
COMS W4261: Introduction to Cryptography.
Instructor: Prof. Tal Malkin

Summary of Lecture on Secret Sharing

Abstract

This is a summary of Lecture 25 (12/3/19) in Fall 2019, taught by Dr. Tal Rabin.
It is written by Prof. Malkin rather quickly, and may have some omissions or errors.
The notes are not in the order the material was presented in class.

1 Motivation and Definition

Intuitively, a secret sharing scheme allows a dealer to share a secret m among n parties
P1, . . . , Pn, such that any authorized subset of parties can use all their shares to reconstruct
the secret, while any other (non-authorized) subset learns nothing about the secret from
their shares.

Secret sharing has some direct applications, where we need to distribute a secret to several
parties/servers, in order to distribute the required trust, as well as to allow reconstruction
even if some of the parties fail. Examples include storing a digital wallet or a master key
(DNSSEC used 5-out-of-7 secret sharing scheme for its root key). Nuclear codes are also
often given as an example, though I don’t know what is actually used in practice for those.
Additionally, secret sharing is a useful tool in many larger cryptographic systems (notably,
secure computation).

Note that simply giving some of the bits of the secret to each party certainly reveals
information (and it cuts the search space and significantly reduces security – in some cases,
depending on what the secret is used for, a fraction of the secret bits can be used to com-
pletely recover the entire secret). We want no information whatsoever to be leaked to any
unauthorized subset.

Secret sharing can be defined with respect to any access structure that specifies the set
of authorized subsets, as long as that access structure is monotone (namely, if a subset is
authorized, any larger subset should also be authorized). In class, we gave a definition for
the common case of t-out-of-n , or threshold secret sharing, where authorized subsets are all
those of size at least t, while sets of size less than t are not authorized.

Definition 1 (t-out-of-n secret sharing syntax and correctness). A t-out-of-n secret sharing
scheme over message space M is a pair of algorithms (Share, Reconstruct) such that:

• Share is a randomized algorithm that on any input m ∈M outputs a n-tuple of shares
(s1, . . . , sn).

• Reconstruct is a deterministic algorithm that given a t-tuple of shares outputs a mes-
sage in M

and satisfying the following correctness requirement:
∀m ∈M,∀S = {i1, . . . , it} ⊆ {1, . . . , n} of size t,

Pr
Share(m)→(s1,...,sn)

[Reconstruct(si1 , . . . , sit) = m] = 1

COMS W4261, Introduction to Cryptography, Summary of Lecture on Secret Sharing, p. 1



Definition 2 (secret sharing security). A t-out-of-n secret sharing scheme (Share, Reconstruct)
over M is perfectly secure if:
∀m,m′ ∈M, ∀S ⊆ {1, . . . , n} s.t. |S| < t, the following distributions are identical:

{(si|i ∈ S) : (s1, . . . , sn)← Share(m)}

{(s′i|i ∈ S) : (s′1, . . . , s
′
n)← Share(m′)}

Recall that two distributions are identical if they give exactly the same probability for
every possible value. Thus, the above definition can be restated as follows: ∀m,m′ ∈ M,
∀S ⊆ {1, . . . , n} s.t. |S| < t, and for any set α = (α1, . . . , α|S|), we have that

Pr
Share(m)→(s1,...,sn)

[(si|i ∈ S) = α] = Pr
Share(m′)→(s′1,...,s

′
n)

[(s′i|i ∈ S) = α]

2 A 2-out-of-2 Secret Sharing Scheme

Consider the following 2-out-of-2 secret sharing scheme for M = Zp.

Share2−2: On input m ∈ Zp,

• select s1 ∈ Zp uniformly at random.

• set s2 = m− s1 (mod p)

• output (s1, s2)

Reconstruct2−2: On input (s1, s2) ∈ Zp × Zp,

• output s1 + s2 (mod p)

Note that in this scheme, the size of each share is the size of the secret |m| (since both
can be any element of Zp). It can be shown that this size is required (there’s no scheme
where each share is shorter than the secret).

Theorem 1. The scheme (Share2−2, Reconstruct2−2) above is a correct and secure 2-out-
of-2 secret sharing scheme over M = Zp.

