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1 Midterm coverage

The midterm will cover all the materials shown in class up to Lecture 9 (2024-10-03), unless
explicitly stated otherwise by the instructor.

• Specifically, for context-free languages (CFL), there will be no deep questions as it
never appears in a quiz or homework.

You can use theorems and examples given in class without proof, but you have to explic-
itly state that they are given in class.

Recall that you can bring 2 double-sided letter-size sheets of paper. So you don’t need
to memorize things, but it is important to understand the definitions and concepts.

The solution to quizzes and homework are posted on Courseworks.
The TAs have never seen the actual midterm, and will not see it before you do.

2 Summary of the main points

See handouts on the class webpage with more detailed review and sample questions.

2.1 Basic definitions and notations

An alphabet is a finite non-empty set of characters.
A string (over an alphabet) is a finite sequence of characters in that alphabet.
A language (over an alphabet) is a set of strings in that alphabet. (A language is not

necessarily finite.)
For a character or a string x, k ≥ 0, xk is the string x ◦ x ◦ · · · ◦ x where x is repeated k

times. In particular, x0 is the empty string ε. (Here it does not have the meaning “the k-th
power of x”.)

2.2 Regular Languages

A language is regular if and only if it can be recognized by one of the following:

• A DFA (Q,Σ, δ, q0, F ).
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• An NFA (Q,Σ, δ, q0, F ).

• A Regular Expression.

The above three representations are equivalent and we have seen methods of going from one
to the other. (Namely, the subset construction for NFA to DFA, the GNFA method with
state ripping to go from an NFA to a regular expression, and a recursive transformation of
any regular expression to a NFA).

Note that being regular is a property of a language, and we cannot say a string is regular
or not regular.

For any DFA/NFA/regexp, there is exactly one language recognized by it, namely the
set of all strings the DFA/NFA/regexp accepts. However, for a language, there can be many
DFA/NFA/regexp recognizing it.

We have also looked at how to prove a language is regular. Here are some ways to show
it:

• Design a DFA/NFA/regexp recognizing the language.

Note that we need to show not only that every string in the language is accepted by
the DFA/NFA/regexp, but also that every string accepted by the DFA/NFA/regexp
is in the language (or equivalently, every string not in the language is not accepted
(rejected) by the DFA/NFA/regexp).

• Use closure properties: We have proved that regular languages are closed under com-
plement, intersection, union, concatenation, and Kleene star. Thus, to prove that a
language L is regular, one method is to show that L can be expressed as a combination
of regular languages using these operations (e.g., show that L = L1 ∪ L2 for some
regular languages L1, L2, or show that L = L1 for some regular L1).

• As a special case of using closure under union, every finite language is regular.

• To prove that some new operation on regular languages results in a regular language
(i.e. to prove that regular languages are closed under some new operation), one ap-
proach is to start with a DFA or NFA for the original language(s), and then apply some
modifications to it, resulting in a new NFA (or DFA) for the resulting language. (This
is how we proved many of the closure results we have seen). Other approaches include
starting from a regular expression and making modifications to it, or expressing the
new operation as a combination of other operations we already know regular languages
are closed under (e.g., expressing intersection of two languages as a combination of
union and complement of the two languages).

• The Myhill-Nerode theorem can help you construct a minimal DFA for the language
(there are also algorithmic ways to minimize any DFA for a language). This is not part
of the required material for the midterm.

We have also seen non-regular languages and have shown several approaches to proving that
a language is not regular:
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• Pumping lemma (showing that pumping lemma does not hold).

The pumping lemma states that if L is a regular language, then ∃p > 0, ∀w ∈ L
such that |w| ≥ p, ∃ strings x, y, z such that w = xyz, |xy| ≤ p, |y| > 0 and ∀i ≥ 0,
xyiz ∈ L.

If you find this hard to remember, it might be helpful to try to understand the proof
idea in Lecture 4 (2024-09-12).

To prove a language is not regular, we can prove pumping lemma does not hold for
that language, namely, ∀p > 0, ∃w ∈ L such that |w| ≥ p, and ∀ strings x, y, z that
satisfy w = xyz, |xy| ≤ p and |y| > 0, ∃i ≥ 0 such that xyiz /∈ L.

