
Handout 11B: Complexity review - Solutions
William Pires

Exercise 1 (True False).

1. All of n ∗ log(n), n100 + 3n2, n0.001n, 2
√
n are polynomial.

Answer : n ∗ log(n), n100 + 3n2 are polynomial, n0.001n, 2
√
n aren’t.

2. If you show a verifier V (x, c) for a language L, where V runs in time polynomial in |x|+ |c|,
then L must be in NP.
Answer : False, for L to be in NP you need a verifier with runtime polynomial in |x|.1 If
you allow c to be of length exponential in |x|, and you allow V to run in time polynomial in
|x|+ |c|, then you have effectively allowed V to run in time exponential in |x|.

3. All NP Complete problems are polytime reducible to each other.

Answer : True. Here’s a proof.

Let A,B be NP-Complete, we want to show A ≤P B.

We know B is NP complete, and thus it’s NP hard. So for any L ∈ NP, we have L ≤P B.

Since A is NP complete, it means A ∈ NP.

Combining the two (taking the language L = A), we have A ≤P B.

4. Say the input of a TM is an integer N given in binary, and M runs in time O(N2), then M
runs in polynomial time.

Answer : False. N is given as input in binary, so the input size is O(log2(N)). But N2 =
22 log2(N), using N = 2log2(N). So the runtime is exponential in the input length.

Exercise 2. Show that NP is closed under union. That is if L1, L2 ∈ NP then L1 ∪ L2 ∈ NP.

Let L1, L2 ∈ NP. Then by definition, there exists a polynomial time verifier V1, such that :

x ∈ L1 ⇔ ∃c1 such that V1(x, c1) accepts.

Similarly, we have a polynomial time verifier V2 for L2 such that :

x ∈ L2 ⇔ ∃c2 such that V2(x, c2) accepts.

We now want to build a polynomial time verifier V for L1 ∪ L2. The idea is that given c, we first
run V1 to check if it accepts, and then we run V2. We accept if either accepts, and reject if they
both reject.

1But this means that if x ∈ L there is a c of length polynomial in |x| such that V (x, c) accepts. Otherwise, V
wouldn’t have the time to read c in polynomial time.

Algorithm 1 A verifier for L1 ∪ L2

Input: x, c

Run V1 on x, c ▷ V1 runs in polynomial time in |x|
if V1 accepts then

Accept x
end if

Run V2 on x, c ▷ V2 runs in polynomial time in |x|
if V2 accepts then

Accept x
end if
Reject.

First, it’s clear that V runs in polynomial time in |x|, as all it does is run V1, V2 on x, c. 2

So it remains to show

x ∈ L1 ∪ L2 ⇐⇒ ∃ c such that V (x, c) accepts.

Assume x ∈ L1 ∪ L2, we want to show there exists a c such that V (x, c) accepts. If x ∈ L1, we
know there exists a c1 such that V1(x, c1) accepts. So taking c = c1 leads to V accepting.
Else if x ∈ L2, we know there exists a c2 such that V2(x, c2) accepts. So taking c = c2 leads to V
accepting.

Thus
x ∈ L1 ∪ L2 ⇒ ∃ c such that V (x, c) accepts

We now show the other direction. Assume there exists a c such that V (x, c) accepts. Then in the
pseudocode either V1(x, c) or V2(x, c) must have accepted. If V1 accepted, then by definition

V1(x, c) accepts ⇒ x ∈ L1

Else if V2 accepted then by definition

V2(x, c) accepts ⇒ x ∈ L2

Anyway, it must be that x ∈ L1 ∪ L2. So V (x, c) accepts ⇒ x ∈ L1 ∪ L2.

2Here’s a technical point you can ignore. We should first check that c isn’t too large. By that, I mean |c| = O(nk)
where we have V1, V2 both run in time O(nk). I.e, if c is bigger than the runtime of V1 and V2, we should reject. This
to avoid the case where c is so large that giving it as input to V1 would take too long. And if c is bigger than the
runtime of V1, V2 we know they would never accept (x, c).

2

Exercise 3.

