
COMS W4261: Introduction to Cryptography.
Instructor: Prof. Tal Malkin

Lecture Notes on Secret Sharing

Abstract

These are lecture notes from the first two lectures in Fall 2016, focusing on technical
material we saw for secret sharing (including a proof by reduction using the hybrid
proof technique). The notes do not include the general introduction to the course and
modern crypto, as well as some discussion and motivation for secret sharing. Also not
covered here is Shamir’s secret sharing, which we saw in the third lecture.

1 Definition

Intuitively, a secret sharing scheme allows a dealer to share a secret s among n parties
P1, . . . , Pn, such that any authorized subset of parties can use all their shares to reconstruct
the secret, while any other (non-authorized) subset learns nothing about the secret from
their shares.

We discussed motivating scenarios for secret sharing in class, and it is also a useful tool
in many larger cryptographic systems (notably, secure computation).

Secret sharing can be defined with respect to any access structure that specifies the set
of authorized subsets, as long as that access structure is monotone (namely, if a subset is
authorized, any larger subset should also be authorized). In class, we gave a definition for
the common case of t-out-of-n (or threshold secret sharing, where authorized subsets are all
those of size at least t, while sets of size less than t are not authorized.

Definition 1 (t-out-of-n secret sharing syntax and correctness). A t-out-of-n secret sharing
scheme over message space M is a pair of algorithms (Share, Reconstruct) such that:

• Share is a randomized algorithm that on any input m ∈M outputs a n-tuple of shares
(s1, . . . , sn).

• Reconstruct is a deterministic algorithm that given a t-tuple of shares outputs a mes-
sage in M

and satisfying the following correctness requirement:
∀m ∈M,∀S = {i1, . . . , it} ⊆ {1, . . . , n} of size t,

Pr
Share(m)→(s1,...,sn)

[Reconstruct(si1 , . . . , sit) = m] = 1

We discussed how we should go about defining security for such a t-out-of-n secret sharing
scheme. Clearly, we need to require that any subset of size less than t cannot reconstruct
the secret from its shares. But this is not sufficient: we want to require that such a subset
cannot, for example figure out the first bit of the secret, or the parity (xor of all bits), or be
able to use their shares together with some prior information on what the secret may be in
order to deduce even more information.1

1This is a theme we will see again and again in cryptography: we prefer our definition to hold against
adversaries who may or may not have arbitrary side information. This is important to make our definitions
of security stronger, and also so that the security does not depend on the context or application scenarios
where the primitive is being used as a component.

COMS W4261, Introduction to Cryptography, Lecture Notes on Secret Sharing, p. 1

We ended up with two definitions, which we claimed (though didn’t proof) are equivalent.
These definitions capture the idea that the shares of any unauthorized subset contain no
information at all about the secret. Indeed, the definitions require that these shares look
exactly the same whether they came from secret m or from secret m′, for any possible secrets
m,m′.

Definition 2 (secret sharing security via identical distributions). A t-out-of-n secret sharing
scheme (Share, Reconstruct) over M is perfectly secure if:
∀m,m′ ∈M, ∀S ⊆ {1, . . . , n} s.t. |S| < t, the following distributions are identical:

{(si|i ∈ S) : (s1, . . . , sn)← Share(m)}

{(s′i|i ∈ S) : (s′1, . . . , s
′
n)← Share(m′)}

Recall that two distributions are identical if they give exactly the same probability for
every possible value. Thus, the above definition can be restated as follows: ∀m,m′ ∈ M,
∀S ⊆ {1, . . . , n} s.t. |S| < t, and for any set α = (α1, . . . , α|S|), we have that

Pr
Share(m)→(s1,...,sn)

[(si|i ∈ S) = α] = Pr
Share(m′)→(s′1,...,s

′
n)

[(s′i|i ∈ S) = α]

The second (and equivalent) definition we gave is in terms of an adversarial algorithm A
trying to learn information about the secret. Intuitively, we require that even if the adversary
is trying to learn just one bit of information to differentiate between shares of m or m′ (for
any pair of secrets m,m′), it will fail.

