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Review
What is secret sharing?
2 out of 2 secret sharing

2 out of n secret sharing from 2 out of 2 secret sharing
Proof by reduction (started last class)

Some Number Theory

t out of n secret sharing (Shamir)



t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:

I Share is a randomized algorithm that on any input m ∈M
outputs a n-tuple of shares (s1, . . . , sn).

I Reconstruct is a deterministic algorithm that given an
t-tuple of shares outputs a message in M

while both satisfy the following correctness requirement:
∀m ∈M, ∀S = {i1, . . . , it} ⊆ {1, . . . , n} of size t,

Pr
Share(m)→(s1,...,sn)

[Reconstruct(si1 , . . . , sit ) = m] = 1
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t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:

∀m,m′ ∈M, ∀S ⊆ {1, . . . , n} s.t. |S | < t, ∀A,

Pr
Share(m)
→(s1,...,sn)

[A((si |i ∈ S)) = 1] = Pr
Share(m′)
→(s′

1
,...,s′n)

[A((s ′i |i ∈ S)) = 1]
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A 2-out-of-2 Secret Sharing Scheme

Share2−2: On input m ∈ {0, 1}`,
I select s0 ∈ {0, 1}` uniformly at random.

I set s1 = s0 ⊕m

I output (s0, s1)

Reconstruct2−2: On input (s0, s1) ∈ {0, 1}` × {0, 1}`,
I output s0 ⊕ s1

(proved perfect security using identical distributions security
definition)
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A 2-out-of-n Secret Sharing Scheme

Share2−n: On input m ∈ {0, 1}`,

I For k = 1 to log n
I Run Share2−2(m)→ (sk0 , s

k
1 )

I For i = 0 to n − 1, if binary representation of i is i1 . . . ilog n,

set Si = (i , s1i1 , . . . , s
log n
ilog n

)

I Output (S0, . . . ,Sn−1).

Reconstruct2−n: On input (Si , Sj),

I Consider the binary representations of the indices
i = i1 . . . ilog n and j = j1 . . . jlog n.

I Find a bit position k where they differ, namely ik 6= jk (thus,
skik = sk0 , s

k
jk

= sk1 or vice versa).

I Run Reconstruct2−2(sk0 , s
k
1 ) and output the same.
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2-out-of-n Scheme: Hybrid Proof

Main idea:
Assume 2-out-of-n scheme is not perfectly secure. We will show
that this implies that the 2-out-of-2 scheme must not be perfectly
secure.

We know that the 2-out-of-two scheme is perfectly secure (proved
last class). So, this means that our assumption must have been
false and it must be the case that the 2-out-of-n scheme is
perfectly secure.
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2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure.

This
means (by negation of the security definition) that:
∃m,m′ ∈ {0, 1}`, ∃i ∈ {0, . . . , n − 1}, ∃A, such that

Pr
Share2−n(m)→(S1,...,Sn)

[A(Si ) = 1] 6= Pr
Share2−n(m′)→(S ′1,...,S

′
n)

[A(S ′i ) = 1]

Our goal is to use this to construct an adversary B that breaks the
2-out-of-2 scheme.

Notice we have two distributions (a subset of the outputs of Share
called on m vs m′) such that when A is called on one it outputs 1
with a different probability than when it’s called on the other.
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2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have Si = (s1i1 , . . . , s
log n
ilog n

), where

each (sk0 , s
k
1 ) is the output of Share2−2(m).

Let’s call this distribution H0.

In the righthandside distribution, we have S ′i = (s
′1
i1
, . . . , s

′ log n
ilog n

),

where each (s
′k
0 , s

′k
1 ) is the output of Share2−2(m′).

Let’s call this distribution H log n

Using this notation, the previous statement that our scheme is not
perfectly secure can be written as:
Pr[A(H0) = 1] 6= Pr[A(H log n) = 1].
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2-out-of-n Scheme: Hybrid Proof

Let’s define some more distributions H j that A could be called on
(we call these hybrid distributions).

H j : for each share, the first j components are taken from m′, while
the rest are taken from m.

That is, for every j ∈ {0, . . . , log n}, we define

H j = {(s ′1i1 , . . . , s
′j
ij
, s j+1

ij+1
, . . . , s log nilog n

) :
(sk0 ,s

k
1 )←Share

k
2−2(m)

(s
′k
0 ,s
′k
1 )←Sharek

2−2(m
′)
∀k}

Note that our names for H0 and H log n match this definition.
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2-out-of-n Scheme: Hybrid Proof

Assuming our scheme is not perfectly secure, we know:
Pr[A(H0) = 1] 6= Pr[A(H log n) = 1].

It follows that there must exist a j ∈ {1, . . . , log n} such that

Pr[A(H j−1) = 1] 6= Pr[A(H j) = 1]

(otherwise, if all adjacent hybrids produce equal probabilities, the
end hybrids would also have equal probabilities)
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So, A outputs 1 with different probabilities when applied to

H j−1 → (s
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)

These hybrids are “adjacent” in a sense, differing in only one
location (j), with A still behaving differently on their distributions.
We are now ready to define B, the algorithm that uses A to break
the 2-out-of-2 scheme by “plugging it in” that location.
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2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i , j ,m,m′ are all hard-coded into B):

B: chooses to attack messages m,m′ with share ij .
On input s = sij ,

I For k = 1, . . . , j − 1, run Share2−2(m′)→ (s
′k
0 , s

′k
1 ).

