Secret Sharing: 2 out of N and Beyond

Luke Kowalczyk

September, 13, 2016

Review
What is secret sharing?
2 out of 2 secret sharing

2 out of n secret sharing from 2 out of 2 secret sharing
Proof by reduction (started last class)

Some Number Theory

t out of n secret sharing (Shamir)

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:
» Share is a randomized algorithm that on any input m € M
outputs a n-tuple of shares (si,...,sp).

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:
» Share is a randomized algorithm that on any input m € M
outputs a n-tuple of shares (si,...,sp).
» Reconstruct is a deterministic algorithm that given an
t-tuple of shares outputs a message in M

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:

» Share is a randomized algorithm that on any input m € M
outputs a n-tuple of shares (si,...,sp).

» Reconstruct is a deterministic algorithm that given an
t-tuple of shares outputs a message in M

while both satisfy the following correctness requirement:

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:
» Share is a randomized algorithm that on any input m € M
outputs a n-tuple of shares (si,...,sp).
» Reconstruct is a deterministic algorithm that given an
t-tuple of shares outputs a message in M

while both satisfy the following correctness requirement:
VYme M,

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:
» Share is a randomized algorithm that on any input m € M
outputs a n-tuple of shares (si,...,sp).
» Reconstruct is a deterministic algorithm that given an
t-tuple of shares outputs a message in M

while both satisfy the following correctness requirement:
Vme M, VS ={n,...,it} C{1,...,n} of size t,

t-out-of-n Secret Sharing Syntax and Correctness

A t-out-of-n secret sharing scheme over message space M is a pair
of algorithms (Share, Reconstruct) such that:
» Share is a randomized algorithm that on any input m € M
outputs a n-tuple of shares (si,...,sp).
» Reconstruct is a deterministic algorithm that given an
t-tuple of shares outputs a message in M

while both satisfy the following correctness requirement:
Vme M, VS ={n,...,it} C{1,...,n} of size t,

Pr Reconstruct(s;,...,s,)=m| =1
Share(m)—>(sl,...,s,,)[(i i) = m]

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:
VYm,m € M,

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:
Vm,m' e M, VS C{l,...,n}st. |S| <t

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:
Vm,m' e M, VS C{1,...,n}st. |S| <t VA,

t-out-of-n Secret Sharing Security

Definition (secret sharing security with adversaries)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M
is perfectly secure if:
Vm,m' e M, VS C{1,...,n}st. |S| <t VA,

Pr [A(silieS)=1= _Pr [A((sllieS))=1
shar, A€ =1 = Pr [A((sili € 5)) = 1]

—(s1,---,5n) —(s]5-+55p)

A 2-out-of-2 Secret Sharing Scheme

A 2-out-of-2 Secret Sharing Scheme

Sharey »: On input m € {0,1}*,
» select so € {0,1}¢ uniformly at random.
> set s =55Dm

» output (sp, s1)

A 2-out-of-2 Secret Sharing Scheme

Sharey »: On input m € {0,1}*,
» select so € {0,1}¢ uniformly at random.
> set s =55Dm

» output (sp, s1)

Reconstructs »: On input (so,s1) € {0,1}¢ x {0,1}*,
> output sp D 51

A 2-out-of-2 Secret Sharing Scheme

Share, »: On input m € {0,1},
» select so € {0,1}¢ uniformly at random.
> set s =55Dm

» output (sp, s1)

Reconstructs »: On input (so,s1) € {0,1}¢ x {0,1}*,
> output sp D 51

(proved perfect security using identical distributions security
definition)

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)
» For i =0 to n— 1, if binary representation of i is i1 ... fiog n,
set S = (i,st,..., 58"

n’ ? Tlog n

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)
» For i =0 to n— 1, if binary representation of i is i1 ... fiog n,
set S; = (i,s},... S8 ™)

? Tlog n

» Output (So,...,Sn—1).

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)
» For i =0 to n— 1, if binary representation of i is i1 ... fiog n,
set S; = (i,s},... S8 ™)

? Tlog n

» Output (So,...,Sn—1).