Definition 3 (secret sharing security with adversaries). A t-out-of-n secret sharing scheme
(Share, Reconstruct) over M is perfectly secure if:
∀m,m′ ∈M, ∀S ⊆ {1, . . . , n} s.t. |S| < t, ∀A,

Pr
Share(m)→(s1,...,sn)

[A((si|i ∈ S)) = 1] = Pr
Share(m′)→(s′1,...,s

′
n)

[A((s′i|i ∈ S)) = 1]

2 A 2-out-of-2 Secret Sharing Scheme

Consider the following simple 2-out-of-2 secret sharing scheme for `-bit secrets.

Share2−2: On input m ∈ {0, 1}`,

• select s0 ∈ {0, 1}` uniformly at random.

• set s1 = s0 ⊕m

• output (s0, s1)

Reconstruct2−2: On input (s0, s1) ∈ {0, 1}` × {0, 1}`,

• output s0 ⊕ s1

Note that in this scheme, the size of each share is the size of the secret (` bits). It can
be shown that this size is required (there’s no scheme where each share is shorter).

COMS W4261, Introduction to Cryptography, Lecture Notes on Secret Sharing, p. 2

Theorem 1. The scheme (Share2−2, Reconstruct2−2) above is a correct and secure 2-out-
of-2 secret sharing scheme over M = {0, 1}`.

Proof. Correctness follows immediately from the way Share2−2 and Reconstruct2−2 were
defined: ∀m ∈ {0, 1}`,

Pr
Share(m)→(s0,s1)

[Reconstruct(s0, s1) = m] = Pr
Share(m)→(s0,s1)

[s0 ⊕ s0 ⊕m = m] = 1

Security follows intuitively since each share individually is distributed uniformly at ran-
dom, so does not contain any information about the secret. We prove it formally using
Definition 2.

Fix any m,m′ ∈ {0, 1}`, and consider a subset of one share.
In case it is the first share, since it is chosen uniformly, we have that ∀α ∈ {0, 1}`,

Pr
Share(m)→(s0,s1)

[s0 = α] =
1

2`
= Pr

Share(m′)→(s′0,s
′
1)

[s′0 = α]

In case it is the second share, we have that ∀α ∈ {0, 1}`,

Pr
Share(m)→(s0,s1)

[s1 = α] = Pr
Share(m)→(s0,s1)

[s0 ⊕m = α] = Pr
Share(m)→(s0,s1)

[s0 = m⊕ α] =
1

2`

Similarly,

Pr
Share(m′)→(s′0,s

′
1)

[s′1 = α] = Pr
Share(m′)→(s′0,s

′
1)

[s′0 = m′ ⊕ α] =
1

2`

and again both probabilities are equal. This completes the proof.

t-out-of-t Secret Sharing Scheme

The above scheme is sometimes referred to as “additive secret sharing”, since the xor op-
eration is addition mod 2. We note that additive secret sharing can easily be extended to
any t-out-of-t threshold secret sharing. The sharing algorithm chooses t strings uniformly at
random subject to the requirement that their xor is the secret (this can be done by choosing
t − 1 strings uniformly at random, and setting the last string to be the xor of all previous
ones and the secret). The reconstruction algorithm simply xors the shares. We leave the
proof of correctness and security as an exercise.

3 A 2-out-of-n Secret Sharing Scheme

We will see next time a direct way to get any t-out-of-n secret sharing. Here, we will build a
2-out-of-n secret sharing from any 2-out-of-2 secret sharing. This will allow us to show the
first instance of a reduction, and also allow us to introduce the hybrid proof techniques –
both useful tools that we will see many more time in this class.

