or Chernoff-

Hoeffding Bound. This form is the strongest (tightest) probability
bound we will derive. However, it is somewhat messy – not very
easy to use. By a simple (but not immediate) manipulation this ex-
pression easily yields the following theorem27.

Theorem 16. Let X1, . . . , Xn be i.i.d. Bernoulli trials with probability pa-
rameter p. Then,

Pr[X > (1 + ε)E[X]] ≤ e−
ε2
3 E[X] = e−

ε2
3 pn

27This is just a derivation by: manipulating symbols, use a standard Taylor expansion, making substitutions. It is simple
to get and its proof does not provide any probabilistic insight.
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and
Pr[X < (1− ε)E[X]] ≤ e−

ε2
3 E[X] = e−

ε2
3 pn

Therefore, for a constant probability p and constant ε if we do the
experiment once (i.e. flip all n variables), then the probability that
the outcome is just a little bit away from E[X] is exponentially small,
i.e. 1

eΩ(n) . That is, with probability 1 − 1
eΩ(n) the value of X will be

inside [(1− ε)E[X], (1 + ε)E[X]]. Compare this with the 1− 1
Ω(n) rate

we derived before using Chebyshev’s inequality.

1.13 Statistical experiments over time: stochastic processes

Throughout this text we keep repeating that every informally (but
reasonably) defined experiment immediately translates to a proba-
bility space Ω. What happens if the experiment changes over time?

What is time? Time can be a continuous quantity, e.g. time t ∈ [0, ∞).
For every application of interest to Elements of Probability and
Statistics time progresses in discrete time steps, t ∈ {0, 1, 2, 3, . . . }. We
occasionally introduce time in the analysis of an experiment. In these
cases there is no physical notion of time associated with our intro-
duced time steps. For example, when we consider n independent
X1, . . . , Xn there is no notion of time here. But in order to be able to
use the tools (developed in the next sections) we may artificially as-
sume that there is a time order for the Xi’s. A detailed example will
be given later on.

How to formalize time? One option is to consider different probability
spaces, e.g. Ω1, Ω2, . . . . Another option would be to consider product
spaces with possibly infinite coordinates. However, for (mathemat-
ically) technical reasons it helps to have one space Ω over which we
define random variables X1, X2, . . . , with Xi corresponding to the i-th
time-step. Such a sequence of Xi’s is called a stochastic process. Then,
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the theory is developed by studying the relations between Xi’s. The
more interesting and useful findings are when the Xi’s are strongly
related – the more the restrictions the more meaningful the study.

Discrete memoryless processes An example of a severely restricted stochas-
tic process is one where the next step depends only on the previ-
ous step. Formally, for every i > 1 and α, β1, . . . , βi−1 ∈ X(Ω),
Pr[Xi = α|X1 = β1, . . . , Xi−1 = βi−1] = Pr[Xi = α|Xi−1 = βi−1].
This restriction is also great for visualizing such a memoryless pro-
cess. The fact that the i-th step depends only on the previous one
allows us to draw the stochastic process on papers: use one paper
for each time step.

A further restriction is when the discrete memoryless process is
time-homogeneous, i.e. when the behavior of the process is the same
for every time step. Formally, Pr[Xi = α|Xi−1 = βi−1] = Pr[Xi−1 =
α|Xi−2 = βi−1], i.e. the distributions of the Xi’s do not depend on i.
They only depend on the value of the previous step (whichever this
is). Now, a single graph defines the process. Maybe we will need a
paper of infinite size, but still just one paper.

Remark on terminology 17. Time-homogeneous, discrete memoryless
processes are usually called stationary Markov chains.

Such processes are common in supply chains, actuarial sciences,
process engineering, computer engineering, and computer science.

1.14 Martingales and Azuma’s inequality

A martingale is a concept different than a Markov process28. Markov
processes “are processes without memory”. Martingales are pro-
cesses that they “maintain the expected value”.

28There are examples of Markov processes that are not martingales, and of martingales that are not Markov processes.
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The typical example of a martingale is a fair gambling game. To
understand this we need the notion of conditional expectation. Let X
be a random variable and E be an event.

E[X|E ] = ∑
α

α Pr[X = α|E ]

In this notation, E[X|Y] is a random variable because it depends on
Y (Y is not one event E – for different values β of Y we consider the
event E = “Y = β′′).

A stochastic process X1, X2, . . . is a martingale if for all i ≥ 2 holds:

E[Xi|X1, . . . , Xi−1] = Xi−1

We have a special interest in martingales that do not change too
rapidly. Specifically, we say that a martingale X1, X2, . . . satisfies the
bounded difference condition if for constants ci ≥ 0 and every i ≥ 2 we
have that

|Xi − Xi−1| ≤ ci

Theorem 18 (Azuma’s inequality). Let X1, X2, . . . be a martingale sat-
isfying the bounded difference condition with parameters ci. Fix n > 0 and
let c = ∑n

i=1 c2
i . Then,

Pr[Xn > X0 + t] ≤ e−
t2
2c

and also
Pr[Xn < X0− t] ≤ e−

t2
2c

So, how to use the above in order to show measure concentration?

The serious reader should give serious thought on martingales.
Here we presented exactly what we will need for the rest of the class.
However, their importance is disproportional to the length of their
current presentation. After mastering all topics mentioned in this set
of notes you should study what is a filtration of a probability space,
what is a Doob’s filter, and other related topics.
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1.15 Suggested readings

Here is what I consider as the best sources to study the subject.

Introduction to Probability, 2nd Edition
by Dimitris P. Bertsekas and John N. Tsitsiklis

An Introduction to Probability Theory and Its Applications, Vol.1, 3rd ed.
by William Feller

A more advanced text mostly on “continuous” spaces:

Probability, 2nd ed.
by Albert N. Shiryaev

A glimpse on the philosophical interpretation of probability:

Interpretations of Probability (Stanford Encyclopedia of Philosophy)
https://plato.stanford.edu/entries/probability-interpret/

by Alan Hajek

https://plato.stanford.edu/entries/probability-interpret/
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