
COMS W3261 : Discrete Math review
Anum Ahmad, William Pires

These notes are based on from Cyrus Illick and Walt McKelvie (2022).

1 Intro

This document is a review of Discrete Math. The following list of definitions, theorems, and
examples do not encompass all of Discrete. These are just some aspects we consider to be
helpful for our CS Theory class (the class webpage has pointers to some other resources as well).
Discrete Math is a prerequisite for this course: if you are feeling shaky with the content, we suggest
you look back and review your notes, and come to office hours if you have any questions. We’re
here to help you!

2 Boolean Logic

We use 1 for TRUE and 0 for FALSE. We use letters such as (P,Q) to denote variables (a variable
takes value 0 or 1). The three basic Boolean logic rules are (¬) = NOT, (∧) = AND, (∨) = OR,

Example 1. The following are examples of boolean operations:

1. 0∧ 0 = 0

2. 0∧ 1 = 0

3. 1∧ 0 = 0

4. 1∧ 1 = 1

5. 0∨ 0 = 0

6. 0∨ 1 = 1

7. 1∨ 0 = 1

8. 1∨ 1 = 1

9. ¬1 = 0

10. ¬0 = 1

A proposition is a declarative statement that is either true or false. (1 + 1 = 2 and 4 < 3 are
both propositions). This leads us to (→) = Implies, and (↔)= Equivalent.

• A → B is read as ”If A, then B”. For instance, ”If it rains, then the grass is wet”.

A → B is the same to ̸ A ∨B.

So, A → B is true whenever B is true or A is false. In particular, if A is true B must be true.
But if B is true and A is false, that’s ok.

For instance: ”If 1 + 1 = 3, then 1 + 1 = 2” is a true statement. Even if both A and B are
false, the statement is true. So, ”If

√
1 = 2, then 1 + 1 = 3” is also a true statement.

• A ↔ B is read as ”A if and only if B”. For instance, ”A triangle is a right triangle if and
only if it has a 90◦ angle”.

A ↔ B is true whenever both A and B are true, or both they are both false.

A ↔ B is the same as: (A → B) AND (B → A).

• Converse: The converse of A → B is B → A. Note that they are not the same thing ! For
instance ”If a quadrilateral is a square, all its angles are 90◦ angle” (this is a true statement).

The converse is ”If all the angles of a quadrilateral are 90◦ degrees, then it’s a square” (this
is false!).

In this class, you will see a lot of theorems of the form ”If A then B”. Make sure that you
don’t use ”If B then A” as it might not always be true.

• Contrapositive: The contrapositive of A → B is ¬B → ¬A. In particular, these two
statements have the same truth value. That is:

(A → B) ↔ (¬B → ¬A).

For instance ”If a language L is regular, then there is a DFA for L”. The contrapositive is
”If there is no DFA for L, then L isn’t regular”.

If in class you learnt ”If A then B”, you can always use ”If ¬B, then ¬A”.

A small note. Sometimes in a definition we will a ”if A then B”, instead of ”A if and ony if B”.

For instance ”If L is a regular language, then there’s a DFA that recognizes L”. Since this is the
definition of a regular language, we really mean to say ”L is a regular language if and only if there’s
a DFA that recognizes L”.

In this case, the converse of the statement ”If there’s a DFA that recognizes L, then L is regular”
is true, because that’s just the other direction of the iff.

If you’re ever unsure if a statement in class is supposed to be an if and only if, please ask us!

3 What is a Set?

Sets are, informally, a collection of elements. They are characterized by the elements they contain;
for a set A and any x, we can say x ∈ A (x is in A), or x /∈ A (x is not in A). Sets can be defined
both explicitly (by listing all elements), or implicitly (as we will see below).

Example 2. The following are examples of sets:

1. {1, 5, 6}.

2. {cat,dog,wolf}.

3. {1, 2, {}, {1, 2}} is a set that contains 2 integers, and two sets! A set can contain elements of
different ”types”.

4. N is the set {0, 1, 2, 3, 4, . . .}, of all natural numbers.

5. Z is the set {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers.

6. R is the set of real numbers.

From the above you can see some sets are finite (you can count the number of elements), and some
are infinite. We will define and discuss infinitely countable sets a bit later in the class.

2

Note that the ordering in a set does not matter: {cat,dog,wolf} and {dog,cat,wolf} are the same
set, just written two different ways. This is in contrast to a sequence, where order does matter –
the sequence (cat,dog,wolf) is not the same as (dog,cat,wolf). Also note that a set consists only of
distinct elements – each element is either in the set or not – it can’t be in the set twice (so the set
{a, b, b, c, d} is just the set {a, b, c, d}).

Definition 1. The set with no elements is called the empty set, and is written as ∅ or {}.