Reconstructo_,: On input (S5}, 5)),

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)
» For i =0 to n— 1, if binary representation of i is i1 ... fiog n,
set S; = (i,s},... S8 ™)

? Tlog n

» Output (So,...,Sn—1).

Reconstructo_,: On input (S5}, 5)),
» Consider the binary representations of the indices
i:il...l]ogn andj:jl...jk,g,,.

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)
» For i =0 to n— 1, if binary representation of i is i1 ... fiog n,
set S; = (i,s},... S8 ™)

? Tlog n

» Output (So,...,Sn—1).

Reconstructo_,: On input (S5}, 5)),
» Consider the binary representations of the indices
i:il...l]ogn andj:jl...jk,g,,.
» Find a bit position k where they differ, namely ix # ji (thus,
k k ok k

S\ =555, =S| or vice versa).

A 2-out-of-n Secret Sharing Scheme

Sharey_,: On input m € {0,1}¢,
> For k=1to logn
» Run Share; »(m) — (s§, s¥)
» For i =0 to n— 1, if binary representation of i is i1 ... fiog n,
set S; = (i,s},... S8 ™)

? Tlog n

» Output (So,...,Sn—1).

Reconstructo_,: On input (S5}, 5)),
» Consider the binary representations of the indices
i:il...l]ogn andj:jl...jk,g,,.
» Find a bit position k where they differ, namely ix # ji (thus,
k k ok k

S\ =555, =S| or vice versa).

» Run Reconstructs_o(s§, sf) and output the same.

2-out-of-n Scheme: Hybrid Proof

Main idea:
Assume 2-out-of-n scheme is not perfectly secure. We will show

that this implies that the 2-out-of-2 scheme must not be perfectly

secure.

2-out-of-n Scheme: Hybrid Proof

Main idea:
Assume 2-out-of-n scheme is not perfectly secure. We will show
that this implies that the 2-out-of-2 scheme must not be perfectly

secure.

We know that the 2-out-of-two scheme is perfectly secure (proved
last class). So, this means that our assumption must have been
false and it must be the case that the 2-out-of-n scheme is
perfectly secure.

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure.

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure. This
means (by negation of the security definition) that:

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure. This
means (by negation of the security definition) that:
Im, m' € {0,1}¢,

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure. This
means (by negation of the security definition) that:
dm,m’ € {0,1}¢, 3i € {0,...,n— 1},

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure. This
means (by negation of the security definition) that:
dm, m’' € {0, 1}3, Ji€{0,...,n—1}, JA,

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure. This
means (by negation of the security definition) that:
Im,m’ € {0,1}¢, 3i € {0,...,n— 1}, A, such that

P A(S) =1 P A(SHY =1
Shareg_,,(m;—>(51,...,5,,)[(57)]7&Shareg_,,(m’r)—>(5{,...,S,’,)[(5) =1

Our goal is to use this to construct an adversary B that breaks the
2-out-of-2 scheme.

2-out-of-n Scheme: Hybrid Proof

Assume that the 2-out-of-n scheme above is not secure. This
means (by negation of the security definition) that:
Im,m’ € {0,1}¢, 3i € {0,...,n— 1}, A, such that

P A(S) =1 P A(SHY =1
Shareg_,,(m;—>(51,...,5,,)[(57)]7&Shareg_,,(m’r)—>(5{,...,S,’,)[(5) =1

Our goal is to use this to construct an adversary B that breaks the
2-out-of-2 scheme.

Notice we have two distributions (a subset of the outputs of Share
called on m vs m') such that when A is called on one it outputs 1
with a different probability than when it's called on the other.

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have S; = (s} log n

o Sigen), where

each (s¥, sf) is the output of Shares_»(m).

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have S; = (s} log n

o Sigen), where

each (s¥, sf) is the output of Shares_»(m).
Let's call this distribution H°.

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have S; = (s} Sy ’S/!Egg,,n)v where
each (s¥, sf) is the output of Shares_»(m).

Let's call this distribution HC.

In the righthandside distribution, we have S/ = (s;1,..., ;J:f”)

where each (5%, ;%) is the output of Share, »(m’).

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have S; = (s},. .., ,!Ijggn"
each (s¥, sf) is the output of Shares_»(m).