Common mistakes:

– Not constructing a string w such that |w| ≥ p for all p > 0.

– Not constructing a string w in L.

– Not considering every possible way to parse w = xyz. (A trick here is to construct
w that starts with ap for some a in the alphabet. I’m not saying you can always
do this.)

– Not picking an i such that xyiz /∈ L.

• Using closure properties. To show L is not regular, assume towards contradiction that
it is regular, and show how combining L with other languages known to be regular (via
operations like the ones mentioned above), will give you a language already known not
to be regular. This gives a contradiction, and thus L is not regular.

For example, if you show that L ∩ L2 = L3 where L2 is known to be regular and L3 is
known to be non-regular, you can conclude that L must be non-regular.

• Myhill-Nerode theorem (which you may use but is not part of the material): You can
show L is not regular by showing that there are infinitely many strings such that for
every two of them, x, y, there exists a string z such that exactly one of xz, yz is in L.
See e.g. the solution to homework 1.3(d) for an example of using it.

Myhill-Nerode theorem is a sufficient and necessary condition for regular language. In
contrast, pumping lemma is a necessary but not sufficient condition: namely, there
exists a non-regular language that satisfies pumping lemma.

2.3 Context Free languages

A language L is context free if and only if it satisfies one of the following equivalent definitions:

• L can be generated by a context-free grammar (CFG).

• L can be recognized by a push-down automaton (PDA), which is like an NFA equipped
with a stack.

We mentioned that the class of CFL is closed under the following operations:
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• Union

• Concatenation

• Star

However, it is not closed under:

• Intersection

• Complement

Every regular language is a CFL, but the converse is not true.
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3 Problem Set: Regular Languages

Design finite automata for the following languages. You can give the DFA/NFA by their
transition diagrams.
Note: In your transition diagrams, you can use shorthand notation on the labels of the edges.
For example, you can label an edge by Σ \ {a} to indicate that the transition takes place for
all input symbols except a. Make sure to specify the starting state and the accepting states
in your diagrams.

1. L is the language over the alphabet Σ = {0, 1, 2} consisting of all strings that:

• Every 0 is immediately followed by a 1, every 1 is immediately followed by a 2,
and every 2 is immediately followed by a 0.

• The string starts and ends with the same symbol.

• The string must have length at least 1.

Solution

We can construct a DFA with an omitted garbage state that recognizes L:

qs

q00

q11

q22

q01 q02

q12 q10

q20 q21

0

1

2

1 2

0

2 0

1

0 1

2

All accepted strings must have length at least 1 since the initial state is not
accepting. We branch from qs depending on the first symbol of w. WLOG, let
the first symbol of w be 0. Once we take the transition from qs to q00, we return
to the accepting state q00 if and only if we read a sequence of symbols (after the
initial 0) of the form (120)∗, which ensures the first two conditions of the strings
in the language.
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2. The set of strings over the alphabet Σ = {a, b, . . . , z} that contain at least one m
between any two a’s in the string; for example abc, john,mama, american are in the
language, but papa, panamerican are not.

Solution 1

We can construct a DFA that recognizes this language:

q0 q1 q2

Σ \ {a}
a

m

Σ \ {a,m}

a

Σ

Whenever we see an a, if we ever see another a before seeing any ms, we reject.

Solution 2

Consider L̄, the complement of the language in the problem: the set of strings
over the alphabet Σ = {a, b, . . . , z} that contains two a’s in the string and no m
between the two a’s. By closure under complement, we only need to prove L̄ is
regular. Actually, L̄ is recognized by the following regular expression:

Σ∗a(Σ \ {m})∗aΣ∗.
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For the following problems, if a language L is given, prove that L is regular or prove that
L is nonregular.

3. L = {ww | w ∈ {0, 1}∗ and w contains at least one 0 and at least one 1} over the
alphabet Σ = {0, 1}.

Solution

Define the following language:

A = {ww | w ∈ {0, 1}∗ and w does not contain both a 0 and a 1}

We see that A = L((00)∗ ∪ (11)∗), as every string in A must have even length
(due every string in A having form ww) and must be composed of only 0s or
only 1s (in order to not contain both a 0 and a 1).
We then observe that L ∪ A = B, where

B = {ww | w ∈ {0, 1}∗}

Since A can be expressed as a regular expression, A is regular. Now assume,
for the sake of contradiction, that L is also regular. Since the class of regular
languages is closed under the union operation, if L and A are both regular, then
B must also be regular.
However, B is not context-free and therefore not regular.a

Since B is not regular, then due to closure properties, it cannot be the case that
both L and A are regular, so L must be nonregular.

aSince it is true that if a language is regular, it is context-free, the contrapositive must be
true. It was proved that B is not context-free in Lecture 12 (10/17).

