
COMS 3261: Fall 2024
Kiru Arjunan, Hellen Zhao

Handout 10b: Unrecognizability and Mapping Reductions - Solutions

Problem 1

Prove that L = {⟨M,D⟩ | M is a TM, D is a DFA, and L(M) = L(D)} is not co-recognizable.
That is, prove that L is not recognizable.

Answer:
Since ATM is unrecognizable, it would suffice to prove ATM ≤m L. Note this is equivalent to
showing ATM ≤m L, which is what we will show. Consider the computable function f as follows:

Algorithm 1 Function f

Input: ⟨M,w⟩ where M is a TM and w is a string

1: Build a TM M ′ as follows:

• M ′: “On input x

– If x ̸= w, reject x.

– If x = w

– Run M on w.

– If M accepted w, accept x.

– Otherwise reject x.”

2: Build a DFA D such that L(D) = L(w) = {w}.
3: Return ⟨M ′, D⟩.

This f is computable, since every step is implementable. In particular, constructing ⟨M ′⟩ is
easy given ⟨M,w⟩, and constructing a DFA that accepts a single string is also implementable
(we saw in the first part of class how to do that).

Furthermore, ⟨M,w⟩ ∈ ATM ⇐⇒ f(⟨M,w⟩ ∈ L because:

1. If ⟨M,w⟩ ∈ ATM , then M ′ accepts w and rejects all other strings, so L(M ′) = {w} = L(D)
and so ⟨M ′, D⟩ ∈ L.

2. If ⟨M,w⟩ /∈ ATM , then M ′ does not accept any string, so L(M ′) = ∅ ̸= L(D) and so
⟨M ′, D⟩ /∈ L.

Thus, we have a computable function f such that ⟨M,w⟩ ∈ ATM ⇐⇒ f(⟨M,w⟩) ∈ L, and
so ATM ≤m L. We conclude that L is unrecognizable.

Remark. Note that in our function, we did not include logic to deal with improperly formed
input strings. To implement this, we could pick a string not in L, then explicitly tell our TM to
map all invalid inputs to that string. In general, when we give a TM that reduces A to B, we
can assume that our TM will map improperly formed inputs to strings not in B without saying
so.

1

Problem 2

Prove that L = {⟨M⟩ | M is a TM which does not accept strings of length ≥ 50} is not recog-
nizable.

Answer:

Proof using mapping reduction. We will show that ETM ≤m L. Consider the computable
function f defined as follows:

Algorithm 2 Function f

Input: ⟨M⟩ where M is a TM

1: Build a TM M ′ as follows:

• M ′: “On input x

– If |x| < 50, reject x.

– If |x| ≥ 50

– Let x′ be x without the first 50 characters.

– Run M on x′ and output the same.”

2: Return ⟨M ′⟩.

This f is computable, since every step is implementable.
If ⟨M⟩ ∈ ETM , M will never accept any string as L(M) = ∅. But the only time M ′ accepts

a string is if M accepts a (different) string. Thus, M ′ will never accept any string, and so will
not accept any string of length ≥ 50. Thus, f(⟨M⟩) = ⟨M ′⟩ ∈ L.

If ⟨M⟩ /∈ ETM , then there exists a w such that M accepts w. Let a ∈ Σ. Note that M ′ will
accept a50w. Thus, since |a50w| ≥ 50, f(⟨M⟩) = ⟨M ′⟩ /∈ L.

Therefore, w ∈ ETM ⇐⇒ f(w) ∈ L, and so ETM ≤m L. Therefore, since ETM is not
recognizable, neither is L.

Remark. Note that typically there are many natural reductions (and this applies to all the
exercises here). For example, for the proof we gave above, it really doesn’t matter what M ′ does
on inputs of length shorter than 50. The crucial point was to create M ′ such that ⟨M⟩ ∈ ETM

if and only if ⟨M ′⟩ ∈ L. We could also choose a different language to reduce from.

Proof using refined Rice’s theorem. We show that L satisfies all the properties required
for the refined Rice’s theorem. First, we show this L a property of recognizable languages. This
follows directly from how L is defined: L ⊆ {⟨M⟩ | M is a TM}, and if we have two TMs M1,M2

such that L(M1) = L(M2), then if either of them accepts any string of length ≥ 50 then the
other one does too. That is, ⟨M1⟩ ∈ L ⇐⇒ ⟨M2⟩ ∈ L.

Next, we show L is non-trivial. Let M∅ be the TM that immediately rejects every input. In
particular, it does not accept any input of length ≥ 50, so ⟨M∅⟩ ∈ L. Now let MΣ∗ be the TM
that immediately accepts every input. ⟨MΣ∗⟩ /∈ L.

Finally, as already noted above, ⟨M∅⟩ ∈ L. Thus, by Refined Rice’s theorem we can conclude
that L is not recognizable.

2

Problem 3

Prove that if L1 and L2 are recognizable, then L3 = L1 · L2 is also recognizable. That is, prove
that recognizable languages are closed under concatenation.

Answer:
Let M1 and M2 be Turing machines that recognizes L1 and L2 respectively. We will construct a
non-deterministic TM1 M3 that recognizes L3 = L1 · L2.

Algorithm 3 A non-deterministic recognizer M3 for L3

Input: w

1: Non-deterministically split w into w1 and w2 such that w = w1w2

2: Run M1 on w1

3: if M1 accepts then
4: Run M2 on w2

5: if M2 accepts then
6: Accept w
7: end if
8: end if

We now prove that the above is a recognizer for L3. M3 accepts w if and only if w ∈ L3.

If w ∈ L3 and L3 = L1 · L2, then there is a parsing w = xy where x ∈ L1 and y ∈ L2. So
there is a branch of computation where M3 picks w1 = x and w2 = y on line 1. Since x ∈ L1, M1

will halt and accept x as it is a recognizer for L1. Similarly M2 will halt and accept y on line 5.
Hence on this branch of computation, algorithm will reach line 6 and M3 will accept input w.

If w /∈ L3, then no matter what split w = w1w2 we choose, w1 /∈ L1 or w2 /∈ L2. If w1 /∈ L1,
then M1 will reject or run forever on line 2. If w1 ∈ L1 but w2 /∈ L2, then M2 will reject or run
forever on line 4. Either ways M3 will not accept and will run forever.

Remark. In fact, recognizable languages are closed under union, star and intersection too! Try to
prove these as an exercise. However, recognizable languages are NOT closed under complement.
We can easily provide ATM as a counter example. We know that ATM is recognizable but ATM

is not recognizable.

Problem 4

Let A be a language. Prove that A ≤m A.

Answer:
Let f be the identity function. That is, for all strings w, let f(w) = w. This is clearly computable.
We have w ∈ A ⇐⇒ w = f(w) ∈ A. Thus, A ≤m A by definition.

1We could also construct a deterministic TM which checks all parsings of the input into a concatenation of
two strings, but we need to use dovetailing to make sure we don’t get in an infinite run on one parsing when
there’s another parsing that works. The non-deterministic solution we give is simpler.

3

Problem 5

Is it necessarily true that A ≤m A?

Answer:
No. If it were always true that A ≤m A and A ≤m A, then this would imply that all recognizable
languages are co-recognizable, which would then imply that all recognizable languages are decid-
able! But we know this to be false. One example is ATM , as mentioned in problem 3’s solution.
Remark. Note that for Turing-reductions, it IS true that for every A we have A ≤T A (since
A ≤T A is equivalent to A ≤T A).

4