Let's call this distribution HO.

In the righthandside distribution, we have S/ = (sfll, ey ;J:f”)

where each (5%, ;%) is the output of Share, »(m’).
Let's call this distribution H'°&"

), where

2-out-of-n Scheme: Hybrid Proof

In the lefthandside distribution we have S; = (s} Sipree /!sgg,,n)v where
each (s¥, sf) is the output of Shares_»(m).

Let's call this distribution HC.

In the righthandside distribution, we have S/ = (s;1,..., ;0':%")

where each (5%, ;%) is the output of Share, »(m’).
Let's call this distribution H'°&"

Using this notation, the previous statement that our scheme is not
perfectly secure can be written as:
Pr[A(H®) = 1] # Pr[A(H'g") = 1].

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H’ that A could be called on
(we call these hybrid distributions).

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H’ that A could be called on
(we call these hybrid distributions).

H/: for each share, the first j components are taken from m’, while
the rest are taken from m.

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H’ that A could be called on
(we call these hybrid distributions).

H/: for each share, the first j components are taken from m’, while
the rest are taken from m.

That is, for every j € {0,...,logn}, we define

. . k
H = {(5{1 Sf.l g1 S!Og”) . (s§,sf)«Share; ,(m) 3
i 20200 g n (sék7s{k)<—Share§,2(m’)

2-out-of-n Scheme: Hybrid Proof

Let's define some more distributions H’ that A could be called on
(we call these hybrid distributions).

H/: for each share, the first j components are taken from m’, while
the rest are taken from m.

That is, for every j € {0,...,logn}, we define

Hi— {(5/1 S/j Sl Slogn)_ (sk,sk)«Shares_,(m) k)

. PR Py . e . . ’ /
ho DT T ? log n (50k751k)<—Share§,2(m’)

Note that our names for H° and H'°8" match this definition.

2-out-of-n Scheme: Hybrid Proof

Assuming our scheme is not perfectly secure, we know:
Pr[A(H®) = 1] # Pr[A(H'e") = 1].

2-out-of-n Scheme: Hybrid Proof

Assuming our scheme is not perfectly secure, we know:
Pr[A(H®) = 1] # Pr[A(H'e") = 1].

It follows that there must exist a j € {1,...,log n} such that
PrlA(H/ 1) = 1] # Pr[A(H) = 1]

(otherwise, if all adjacent hybrids produce equal probabilities, the
end hybrids would also have equal probabilities)

2-out-of-n Scheme: Hybrid Proof

So, A outputs 1 with different probabilities when applied to

j—1 1 -1 j _j+1 log n
H _>(511"“’5i,-,175:!,-7515-+1""’5i|0gn)

vs. when applied to

: ’ I e
J 1 -1 j J+1 log n
H = (sq5,-.8 ij,s{jﬂ,...,silogn)

2-out-of-n Scheme: Hybrid Proof

So, A outputs 1 with different probabilities when applied to

j—1 1 -1 j _j+1 log n
H _>(511"“’5i,-,175/!,-’5:!]+1""’5i|0gn)

vs. when applied to

. ! 7 I H
1 1 j—=1 /j +1 log n
H — (s; SR ,sij,s;jﬂ,...,silogn)

These hybrids are “adjacent” in a sense, differing in only one
location (j), with A still behaving differently on their distributions.

2-out-of-n Scheme: Hybrid Proof

So, A outputs 1 with different probabilities when applied to

j—1 1 -1 j _j+1 log n
H _>(511"“’5i,-,175;,-7515-“""’5&0“)

vs. when applied to

. ! 7 I H
1 1 j—=1 /j +1 log n
H — (s; SR ,sij,s;jﬂ,...,silogn)

These hybrids are “adjacent” in a sense, differing in only one
location (j), with A still behaving differently on their distributions.
We are now ready to define B, the algorithm that uses A to break
the 2-out-of-2 scheme by “plugging it in” that location.

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m’ are all hard-coded into B):

B: chooses to attack messages m, m’ with share i;.
On input s = Sij

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m’ are all hard-coded into B):

B: chooses to attack messages m, m’ with share i;.
On input s = Sij

» For k=1,...,j — 1, run Shares_»(m’) — (¥, s;%).

