COMS W3261: Theoretical Computer Science.

Instructor: Tal Malkin

Problem Set 3

Due: Thur, 02/17/11.

- 1. Let $L_a = \{a^i | i \ge 1\}$ and $L_b = \{b^i | i \ge 0\}$ (both languages over the alphabet $\{a, b\}$).
 - (a) Give an informal English description for each of L_a , L_b , \overline{L}_b (the completement of L_b), and $L_a \cup L_b$.
 - (b) Construct an NFA for $L_a^* \circ L_b$, by using the constructions given in class in the proofs of closure of regular langauges under regular operations (do not try to simplify or optimize the NFA).
- 2. Problem 1.16(b) in the text (NFA to DFA conversions).
- 3. In class we showed that given a DFA that recognizes a language L, swapping the accept and nonaccept states yields a new DFA that recognizes the complement of L. We also mentioned that this is not necessarily true for NFAs. In this problem you will prove the latter (twice).

Let $N_1 = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing some language $L_1 = L(N_1)$. Consider the NFA $N_2 = (Q, \Sigma, \delta, q_0, Q \setminus F)$ obtained by swapping the accept and nonaccept states in N_1 . Let $L_2 = L(N_2)$. In the following, provide state diagrams for example N_1, N_2 satisfying the required properties.

- (a) Give an example of an NFA N_1 and a string such that the string is accepted by both N_1 and N_2 .
- (b) Give an example of an NFA N_1 and a string such that the string is rejected by both N_1 and N_2 .
- 4. problem 1.31 in the textbook.