COMS W3261: Theoretical Computer Science.

Instructor: Tal Malkin

Problem Set 5

Due: Thur, 03/24/11. No late Homework will be accepted

Instructions: Solve problem 1 and **two** out of problems 2,3,4,5. If you solve more than that, problem 1 and the first two problems out of $\{2,3,4,5\}$ will count for the problem set score, and the rest will count towards extra credit.

- 1. Consider the language $L = \{a^n b^m | n \ge 0, m \ge 0, n \ne m\}$ over $\Sigma = \{a, b\}$. In both the following you do not need to prove the correctness of your construction, but you do need to write in a clear manner, indicating the main idea where necessary to understand the construction.
 - (a) Give a context free grammar for L.
 - (b) Give a state diagram for a push-down automaton for L.
- 2. Consider the following context-free grammar (variables are marked with $\langle ... \rangle$ and the start variable is $\langle \text{sent} \rangle$).

$\langle \text{sent} \rangle$	\longrightarrow	$\langle \text{subj} \rangle \langle \text{activity} \rangle \mid$
		$\langle \text{subj} \rangle \langle \text{activity} \rangle \text{with} \langle \text{subj} \rangle$
$\langle \text{subj} \rangle$	\longrightarrow	$\langle noun \rangle \mid \langle noun \rangle and \langle subj \rangle$
$\langle activity \rangle$	\longrightarrow	$\langle varb \rangle \langle obj \rangle$
$\langle \text{obj} \rangle$	\longrightarrow	$\langle noun \rangle \mid \langle noun \rangle $ with $\langle obj \rangle$
$\langle noun \rangle$	\longrightarrow	Alice Bob Carol
		bread cheese cups
$\langle \text{verb} \rangle$	\longrightarrow	bought ate

Show that this grammar is ambiguous by showing two different derivation trees for the same sentence.

3. Give an informal description and a state diagram of a pushdown automata for the following language over the alphabet $\{a, b\}$:

 $\{w \mid \text{the length of } w \text{ is odd and its middle symbol is a } b\}$

- 4. Problem 2.11 (converting a CFG to a PDA)
- 5. Problem 2.13(a) (describing the language generated by a certain CFG). Note that you are not asked to do part (b).