
COMS 3261: Fall 2024
Kiru Arjunan, Hellen Zhao

Handout 10a: Unrecognizability and Mapping Reductions

1 Unrecognizability

Definition 1.1. A language L is recognizable if and only if there exists a Turing Machine that
accepts every string in L, and does not accept (rejects or loops) any string not in L.

Definition 1.2. A language L is co-recognizable if and only if its complement L is recognizable.

Theorem 1.3. L is decidable ⇐⇒ L is recognizable and co-recognizable

We’ve seen a few different ways to prove a language L is not recognizable:

Ways to show L is not recognizable:

1. Show that L is not decidable and L is recognizable.

2. Show that L is recognizable but undecidable.

3. Use a mapping reduction from another language that is not recognizable.

4. (Not part of required material) Using refined Rice’s theorem

The first two methods follow from Theorem 1.3 (proved in lecture 14). If L is undecidable,
then L is unrecognizable or L is unrecognizable. If L is recognizable, it must be that L is unrec-
ognizable. Recall that L is decidable iff L is decidable (lecture 13), so showing L is undecidable
is equivalent to showing L is undecidable. Methods 1 and 2 are essentially the same thing.

Example 1. ATM is unrecognizable because its complement ATM is recognizable (recognizer
given in lecture 15) but undecidable (proof by diagonalization in lecture 16).

Using the complement and undecidability is not always the easiest approach though, and in
doesn’t apply to cases where both L and L are unrecognizable. Another method to prove L
is unrecognizable is through mapping reductions. We’ll give a brief summary of the key ideas
below, but you can find more details in lectures 19 and 20. We also briefly cover refined Rice’s
theorem, which is another way to prove unrecognizability (similar to the way we used Rice’s
theorem for proving undecidability). Refined Rice is not part of required material for class, but
you may use it if you’d like - you can find more details in lecture 18 lecture notes.

2 Mapping Reductions

Definition 2.1. A computable function is a function f : Σ∗ → Σ∗ that can be computed by a
Turing Machine. That is there exists a Turing Machine that, on every input w, halts with just
f(w) on its tape.

1



Definition 2.2. A language A is mapping reducible to a language B, denoted A ≤m B, if
there exists a computable function f : Σ∗ → Σ∗ such that, for every w ∈ Σ∗,

w ∈ A ⇐⇒ f(w) ∈ B.

Theorem 2.3. If A ≤m B, then A ≤T B. (Proof in lecture 19)

Theorem 2.4. Suppose A ≤m B for two languages A,B.
1. If B is recognizable, then A is recognizable.
2. If A is not recognizable, then B is not recognizable.

These two statements are actually saying the same thing (the second is a contrapositive of
the first). The second statement gives us a strategy to prove that L is unrecognizable. If we can
find an unrecognizable language A that is mapping-reducible to L (that is, A ≤m L), then L is
unrecognizable.

Theorem 2.5. A ≤m B ⇐⇒ A ≤m B.

So given a language A that we already know to be unrecognizable, we could prove the un-
recognizability of L either by showing A ≤m L, or by showing A ≤m L. This can be helpful,
since sometimes it is easier to work with the complement of a language rather than the language
itself. For example, working with ATM = {⟨M,w⟩ | M is a TM that accepts the string w} may
be easier than working with ATM , which includes both strings encoded as ⟨M,w⟩ and invalid
encodings.

Steps to proving L is unrecognizable by mapping reduction

1. Choose an unrecognizable language U that is mapping reducible to L. You either want
to show U ≤m L or U ≤m L.

2. Decide what mapping reduction A ≤m B and computable function f to show.

2. Prove A ≤m B.

2a. Construct a TM that computes f .

2b. Make sure your function f is indeed computable.

2b. Show that f is correct, meaning w ∈ A ⇐⇒ f(w) ∈ B. This involves showing
two directions:
(i) w ∈ A =⇒ f(w) ∈ B
(ii) w ̸∈ A =⇒ f(w) ̸∈ B [equivalent to f(w) ∈ B =⇒ w ∈ A]

3. Conclude that your mapping reduction implies L is unrecognizable (think about how
it is justified by theorems seen in class).