4. L = {aibjck | i+ j = k} over the alphabet Σ = {a, b, c}.

Solution

L is nonregular as it does not satisfy the pumping lemma for regular languages.
We choose the string w = apbpc2p, and it is clear that w ∈ L and |w| = 4p ≥ p.
For all partitions w = xyz, due to the conditions |xy| ≤ p and |y| > 0, we see that
y must consist of at least one a and is composed only of as, or in other words,
y = ak, 0 < k ≤ p. We then consider the pumped-up string xy2z = ap+kbpc2p

and see that xy2z /∈ L (as (p+ k) + p = 2p+ k ̸= 2p since k ̸= 0). Therefore, L
does not satisfy the pumping lemma for regular languages, so L is not a regular
language.
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5. L = {0ku1k | k ≥ 1, u ∈ Σ∗} over the alphabet Σ = {0, 1}.

Solution

We prove that L is regular by providing a regular expression. We observe that
if k = 1, then L contains all strings that start with 0 and end with 1 (note
that u includes all characters between the starting and ending characters; this is
possible since u ∈ Σ∗). On the other hand, for any string x = 0ku1k ∈ L, since
k ≥ 1, x must start with 0 and end with 1.
Therefore, L is the set of all strings that start with 0 and end with 1. Due to
this observation, L = L(0Σ∗1), so L is regular.

6. L = {0k1u1k | k ≥ 1, u ∈ Σ∗} over the alphabet Σ = {0, 1}.

Solution

L is nonregular as it does not satisfy the pumping lemma for regular languages.
We choose the string w = 0p11p, and it is clear that w ∈ L and |w| = 2p+1 ≥ p.
For all partitions w = xyz, due to the conditions |xy| ≤ p and |y| > 0, we see
that y must consist of at least one 0 and is composed only of 0s, or in other words,
y = 0k, 0 < k ≤ p. We then consider the pumped-up string xy2z = 0p+k11k and
see that xy2z /∈ L.a Therefore, L does not satisfy the pumping lemma for regular
languages, so L is not a regular language.

aBy pumping up, we see the difference between this language L and the previous language
LR = {0ku1k | k ≥ 1, u ∈ Σ∗}: the fixed 1 allows for the distinction between the substring
of the first occurrence of 0k and u, which in turn allows us to pump up the string w in our
solution.
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7. Challenge: L is the language consisting of all strings of a’s and b’s with an equal num-
ber of occurrences of ab and ba as substrings. (The string aabbbaa has one occurrence
of each of the substrings ab and ba.)

There is no need to worry at all if you find this one difficult. It is harder than what
we expect to see on the midterm.

Solution

Yes, L is regular: In fact, L can be described equivalently as the set of strings
over {a, b} that begin and end with the same symbol.
We can prove the above by proving the following stronger statement:

• If a string starts and ends with the same character, then the number of
occurrences of ab and ba equal.

• If a string starts with a and ends with b, then the number of occurrences
of ab is that of ba plus 1.

• If a string starts with a and ends with b, then the number of occurrences
of ab is that of ba minus 1.

An intuitive way to understand this is as follows. Consider a to be at a higher
level and b to be at a lower level. If we start and end at the same level, then
the number of times we go from the higher to the lower level (corresponding to
ab) is the same as the number of times we go from the lower to the higher level
(corresponding to ba).
Formally, we can prove this via induction on the length of the string. The details
are omitted.
We can construct an NFA that recognizes L as follows:

q0

q1

q2

q3

q4

a

b

a

a, b

a

b

a, b

b

a

b

Or equivalently, L can be generated by the regular expression

ε ∪ a ∪ b ∪ (a(a ∪ b)∗a) ∪ (b(a ∪ b)∗b)
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