Proof. Correctness follows immediately from the way Share2−2 and Reconstruct2−2 were
defined: ∀m ∈ Zp,

Pr
Share(m)→(s1,s2)

[Reconstruct(s1, s2) = m] = Pr
Share(m)→(s1,s2)

[s1 +m− s1 = m (mod p)] = 1

Security follows since each share individually is distributed uniformly at random, so does
not contain any information about the secret. To prove it formally, fix any m,m′ ∈ Zp, and
consider a subset of 1 share. In case it is the first share s1, since it is chosen uniformly (and
|Zp| = p), we have that ∀α ∈ Zp,

Pr
Share(m)→(s1,s2)

[s1 = α] =
1

p
= Pr

Share(m′)→(s′1,s
′
2)

[s′1 = α]

COMS W4261, Introduction to Cryptography, Summary of Lecture on Secret Sharing, p. 2



In case it is the second share s2, we have that ∀α ∈ Zp,

Pr
Share(m)→(s1,s2)

[s2 = α] = Pr
Share(m)→(s1,s2)

[m−s1 = α (mod p)] = Pr
Share(m)→(s1,s2)

[s1 = m−α (mod p)] =
1

p

Similarly,

Pr
Share(m′)→(s′1,s

′
2)

[s′2 = α] = Pr
Share(m′)→(s′1,s

′
2)

[s′1 = m− α (mod p)] =
1

p

and again both probabilities are equal. This completes the proof.

3 An n-out-of-n Secret Sharing Scheme

The above scheme is sometimes referred to as “additive secret sharing”. We note that 2-
out-of-2 additive secret sharing can easily be extended to any n-out-of-n additive secret
sharing. The sharing algorithm chooses n strings (s1, . . . , sn) uniformly at random subject
to the requirement that Σn

i=1si = m (mod p) (this can be done by choosing s1, . . . , sn−1 ∈ Zp

uniformly at random, and then setting sn = m − Σn−1
i=1 si (mod p)). The reconstruction

algorithm simply adds all the shares modulo p. The proof of security is similar to the above,
and is omitted.

4 A 2-out-of-n Secret Sharing Scheme

Suppose we are given a 2-out-of-2 secret sharing scheme (Share2−2, Reconstruct2−2) (e.g.,
the one we showed above). We want to use it to construct a 2-out-of-n secret sharing scheme,
namely sharing the secret among n parties, so that any two of them can reconstruct, but
any single party learns nothing about the secret.

A first idea is to just share the secret via a fresh 2-out-of-2 sharing for every possible
pair of parties. The new share of each party consists of n− 1 2-out-of-2 shares (one for each
of the other parties). When two parties get together, they can use the two corresponding
2-out-of-2 shares to reconstruct the secret.

The above idea works (satisfies correctness and security). However, the size of the share
for each party is (n− 1) times the 2-out-of-2 share size, so at least (n− 1)|m| for a secret of
size |m|. Can we do better?

In the above, we shared the secret afresh n times. The idea for the improved 2-out-of-n
scheme is to have a smaller number of 2-out-of-2 sharings, as long as we have the property
that any pair of parties has at least one complete pair of two corresponding shares (or “two
halves” from the same sharing). We can achieve this property with only log n 2-out-of-2
sharings, where each party gets one half of each of the log n pairs of shares, corresponding
to the binary representation of the party’s index. The resulting share size will be log n times
the 2-out-of-2 share size, so we can do this with (log n)|m| share size. The scheme is specified
below (we renamed the parties to P0, . . . , Pn−1 for convenience).

COMS W4261, Introduction to Cryptography, Summary of Lecture on Secret Sharing, p. 3



Share2−n: On input m ∈ Zp,

• For k = 1 to log n

– Run Share2−2(m)→ (sk0, s
k
1)

• For i = 0 to n− 1, if binary representation of i is i1 . . . ilogn, set Si = (i, s1i1 , . . . , s
logn
ilogn

)

• Output (S0, . . . , Sn−1).

Reconstruct2−n: On input (Si, Sj),

• Consider the binary representations of the indices i = i1 . . . ilogn and j = j1 . . . jlogn.

• Find a bit position k where they differ, namely ik 6= jk (thus, skik = sk0, s
k
jk

= sk1 or vice
versa).

• Run Reconstruct2−2(s
k
0, s

k
1) and output the same.

Theorem 2. If (Share2−2, Reconstruct2−2) is a correct and secure 2-out-of-2 secret sharing
scheme, then the scheme (Share2−n, Reconstruct2−n) specified above is a correct and secure
2-out-of-n secret sharing scheme.

We do not provide the proof here, but the intuition is as follows. Correctness follows
from the fact that any i 6= j has at least one bit where ik 6= jk. The parties Pi, Pj thus have
shares sk0, s

k
1 and can use them to reconstruct the secret.