I For k = j + 1, . . . , log n, run Share2−2(m)→ (sk0 , s
k
1 )

I Set Si = (s
′1
i1
, . . . , s

′j−1
ij−1

, s, s j+1
ij+1

, . . . , s log nilog n
)

I Run A(Si ) and output the same.

If s came from running Share2−2 on m, then Si is drawn from the
H j−1 distribution.

If s came from running Share2−2 on m′, then Si is drawn from the
H j distribution.
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2-out-of-n Scheme: Hybrid Proof

This is a contradiction. We know from last class that the
2-out-of-2 scheme is perfectly secure.

So our original assumption (that there exists an A that breaks the
perfect security of the 2-out-of-n scheme) must be false, and
therefore the 2-out-of-n scheme is perfectly secure.



Some Number Theory

Everybody knows that “two points determine a line” (this is a
postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.

Namely: d + 1 points determine a unique degree-d polynomial, and
this is true even working modulo a prime.
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Some Number Theory

Zp = {0, ..., p − 1}

Combined with modular addition and multiplication, Zp is a field
when p is prime. (every nonzero element has an additive and
multiplicative inverse)

Zp has p elements. A particular x is therefore drawn with
probability 1

p .

A degree-d polynomial f (x) =
∑d

i=0 fix
i can be evaluated on

inputs in both R and Zp
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Some Number Theory

Theorem (Polynomial Uniqueness and Interpolation)

Let p be a prime, and let {(x1, y1), ..., (xd+1, yd+1)} ⊆ Zp × Zp be
a set of points whose xi values are all distinct.
Then there is a unique degree-d polynomial f with coefficients in
Zp that satisfies yi = f (xi ) for all i .
(This f can be obtained from the d + 1 points via polynomial
interpolation).



Shamir’s Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just
saw that d + 1 points are enough to uniquely define a degree d
polynomial (the polynomial can be reconstructed via polynomial
interpolation).

A natural approach to build a secret sharing scheme is to let each
user’s share be a point on a polynomial. This is exactly what
Shamir Secret Sharing does.

To share a secret m ∈ Zp with threshold t out of n to reconstruct,
we choose a degree t − 1 polynomial that satisfies f (0) = m, with
all other coefficients chosen uniformly at random from Zp. The
share of the ith user is (i , f (i)).

The interpolation theorem says any t shares can uniquely
determine f , and hence recover the secret f (0) = m.
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Shamir’s Secret Sharing Scheme

Shareshamir : On input m ∈ Zp,

I select f1, ..., ft−1 uniformly at random from Zp.

I define f (x) = m +
∑t−1

i=1 fix
i

I for i = 1 to n:
I create share si = (i , f (i)).

I output: (s1, ..., sn)

Reconstructshamir : On input (si : i ∈ S)

I interpolate t points of si to obtain f , the unique degree t − 1
polynomial passing through these points.

I output f (0)

(correctness follows from interpolation theorem)
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Shamir Security

Recall the perfect security definition:

Definition (secret sharing security via identical distributions)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:
∀m,m′ ∈M, ∀S ⊆ {1, . . . , n} s.t. |S | < t, the following
distributions are identical:

{(si |i ∈ S) : (s1, . . . , sn)← Share(m)}

{(s ′i |i ∈ S) : (s ′1, . . . , s
′
n)← Share(m′)}



Shamir Security

Equivalently: ∀m,m′ ∈M, ∀S ⊆ {1, . . . , n} s.t. |S | < t, and for
any set α = (α1, . . . , α|S|), we have that

Pr
Share(m)→(s1,...,sn)

[(si |i ∈ S) = α] = Pr
Share(m′)→(s′1,...,s

′
n)

[(s ′i |i ∈ S) = α]



Shamir Security

Consider the distribution of Shareshamir (m)→ (s1, . . . , sn). Then,
for any α = (α1, . . . , α|S |), consider:

Pr
Shareshamir (m)→(s1,...,sn)

[(si |i ∈ S) = α]

for an unauthorized set S of size t − 1.

(si |i ∈ S) = α happens if and only if the polynomial chosen by
Shareshamir happens to have f (i) = αi for each i ∈ S and
f (0) = m.

By the polynomial interpolation theorem, there is one unique
degree t − 1 polynomial that satisfies these t constraints. The
Shareshamir chooses a degree t − 1 polynomial uniformly from the
set of pt−1 polynomials that satisfy f (0) = m (this is done by
choosing fi at random from Zp for i = 1, ..., t − 1). So, this
probability is 1

pt−1 .
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So we have that:

Pr
Shareshamir (m)→(s1,...,sn)

[(si |i ∈ S) = α] =
1

pt−1

for an unauthorized set S of size t − 1.

Notice that we can repeat this argument for the distribution of
Shareshamir (m′)→ (s ′1, . . . , s

′
n)! (Nothing in the argument

depended on the particular value for m).

So we also have that:

Pr
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′
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Shamir Security

Therefore, for any m,m′, for any α, and for any unauthorized set S
of size t − 1, we have that:

Pr
Shareshamir (m)

→(s1,...,sn)

[(si |i ∈ S) = α] =
1

pt−1
= Pr

Shareshamir (m
′)

→(s′
1
,...,s′n)

[(s ′i |i ∈ S) = α]

and therefore Shamir t-out-of-n secret sharing satisfies perfect
security.
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