COMS W4261, Introduction to Cryptography, Lecture Notes on Secret Sharing, p. 3

3.1 Reductions in Cryptography: General Comments

The notion of reduction is a central notion in cryptography, which we describe here informally.
In general, to show that P ⇒ Q for some cryptographic primitives P,Q, we typically show a
construction of Q that calls P as a subroutine (so, we assume P is given, and we construct
Q out of it). We then prove correctness and security of our construction of Q, assuming the
correctness and security of the underlying P .

The security proof typically has the following structure. To prove that security of P
implies security of Q, we prove the contrapositive: If Q is not secure, then we show P is not
secure either. So, we start by assuming we are given an adversary A breaking the security of
our constructed Q. We use it to construct an adversary B, which can call A as a subroutine,
and breaks P .

We will now see how to apply this general approach to our current example.

3.2 Building 2-out-of-n Secret Sharing from 2-out-of-2 Secret Shar-
ing

Suppose we are given a 2-out-of-2 secret sharing scheme (Share2−2, Reconstruct2−2) (e.g.,
the one we showed above). We want to use it to construct a 2-out-of-n secret sharing scheme,
namely sharing the secret among n parties, so that any two of them can reconstruct, but
any single party learns nothing about the secret.

A first idea is to just share the secret via a fresh 2-out-of-2 sharing for every possible
pair of parties. The new share of each party consists of n− 1 2-out-of-2 shares (one for each
of the other parties). When two parties get together, they can use the two corresponding
2-out-of-2 shares to reconstruct the secret.

The above idea works (satisfies correctness and security). However, the size of the share
for each party is (n− 1) times the 2-out-of-2 share size, so at least (n− 1)` for ` bit secrets.
Can we do better?

In the above, we shared the secret afresh n times. The idea for the improved 2-out-of-n
scheme is to have a smaller number of 2-out-of-2 sharings, as long as we have the property
that any pair of parties has at least one complete pair of two corresponding shares (or “two
halves” from the same sharing). We can achieve this property with only log n 2-out-of-2
sharings, where each party gets one half of each of the log n pairs of shares, corresponding
to the binary representation of the party’s index. The resulting share size will be log n times
the 2-out-of-2 share size, so we can do this with (log n)` share size for ` bit secrets. The
scheme is specified below.

Share2−n: On input m ∈ {0, 1}`,

• For k = 1 to log n

– Run Share2−2(m)→ (sk0, s
k
1)

• For i = 0 to n− 1, if binary representation of i is i1 . . . ilogn, set Si = (i, s1i1 , . . . , s
logn
ilogn

)

• Output (S0, . . . , Sn−1).

Reconstruct2−n: On input (Si, Sj),

• Consider the binary representations of the indices i = i1 . . . ilogn and j = j1 . . . jlogn.

COMS W4261, Introduction to Cryptography, Lecture Notes on Secret Sharing, p. 4

• Find a bit position k where they differ, namely ik 6= jk (thus, skik = sk0, s
k
jk

= sk1 or vice
versa).

• Run Reconstruct2−2(s
k
0, s

k
1) and output the same.

Theorem 2. If (Share2−2, Reconstruct2−2) is a correct and secure 2-out-of-2 secret sharing
scheme over M = {0, 1}`, then the scheme (Share2−n, Reconstruct2−n) specified above is a
correct and secure 2-out-of-n secret sharing scheme over M.

Proof. Correctness: ∀m ∈ {0, 1}`, ∀i 6= j ∈ {0, . . . , n− 1},

Pr
Share2−n(m)→(S0,...,Sn−1)

[Reconstruct2−n(Si, Sj) = m] =

= Pr
Share2−2(m)→(sk0 ,s

k
1)

[Reconstruct2−2(s
k
0, s

k
1) = m] = 1

where the first equality follows from the construction and the fact that any indices i 6= j
differ in at least one position k, and the second equality follows from the correctness of
(Share2−2, Reconstruct2−2).

For security, we could use the definition via identical distributions (Definition 2) fairly
easily. However, for pedagogical reasons we will prove security via the adversary based
definition (Definition 3). As discussed, this will allow us to introduce a new proof technique
and common proof structure.