Some remarks about the steps above:

• Make sure your function f is actually computable! While you’re only expected to give a
high level description of a TM for f , you should be convinced that you could provide a
more detailed implementation if needed. Saying something like “if M never halts on w,
have f(w) be...” is not implementable by a TM!

2



• Note that there are multiple ways to show w ∈ A ⇐⇒ f(w) ∈ B. If a statement is true,
so is its contrapositive, so

(i) Showing w ∈ A =⇒ f(w) ∈ B is equivalent to showing f(w) ̸∈ B =⇒ w ̸∈ A.

(ii) Showing f(w) ∈ B =⇒ w ∈ A is equivalent to showing w ̸∈ A =⇒ f(w) ̸∈ B.

Oftentimes it’s easier to show (i) directly and (ii) by contrapositive.

3 Refined Rice’s Theorem (Bonus material, not required)

Recall that one of the ways we had to prove undecidability is using Rice’s theorem, which can be
applied whenever the language is a non-trivial property of recognizable languages (basically, any
langauge of the form {⟨M⟩ | M is a TM and L(M) satisfies...}). See lecture notes and Handout
9 for a review and examples.

We know that if a language L is undecidable, it must be either not recognizable or not
co-recognizable (or both) – this follows from the Theorem 1.3 as discussed above. Refined
Rice’s theorem applies to exactly the same set of languages as Rice’s theorem, but further lets
us conclude that L is not recognizable or not co-recognizable, depending on whether the TM
recognizing the empty language is in L or in L

Theorem 3.1. Refined Rice Theorem: Let P be a non-trivial property of recognizable languages.
Let M∅ be a TM such that L(M∅) = ∅. Then:

• if ⟨M∅⟩ ∈ P , then P is not recognizable

• If ⟨M∅⟩ /∈ P then P is not co-recognizable (namely, P is not decidable).

Steps to proving L is unrecognizable by Refined Rice’s Theorem

1. Prove that L is a language property:

1a. Check that L consists of strings of the form ⟨M⟩ where M is a TM.

1b. Check that for any two TMs M1,M2 such that L(M1) = L(M2) it holds that
M1 ∈ L ⇐⇒ M2 ∈ L

2. Prove that L is non-trivial:

2a. Show that there exists a TM M such that ⟨M⟩ ∈ L

2b. Show that there exists a TM M ′ such that ⟨M ′⟩ /∈ L.

3. Show that ⟨M∅⟩ ∈ L

4. Conclude that L is not recognizable.

Note: if instead in step 3 you show ⟨M∅⟩ ̸∈ L, you can conclude that L is not co-recognizable.

For example, Refined Rice’s theorem could be used in order to prove ETM , REGTM , and
ALLTM are all not recognizable (since each of these can be shown to be a non-trivial property
of recognizable languages, and M∅ satisfies each of these properties.

3



4 Example Unrecognizable Languages

Proven in class

• ATM = The complement of {⟨M,w⟩ | M is a TM and M accepts w} (lecture 19)

• ETM = {⟨M⟩ | M is a TM and L(M) = ∅} (lecture 19)

• ALLTM = {⟨M⟩|M is a TM and L(M) = Σ∗} (lecture 20)

• ALLTM (lecture 19)

Unproven

• HALTTM = The complement of {⟨M,w⟩|M is a TM and M halts on w}

• EQTM = {⟨M1,M2⟩ | M1 and M2 are TMs and L(M1) = L(M2)}

• REGTM = {⟨M⟩|M is a TM and L(M) is regular}

5 Practice Problems

1. Prove that L = {⟨M,D⟩|M is a TM, D is a DFA, and L(M) = L(D)} is not co-recognizable.
That is, prove that L is not recognizable.

2. Prove that L = {⟨M⟩|M is a TM which does not accept strings of length ≥ 50} is not
recognizable.

3. Prove that if L1 and L2 are recognizable, then L3 = L1 · L2 is also recognizable. That is,
prove that recognizable languages are closed under concatenation.

4. Let A be a language. Prove that A ≤m A.

5. Is it necessarily true that A ≤m A?

4