» For k=j+1,...,logn, run Shares_»(m) — (s¥, sf)
1 "j—1 j+1 log n

» Set §; = (s,-l,...,s,-j_1 ,s,s{j+1,...,silogn)

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m’ are all hard-coded into B):

B: chooses to attack messages m, m" with share ;.
On input s = Sij

» For k=1,. — 1, run Sharey o(m') — (54, 5,%).

» For k=j+ 1,.. Iogn run Shares_o(m) — (s&, sf)
' 1 |

> SetS,-:(sl-ll,..., i 1, ,s,j:,..., ,Eggn")

» Run A(S;) and output the same.

If s came from running Share;_» on m, then S; is drawn from the
H/=1 distribution.

2-out-of-n Scheme: Hybrid Proof

We define B as follows (where i, j, m, m’ are all hard-coded into B):

B: chooses to attack messages m, m" with share ;.
On input s = Sij

» For k=1,. — 1, run Sharey o(m') — (54, 5,%).

» For k=j+ 1,.. Iogn run Shares_o(m) — (s&, sf)
' 1 |

> SetS,-:(sl-ll,..., i 1, ,s,j:,..., ,Eggn")

» Run A(S;) and output the same.
If s came from running Share;_» on m, then S; is drawn from the
H/=1 distribution.

If s came from running Share, 5 on m’, then S; is drawn from the
H’ distribution.

2-out-of-n Scheme: Hybrid Proof

So,
Pr [B(si) = 1] = PrlA(H 1) = 1]

Share, »(m)—(so,s1)

while

Pr [B(s}) = 1] = PrA(H) = 1]

Share;_»(m’)—(s},s;

We know that Pr[A(H/=1) = 1] # Pr[A(H/) = 1]

2-out-of-n Scheme: Hybrid Proof

So,
Pr [B(si) = 1] = PrlA(H 1) = 1]

Share, »(m)—(so,s1)

while

Pr [B(s}) = 1] = PrA(H) = 1]

Share;_»(m’)—(s},s;

We know that Pr[A(H/~—1) = 1] # Pr[A(H/) = 1] , so

Pr [B(s;) = 1] # Pr [B(s.) =

Share,_»(m)—(so.s1) Share, »(m')—(s),s]) = °

2-out-of-n Scheme: Hybrid Proof

So,
Pr [B(si) = 1] = PrlA(H 1) = 1]

Share, »(m)—(so,s1)

while

Pr [B(s}) = 1] = PrA(H) = 1]

Share;_»(m’)—(s},s;

We know that Pr[A(H/~—1) = 1] # Pr[A(H/) = 1] , so

Pr [B(s;) = 1] # Pr [B(s.) = 1]

Share,_»(m)—(so.s1) Share, »(m')—(s),s]) = °

(so B breaks the perfect security of the 2-out-of-2 scheme — there
exists m, m’, an index ij and an algorithm B such that the above
probability holds.)

2-out-of-n Scheme: Hybrid Proof

This is a contradiction. We know from last class that the
2-out-of-2 scheme is perfectly secure.

So our original assumption (that there exists an A that breaks the
perfect security of the 2-out-of-n scheme) must be false, and
therefore the 2-out-of-n scheme is perfectly secure.

Some Number Theory

Everybody knows that “two points determine a line” (this is a
postulate of Euclidean geometry).

Some Number Theory

Everybody knows that “two points determine a line” (this is a
postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.

Some Number Theory

Everybody knows that “two points determine a line” (this is a
postulate of Euclidean geometry).

It is also true that 3 points determine a parabola, and so on.

Namely: d + 1 points determine a unique degree-d polynomial, and
this is true even working modulo a prime.

Some Number Theory

Zp=1{0,...p—1}

Combined with modular addition and multiplication, Z,, is a field
when p is prime. (every nonzero element has an additive and
multiplicative inverse)

Some Number Theory

Zp=1{0,...p—1}

Combined with modular addition and multiplication, Z,, is a field
when p is prime. (every nonzero element has an additive and
multiplicative inverse)

Zp has p elements. A particular x is therefore drawn with
probability %.