As described in Section 3.1, we start by assuming that the 2-out-of-n scheme above is not
secure. This means (by negation of Definition 3) that ∃m,m′ ∈ {0, 1}`, ∃i ∈ {0, . . . , n− 1},
∃A, such that

Pr
Share2−n(m)→(S1,...,Sn)

[A(Si) = 1] 6= Pr
Share2−n(m′)→(S′1,...,S

′
n)

[A(S ′i) = 1] (1)

Our goal is to use this to construct an adversary B that breaks the 2-out-of-2 scheme.
In Equation (1) above, we have two distributions such that when A is called on one it

outputs 1 with a different probability than when it’s called on the other. Recall that in the
lefthandside distribution (which we will name H0), we have Si = (s1i1 , . . . , s

logn
ilogn

), where each

(sk0, s
k
1) is the output of Share2−2(m). In the righthandside distribution (which we will name

H logn), we have S ′i = (s
′1
i1
, . . . , s

′ logn
ilogn

), where each (s
′k
0 , s

′k
1) is the output of Share2−2(m

′).

We will define intermediate distributions Hj (“hybrids”) where for each share, the first
j components are taken from m′, while the rest are taken from m. That is, for every
j ∈ {0, . . . , log n}, we define

Hj = {∀k ∈ {1, . . . , log n} Sharek2−2(m)→ (sk0, s
k
1), Sharek2−2(m

′)→ (s
′k
0 , s

′k
1) :

(s
′1
i1
, . . . , s

′j
ij , s

j+1
ij+1

, . . . , slognilogn
)}

Using this notation, Equation (1) can be written as: Pr[A(H0) = 1] 6= Pr[A(H logn) = 1].
It follows that there must exist a j ∈ {1, . . . , log n} such that

Pr[A(Hj−1) = 1] 6= Pr[A(Hj) = 1] (2)

(otherwise, if all adjacent hybrids produce equal probabilities, the end hybrids would also
have equal probabilities).

COMS W4261, Introduction to Cryptography, Lecture Notes on Secret Sharing, p. 5

Equation (2) says that A outputs 1 with different probabilities when applied to

(s
′1
i1
, . . . , s

′j−1
ij−1

, sjij , s
j+1
ij+1

, . . . , slognilogn
)

vs. when applied to
(s
′1
i1
, . . . , s

′j−1
ij−1

, s
′j
ij , s

j+1
ij+1

, . . . , slognilogn
)

We now have two “adjacent” hybrids, differing in only one location (j), that A behaves
differently on. We are finally ready to define B, that will attack the 2-out-of-2 sharing, by
“plugging it in” that location. Specifically, we define B as follows (where i, j,m,m′ are all
hard-coded into B):

B: on input s,

• For k = 1, . . . , j − 1, run Share2−2(m
′)→ (s

′k
0 , s

′k
1).

• For k = j + 1, . . . , log n, run Share2−2(m)→ (sk0, s
k
1)

• Set Si = (s
′1
i1
, . . . , s

′j−1
ij−1

, s, sj+1
ij+1

, . . . , slognilogn
)

• Run A(Si) and output the same.

Now it is not hard to see that for the same m,m′, i, j from above we have that

Pr
Share2−2(m)→(s0,s1)

[B(sij) = 1] = Pr[A(Hj−1) = 1]

while
Pr

Share2−2(m′)→(s′0,s
′
1)

[B(s′ij) = 1] = Pr[A(Hj) = 1]

By Equation 2 these two are not equal, and thus B breaks the security of the 2-out-of-2
secret sharing scheme (as per Definition 3).

We have shown that if the security of our 2-out-of-n is broken, then so is the security of
the underlying 2-out-of-2 scheme (contradiction). This completes the proof.

COMS W4261, Introduction to Cryptography, Lecture Notes on Secret Sharing, p. 6