• Fix some constant k. The problem k-Clique is defined as follow : You are given as input a
graph G, G is a graph on n nodes. You can think of G as being described by a n× n binary
matrix A where Ai,j = 1 iff there’s an edge (i, j) in G (so the input size is n2). You must
accept G if and only there is a subset of k vertices V ∗ of G, such that these vertices form a
complete graph (any two nodes have an edge between them). Why is this problem in P ?

We can give a polynomial time algorithm for the problem as follow :

Algorithm 2 An algorithm for k-Clique

Input: ⟨G⟩ where G is a graph

for all subset S of k vertices from G do
Check that for each pairs (u, v), with u, v ∈ S we have that (u, v) is an edge in G.

▷ This means the vertices in S form a complete graph.
If for all pairs, the edge (u, v) is in G, accept.

end for
Reject.

This algorithm basically looks at all the subsets of k vertices in G and checks they form a
complete graph. Clearly if ⟨G⟩ ∈ k-Clique, then we will accept, and otherwise we will rejects.

In the algorithm, we look at all the
(
n
k

)
subsets of k vertices of G. For each subset, we need

to check O(k2) edges are present, one for all pair. Since k is a constant, we can assume this
takes constant time. So the runtime of the algorithm is O(nk). Since k is a constant, this is
polynomial time.

• The NP complete problem Clique is defined as follow : You are given as input a graph G, G
is a graph on n nodes. But now k is given to you as input in decimal. (So the input
size is roughly (n2 + log10(k))). Again, You must accept G if and only there is a subset of k
vertices V ∗ of G, such that these vertices form a complete graph. Why doesn’t the previous
proof work to show this problem is in P ?

If we had to adapt the above algorithm for this proof it would look like that :

Algorithm 3 An algorithm for Clique

Input: ⟨G, k⟩ ▷ k is now part of the input

for all subset S of k vertices from G do
Check that for each pairs (u, v) ∈ S (u, v) is an edge in G.
if for all pairs, the edge (u, v) is in G then

Accept.
end if

end for
Reject.

Imagine the input is
(
G, k = n

2

)
. Then, the algorithm will have to look at

(
n
n
2

)
subsets, but that

3

is roughly 2n many subsets. However, the input size is only n2 + log10(n), so the runtime of the
algorithm is exponential. 3

Exercise 4. Problem 7.18 in the book. Show that if P = NP,then every language A ∈ P, except
A = ∅ and A = Σ∗, is NP-Complete. (Hint : think about the definition of L ≤P A, knowing that
L ∈ NP implies L ∈ P.)

This exercise is great to test how comfortable you feel with the definition of NP completeness.

Assume P = NP and let A ∈ P, be any language except ∅ or Σ∗. That means there exists two
strings y, z such that y ∈ A and z ̸∈ A.

Now consider the NP complete problem 3-SAT, since P = NP by assumption, we have 3-SAT ∈ P .
So there exists a polynomial time decider M for 3-SAT.

We want to show A is NP-hard. We will show 3-SAT ≤P A. So, we claim the following is a mapping
reduction from 3-SAT to A.

Algorithm 4 A mapping reduction f from 3-SAT to A

Input: ⟨ϕ⟩ ▷ ϕ is a CNF

Run M on ⟨ϕ⟩ ▷ This takes polynomial time ▷ This tells us if ⟨ϕ⟩ ∈ 3-SAT or not
if M accepts then

Return y ▷ ⟨ϕ⟩ ∈ 3-SAT, so we return y ∈ A
else

Return z ▷ ⟨ϕ⟩ ̸∈ 3-SAT, so we return z ̸∈ A
end if

It’s clear the above mapping f is computed in polynomial time. Besides it’s also clear that if
⟨ϕ⟩ ∈ 3-SAT, we have f(⟨ϕ⟩) = y ∈ A. And if ⟨ϕ⟩ ̸∈ 3-SAT, then f(⟨ϕ⟩) = z ̸∈ A. So f(⟨ϕ⟩) ∈
A ⇐⇒ ⟨ϕ⟩ ∈ 3-SAT.

So this is a valid polynomial time mapping reduction from 3-SAT to A.