Some Number Theory

Zp=1{0,...p—1}

Combined with modular addition and multiplication, Z,, is a field
when p is prime. (every nonzero element has an additive and
multiplicative inverse)

Zp has p elements. A particular x is therefore drawn with
probability %.

A degree-d polynomial f(x) = Z;j:o fix' can be evaluated on
inputs in both R and Z,

Some Number Theory

Zp=1{0,...p—1}

Combined with modular addition and multiplication, Z,, is a field
when p is prime. (every nonzero element has an additive and
multiplicative inverse)

Zp has p elements. A particular x is therefore drawn with
probability %.

A degree-d polynomial f(x) = Z;j:o fix' can be evaluated on
inputs in both R and Z,

Some Number Theory

Theorem (Polynomial Uniqueness and Interpolation)

Let p be a prime, and let {(x1, y1), .- (Xd+1, Yd+1)} € Zp X Zp be
a set of points whose x; values are all distinct.

Then there is a unique degree-d polynomial f with coefficients in
Zp that satisfies y; = f(x;) for all i.

(This f can be obtained from the d + 1 points via polynomial
interpolation).

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just
saw that d + 1 points are enough to uniquely define a degree d

polynomial (the polynomial can be reconstructed via polynomial
interpolation).

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just
saw that d + 1 points are enough to uniquely define a degree d

polynomial (the polynomial can be reconstructed via polynomial
interpolation).

A natural approach to build a secret sharing scheme is to let each
user’s share be a point on a polynomial. This is exactly what
Shamir Secret Sharing does.

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just
saw that d + 1 points are enough to uniquely define a degree d
polynomial (the polynomial can be reconstructed via polynomial
interpolation).

A natural approach to build a secret sharing scheme is to let each
user’s share be a point on a polynomial. This is exactly what
Shamir Secret Sharing does.

To share a secret m € Z, with threshold t out of n to reconstruct,
we choose a degree t — 1 polynomial that satisfies f(0) = m, with
all other coefficients chosen uniformly at random from Z,. The
share of the ith user is (i, f(i)).

Shamir's Secret Sharing Scheme

We would like to have a t out of n secret sharing scheme. We just
saw that d + 1 points are enough to uniquely define a degree d
polynomial (the polynomial can be reconstructed via polynomial
interpolation).

A natural approach to build a secret sharing scheme is to let each
user’s share be a point on a polynomial. This is exactly what
Shamir Secret Sharing does.

To share a secret m € Z, with threshold t out of n to reconstruct,
we choose a degree t — 1 polynomial that satisfies f(0) = m, with
all other coefficients chosen uniformly at random from Z,. The
share of the ith user is (i, f(i)).

The interpolation theorem says any t shares can uniquely
determine f, and hence recover the secret f(0) = m.

Shamir's Secret Sharing Scheme

Sharegpamir: On input m € Z,

> select fi, ..., fi_1 uniformly at random from Z.

Shamir's Secret Sharing Scheme

Sharegpamir: On input m € Z,
> select fi, ..., fi_1 uniformly at random from Z.
> define f(x) = m+ 3121 fix!

Shamir's Secret Sharing Scheme

Sharegpamir: On input m € Z,
> select fi, ..., fi_1 uniformly at random from Z.
> define f(x) = m+ 3121 fix!
» for i =1 to n:
» create share s; = (i, f(i)).

» output: (s1,...,5n)

Shamir's Secret Sharing Scheme

Sharegpamir: On input m € Z,

> select fi, ..., fi_1 uniformly at random from Z.
define f(x) = m+ S.'21 fix!
fori=1to n:

v

v

» create share s; = (i, f(i)).

v

output: (si,...,5p)

Reconstructspamir: On input (s;: 7 € S)
> interpolate t points of s; to obtain f, the unique degree t — 1
polynomial passing through these points.

» output f(0)

Shamir's Secret Sharing Scheme

Sharegpamir: On input m € Z,

> select fi, ..., fi_1 uniformly at random from Z.
define f(x) = m+ S.'21 fix!
fori=1to n:

v

v

» create share s; = (i, f(i)).

v

output: (si,...,5p)

Reconstructspamir: On input (s;: 7 € S)
> interpolate t points of s; to obtain f, the unique degree t — 1
polynomial passing through these points.

