COMS W3261: Theoretical Computer Science.

Instructor: Tal Malkin

Problem Set 2

Due: Thur, 02/03/11. Reading: Chapters 1.1, 1.2.

- 1. Problem 1.3 in the textbook.
- 2. For each of the following languages, give a state diagram of a DFA that recognizes the language. For the first language L_1 , also give the formal description of the DFA you construct. All languages are over the alphabet $\Sigma = \{0, 1\}$.
 - (a) $L_1 = \{w | w \text{ starts with a 0 and has odd length, or starts with a 1 and has even length }\}$
 - (b) $L_2 = \{w | w \text{ does not contain the substring } 001\}$
 - (c) $L_3 = \{w | \text{ the number of 0's in } w \text{ is an integer multiple of 5} \}$
 - (d) (extra credit): $L_4 = \{w | w = \epsilon \text{ or } w \text{ is a representation of a binary number that is an integer multiple of 5}\}.$
- 3. Let $L_5 = \{w \in \{a, b\}^* | \text{ the third to last symbol in } w \text{ is } a\}.$
 - (a) Construct a DFA for L_5 . Give the computation path (i.e., sequence of states) of your DFA on the word *aabb*.
 - (b) Construct a 4-state NFA for L_5 . Give the computation tree of your NFA on the word *aabb*.
- 4. For each of the following languages, give a state diagram of an NFA that recognizes the language. For the second language L_7 , also give the formal description of the NFA you construct. All languages are over the alphabet $\Sigma = \{0, 1\}$.
 - (a) $L_6 = \{0, 1, 000, \epsilon\}$
 - (b) $L_7 = \{w | w \text{ contains exactly one 1 or exactly one 0} \}.$
 - (c) $L_8 = \{w | w \text{ consists of two 0s separated by a string } w' \text{ in } L_1\}$ where L_1 is the language defined in problem 2a above.

5. This problem was postponed to Problem Set 3:

problem 1.31 in the textbook.