So A is NP-hard, and since A ∈ P, A ∈ NP and thus by definition A is NP complete.

You might wonder why we need that A isn’t ∅ or Σ∗. In a mapping reduction from a language L
to A , we need x ∈ L ⇔ f(x) ∈ A.

But if we let A = ∅, then there’s no strings in A ! So if x ∈ L, we can never have f(x) ∈ A. So
there can’t be a mapping reduction from L to A if L ̸= ∅.

3.It’s important to realize we look at the running time in the WORST CASE input. And here, the algorithm is
very slow whenever you give k = n/2 (or any large enough function of n).

4

Similarly, if A = Σ∗, then all strings are in A. So if x ̸∈ L, we can never have f(x) ̸∈ A. So there
can’t be a mapping reduction from L to A if L ̸= Σ∗.

Exercise 5. Problem 7.21 in the book. Let G represent an undirected graph. Also let

• SPATH = {⟨G, a, b, k⟩— G contains a simple path of and length at most k from a to b}

• LPATH = {⟨G, a, b, k⟩— G contains a simple path of and length at least k from a to b}

Show that SPATH ∈ P and LPATH is NP-Complete. (A simple path is a path that doesn’t visit
the same node twice.)

Recall that a simple path is a path that never visits a node twice (i.e. the path has no cycles).

We first show SPATH ∈ P . To check there is a simple path of length ≤ k from a to b it suffices to
do the following : Perform a Breath-First Search starting at a in G.

When we perform a Breath first search (BFS), we first see all the nodes at distance 1 from a, then
we see the ones at distance 2, etc... So if we reach b before we’re at distance k + 1, we accept, else
we reject. Obviously doing a BFS takes times polynomial in the size of the input.

We now show LPATH is NP-Complete.

First, we show LPATH is in NP. Here’s a verifier for LPATH :

Algorithm 5 A verifier for LPATH

Input: ⟨G, a, b, k⟩, p ▷ p is the extra string the verifier takes as input

Check p is a simple path from a to b in G.
Check that p has length at least k.

if Both of the above are true then
Accept.

else
Reject.

end if

Clearly, the above runs in polynomial time. Also it’s clear that if ⟨G, a, b, k⟩ ∈ LPATH, then there
must be a simple path of length ≥ k between a and b. So just set p to be this path, this will lead
the verifier to accept. Obviously, if no such path exists, there’s no p that would lead the verifier to
accept ⟨G, a, b, k⟩, p.

So it remains to show the problem is NP-hard. To do this we will reduce the NP-Complete problem
HamPath to LPATH. We need to give a polynomial time mapping reduction from Hampath to
LPATH.

5

Recall that HamPath is the following problem : Given a graph G and two nodes s, t is there an
Hamiltonian path from s to t in G.

Given G, s, t as input for Hampath, our function outputs ⟨G, a = s, b = t, k = n⟩. I.e. f(⟨G, s, t⟩) =
⟨G, s, t, n⟩.

Clearly this is computable in polynomial time. So it remains to show that ⟨G, s, t⟩ ∈ Hampath if
and only if ⟨G, s, t, n⟩ ∈ LPATH.

This isn’t hard, once we unpack the definition of Hamiltonian path. By definition there is an
Hamiltonian path from s to t, if and only if, there is a simple path between s and t that visits every
vertex once.

Since the path starts at s, ends at t and goes through every of the n vertices once, it means it must
be of length n 4.

So by definition G has an Hamiltonian path from s to t if and only if there is a simple path between
s and t of length n.

Also note that simple paths can’t have length more than n, else a vertex would be repeated so it
wouldn’t be simple.

Thus, we clearly have that there’s an Hamiltonian path path from s to t if and only if there is a
simple path between s and t of length at least n.

So ⟨G, s, t⟩ ∈ HamPath iff ⟨G, s, t, n⟩ ∈ LPATH. This proves Hampath ≤P LPATH. So LPATH is
NP-hard.

Since LPATH is NP-hard and in NP, it’s NP complete.

4Here I count the length of a path as number of vertices

6