» output f(0)

(correctness follows from interpolation theorem)

Shamir Security

Recall the perfect security definition:

Definition (secret sharing security via identical distributions)

A t-out-of-n secret sharing scheme (Share, Reconstruct) over M

is perfectly secure if:
Vm,m' € M, VS C{1,...,n} s.t. |S| < t, the following
distributions are identical:

{(sili € S): (s1,...,5n) < Share(m)}

{(sjli € S) : (s1,...,sp) + Share(m’)}

Shamir Security

Equivalently: Vm, m" € M, VS C {1,...,n} s.t. |S] < t, and for
any set a = (a1, ...,qs|), we have that

[(si]i € S) = a] = Pr [(sl]i € S) =]

r
Share(m)—(s1,...,5n) Share(m’)—(sj,...,s))

Shamir Security

Consider the distribution of Sharegyami(m) — (s1,...,5s). Then,
for any o = (az, ..., ag)), consider:
Pr [(si]i € S) =q]

Sharepami-(m)—(s1,...,5n)

for an unauthorized set S of size t — 1.

Shamir Security

Consider the distribution of Sharegyami(m) — (s1,...,5s). Then,
for any o = (az, ..., ag)), consider:
Pr [(si]i € S) =q]

Sharepami-(m)—(s1,...,5n)

for an unauthorized set S of size t — 1.

(sili € S) = a happens if and only if the polynomial chosen by

Sharegp,mir happens to have f(i) = a; for each i € § and
f(0) = m.

Shamir Security

Consider the distribution of Sharegyami(m) — (s1,...,5s). Then,
for any o = (az, ..., ag)), consider:
Pr [(si]i € S) =q]

Sharepami-(m)—(s1,...,5n)

for an unauthorized set S of size t — 1.

(sili € S) = a happens if and only if the polynomial chosen by
Sharegp,mir happens to have f(i) = a; for each i € § and
f(0) = m.

By the polynomial interpolation theorem, there is one unique
degree t — 1 polynomial that satisfies these t constraints. The
Sharegpamir chooses a degree t — 1 polynomial uniformly from the
set of p'~1 polynomials that satisfy f(0) = m (this is done by
choosing f; at random from Z, for i = 1,...,t — 1). So, this
probability is %.

Shamir Security

So we have that:

Pr [(sili € S) = q]

Sharesham,‘,(m)ﬁ(sl,...,S,,)

for an unauthorized set S of size t — 1.

Shamir Security

So we have that:

Pr (sli €) =a] =

Sharesham,‘,(m)ﬁ(sl,...,S,,)

for an unauthorized set S of size t — 1.

Notice that we can repeat this argument for the distribution of
Sharegpamir(m') — (si,...,s,)! (Nothing in the argument

< n

depended on the particular value for m).

Shamir Security

So we have that:

Pr sillie S)=a] =
Shareshamfr(m)‘)(sl,m75n)[(’|)] pt_l
for an unauthorized set S of size t — 1.

Notice that we can repeat this argument for the distribution of
Sharegpamir(m') — (si,...,s,)! (Nothing in the argument

< n

depended on the particular value for m).

So we also have that:

(sfli € $) = o] =

r
t—1
Shareu,mi(m')—(s],...,s}) 1%

for an unauthorized set S of size t — 1.

Shamir Security

Therefore, for any m, m’, for any «, and for any unauthorized set S
of size t — 1, we have that:

1
Pr sili €S)=a] = = Pr silie§) =«
Share gy, (m) lsil)] pt-1 Sharesham,,(m/)[(|)]
o sn) ﬁ(s{ s,’1)

and therefore Shamir t-out-of-n secret sharing satisfies perfect
security.

	Review
	What is secret sharing?
	2 out of 2 secret sharing

	2 out of n secret sharing from 2 out of 2 secret sharing
	Proof by reduction (started last class)

	Some Number Theory
	t out of n secret sharing (Shamir)