For example, party P1001 holds the shares s11, s
2
0, s

3
0, s

4
1 and party P1010 holds the shares

s11, s
2
0, s

3
1, s

4
0, so if they get together, they can use the third element and run Reconstruct2−2(s

3
0, s

3
1)

to obtain the secret m (they could also have used the fourth element).

Security follows since any individual party is holding log n shares, where each one is an
individual share from an independent 2-out-of-2 sharing. Thus, the share of an individual
party is independent of the secret m. A formal proof can be shown by reduction to the
security of the 2-out-of-2 scheme, and is omitted here.

Note: Shamir’s t-out-of-n Secret-Sharing

This was not covered in class (and won’t be covered here), but we mention it just for
completeness. As mentioned on HW6, there’s a secret sharing scheme that allows share
size max(|m|, log n), and can work for any t-out-of-n secret sharing. This is Shamir’s secret
sharing scheme (which uses Reed-Solomon error correcting codes). While this scheme works
for any t ≤ n, if t ≤ n/3, the scheme enjoys another important property of robustness.
Specifically, it can be used with a reconstruction algorithm by Berlekamp-Welch, which
allows to reconstruct the secret from all n shares, even if t − 1 of them are wrong shares
contributed by malicious parties.

COMS W4261, Introduction to Cryptography, Summary of Lecture on Secret Sharing, p. 4



5 Using Secret Sharing for Secure Computation

This part was covered very informally in class (and will similarly be covered informally here).
It will not be considered part of the class material (and in particular, will not be on the final).

Secure computation is a major area of cryptography, with lots of work starting in the
1980s, and still going strong. Very roughly speaking, parties P1, . . . , Pn want to compute
some function f(x1, . . . , xn) of their respective inputs, so that no information is revealed
other than the output. Defining security is a challenging and interesting area on its own,
and we won’t discuss it here. But we will try to give a flavor of how secret sharing can be
useful.

Consider n parties, where each party Pj holds an input xj ∈ Zp. They want to compute
the function f(x1, . . . , xn) = Σn

j=1xj (mod p) (note that if we know that p is certainly larger
than the sum of the inputs, then this is the same as summing over the integers. This can be
used to compute things like average score on an exam, or an average salary, etc).

One protocol we proposed is the following. P1 starts by choosing r ∈ Zp uniformly at
random, and sending t1 = r + x1 (mod p) to P2 (over a private communication channel).
Next, P2 sends t2 = t1 + x2 (mod p) to P3, and so on. Finally, Pn, after receiving tn−1 from
Pn−1, sends tn = tn−1 + xn (mod p) to P1. P1 computes tn − r (mod p) to obtain the final
sum (which it can then announce to the other parties).

In this protocol, the message tj received by party j is uniformly distributed in Zp, and
thus does not reveal any information about the inputs. However, if two parties collude,
security is compromised. For example, if P1 and P3 collude, they can find the input of
P2 by computing x2 = t2 − t1 (mod p). The scheme also requires n sequential rounds of
communication.

We can use n-out-of-n secret sharing to solve both above problems. The new protocol
proceeds as follows. Each party Pj creates an additive n-out-of-n secret sharing of its input xj
into shares (sj,1, . . . , sj,n), where Σn

i=1sj,i = xj (everything is in Zp and we omit the (mod p)
notation from now on). Pj then sends share sj,i to party Pi. After all parties sent the shares
(which can be done in parallel), each party Pi sums up all the shares it has received, to
obtain Si = Σn

j=1sj,i. Now every party Pi can broadcast Si, and all parties compute Σn
i=1Si

which equals Σj,isj,i = Σn
j=1xj as desired.

The intuition for security is that the shares received by each party Pi are just a random
sharing of Si, where the Si’s themselves are also all random, subject to the constraint that
they have to sum up to the correct output. Thus, any collusion of fewer than n parties only
has random values that are independent of the honesty parties’ inputs.

What about secure computation of more complex functions, that are not just sums? One
of the general approaches, is to represent the function as an arithmetic circuit with addition
and multiplication gates (in Zp). We start by sharing the inputs (as above), and then the
parties jointly compute each gate in the circuit, in a way that preserves secret sharing. That
is, given shared inputs to a gate, the parties obtain shared outputs of the gate, all the way
until they obtain shares of the output. Then they announce the shares and reconstruct the
final output. To do this for an addition gate is easy, as we saw above – the parties just
locally sum their shares. Doing this for multiplication gates is more complex, and requires
some further interaction. But it is possible to do (in various settings).

COMS W4261, Introduction to Cryptography, Summary of Lecture on Secret Sharing, p. 5


