P_k , we know that

$$P_{k+1} = P_k M - Y.$$

Therefore, using the induction hypothesis to calculate P_k ,

$$P_{k+1} = \left[PM^k - Y\left(\frac{M^k - 1}{M - 1}\right) \right] M - Y.$$

Multiplying through by M and rewriting Y yields

$$P_{k+1} = PM^{k+1} - Y\left(\frac{M^{k+1} - M}{M - 1}\right) - Y\left(\frac{M - 1}{M - 1}\right)$$
$$= PM^{k+1} - Y\left(\frac{M^{k+1} - 1}{M - 1}\right).$$

Thus the formula is correct for t = k + 1, which proves the theorem.

Problem 0.14 asks you to use the preceding formula to calculate actual mortgage payments.

EXERCISES

- **0.1** Examine the following formal descriptions of sets so that you understand which members they contain. Write a short informal English description of each set.
 - **a.** $\{1, 3, 5, 7, \dots\}$
 - **b.** $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
 - c. $\{n \mid n = 2m \text{ for some } m \text{ in } \mathcal{N}\}$
 - **d.** $\{n \mid n = 2m \text{ for some } m \text{ in } \mathcal{N}, \text{ and } n = 3k \text{ for some } k \text{ in } \mathcal{N}\}$
 - e. $\{w \mid w \text{ is a string of 0s and 1s and } w \text{ equals the reverse of } w\}$

f. $\{n \mid n \text{ is an integer and } n = n+1\}$

- 0.2 Write formal descriptions of the following sets
 - a. The set containing the numbers 1, 10, and 100
 - **b.** The set containing all integers that are greater than 5
 - c. The set containing all natural numbers that are less than 5
 - d. The set containing the string aba
 - e. The set containing the empty string
 - f. The set containing nothing at all

e the ate of nthly nthly f the com-

b) inrease andoan, Y is state P_t .

ates

hat

nd

m

26 CHAPTER 0 / INTRODUCTION

0.3 Let A be the set $\{x, y, z\}$ and B be the set $\{x, y\}$.

- **a.** Is A a subset of B?
- **b.** Is *B* a subset of *A*?
- c. What is $A \cup B$?
- **d.** What is $A \cap B$?
- e. What is $A \times B$?
- f. What is the power set of B?
- **0.4** If A has a elements and B has b elements, how many elements are in $A \times B$? Explain your answer.
- **0.5** If C is a set with c elements, how many elements are in the power set of C? Explain your answer.
- **0.6** Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$. The unary function $f: X \longrightarrow Y$ and the binary function $g: X \times Y \longrightarrow Y$ are described in the following tables.

n	f(n)	q	6	7	8	9	10
	6	1	10	10	10	10	10
		2	7	8	9	10	6
2	7 6	3	7	7	8	8	9
	7	4	9	8	7	6	10
	6				6		

- **a.** What is the value of f(2)?
- **b.** What are the range and domain of f?
- c. What is the value of g(2, 10)?
- **d.** What are the range and domain of g?
- e. What is the value of g(4, f(4))?

0.7 For each part, give a relation that satisfies the condition.

- a. Reflexive and symmetric but not transitive
- b. Reflexive and transitive but not symmetric

c. Symmetric and transitive but not reflexive

0.8 Consider the undirected graph G = (V, E) where V, the set of nodes, is $\{1, 2, 3, 4\}$ and E, the set of edges, is $\{\{1,2\}, \{2,3\}, \{1,3\}, \{2,4\}, \{1,4\}\}$. Draw the graph G. What is the degree of node 1? of node 3? Indicate a path from node 3 to node 4 on your drawing of G.

0.9 Wr

PRO

0.10 Fi C_{b} b^{2} b(c

0.11 Fi C P

B

Sa

k

it

iı

W C

0.12

A*0.13

27

0.9 Write a formal description of the following graph.

PROBLEMS

- **0.10** Find the error in the following proof that 2 = 1. Consider the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$. Now factor each side, (a + b)(a - b) = b(a - b), and divide each side by (a - b), to get a + b = b. Finally, let a and b equal 1, which shows that 2 = 1.
- **0.11** Find the error in the following proof that all horses are the same color. CLAIM: In any set of h horses, all horses are the same color. PROOF: By induction on h.

Basis: For h = 1. In any set containing just one horse, all horses clearly are the same color.

Induction step: For $k \ge 1$ assume that the claim is true for h = k and prove that it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses in this set are the same color. Remove one horse from this set to obtain the set H_1 with just k horses. By the induction hypothesis, all the horses in H_1 are the same color. Now replace the removed horse and remove a different one to obtain the set H_2 . By the same argument, all the horses in H_2 are the same color. Therefore all the horses in H must be the same color, and the proof is complete.

- **0.12** Show that every graph with 2 or more nodes contains two nodes that have equal degrees.
- ^{A*}**0.13 Ramsey's theorem.** Let G be a graph. A *clique* in G is a subgraph in which every two nodes are connected by an edge. An *anti-clique*, also called an *independent set*, is a subgraph in which every two nodes are not connected by an edge. Show that every graph with n nodes contains either a clique or an anti-clique with at least $\frac{1}{2} \log_2 n$ nodes.