Sometimes we will a specific notation for sets. For instance we’ll write as set like this :

{x | some condition applies to x}

The above is read as ”the set of all x such that some condition applies to x.”. Sometimes, we write
: instead of |. So we’d write:

{x : some condition applies to x}

There is no difference between the two! It’s up to you to pick whatever notation you prefer.

Example 3. Here are some examples of sets constructed using set-builder notation:

1. The set of integers greater than 5 can be written as {x ∈ Z | x > 5} or {x ∈ Z : x > 5}
(pronounced “all x in Z such that x is greater than 5”).

2. The prime numbers can be formally defined by

{x ∈ N : there doesn’t exists y ∈ N with 1 < y < x and y divides x}.

In particular this is read as ”The set of x in N such that there doesn’t exist a natural number
y, with 1 < y < x and y divides x.

Example 4. The following are true statements about sets using the ∈ operation:

1. 0 ∈ {0, 1, 2, 3, 4} 2. dog /∈ {cat, bird, tiger} 3. 3 ∈ {x|x < 5}

3.1 Set Cardinality

The cardinality of a set A, written as |A|, can be thought of as a measure of “how big” a set is.
For finite sets, this is simply the number of elements in the set.

For instance if A = {1, 2, 3}, then |A| = 3 and if B = {1, 3, 1, 2, {}}} then |B| = 4. If C = ∅, then
|C| = 0.

We will discuss the cardinality of infinite sets later in class.

3

3.2 Operations on Sets

Definition 2. The union of two sets A and B, written A ∪ B, is the set of all x that is in either
A or B. Using set-builder notation, A ∪B = {x | x ∈ A ∨ x ∈ B}.

For example : {1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4}.

Definition 3. The intersection of two sets A and B, written A ∩B, is the set of all x that is in
both A and B. Using set-builder notation, A ∩B = {x | x ∈ A ∧ x ∈ B}.

For example : {1, 2, 3} ∩ {2, 3, 4} = {2, 3}.

Definition 4. The Cartesian product of two sets A and B, written as A×B, is the set of pairs
(p, q) such that p ∈ A and q ∈ B. Using set-builder notation, A×B = {(p, q) : p ∈ A and q ∈ B}.

For example: {1, 2, 3} × {4, 5} = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

Definition 5. The set difference of two sets A and B, denoted A \ B is the set of elements in
A but not in B. That is, A \B = {x : x ∈ A ∧ x ̸∈ B}.

For instance : {1, 2, 3} \ {2, 4, 5, 6} = {1, 3}. And {2, 4, 5, 6} \ {1, 2, 3} = {4, 5, 6}.

3.3 Subsets and Powersets

Definition 6. For two sets A,B, we say A ⊆ B (or ”A is a subset of B”) if :

For all x ∈ A, we have that x ∈ B

. For such sets, we can also say B ⊇ A (”B is a superset of A”).

Example 5.

1. {0} ⊆ {0, 1}. 2. N ⊆ Z. 3. For any set S, we have
∅ ⊆ S.

4

Note that A ⊆ A for any set A. If we want to convey that A ⊆ B and A ̸= B, then we can write
A ⊊ B (”A is a proper subset of B”).

Often a problem will require to look at all the subsets of size k of some set.

If you have a set with n elements, the number of subsets of size k is denoted
(
n
k

)
. We have(

n

k

)
=

n!

k!(n− k)!

Definition 7. The powerset of a set A, or P(A), is the set of all subsets of A.

For example: P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The following will be probably be useful at some point : If |A| = k, then |P(A)| = 2k.

4 Predicates, Quantified expressions, and De Morgan’s Law

A predicate is a statement that is based on variables that when assigned will make the statement
true or false. P(x) = “x is even” is a predicate where P(x) is true for all even numbers. Predicates
can also be quantified, there are two types of quantification: universal quantification, existential
quantification.

Definition 8. Universal quantification is quantifying a predicate such that for any value, the
predicate will be true. The symbol ∀ is read “for all”. The proposition (∀x ∈ S, P (x)) is true if
for all values x ∈ S, the predicate P (x) is true.

Definition 9. Existential Quantification is quantifying a predicate such that there exists a value in
a set S where the predicate is true. The symbol ∃ is read “exists”. The proposition (∃x ∈ SP (x))
is true if there exists at least one value x ∈ S, such that the predicate P (x) is true.

Example 6. The following are examples of quantified statements:

1. (∀x ∈ R)(x+ 0 = x). ”For all real numbers x, x+ 0 = x”.

2. (∃x ∈ N)(x+ 5 = 20). ”There exists a natural number x such that x+ 5 = 20”.

3. (∀x ∈ {1, 2} ∃y ∈ {1, 2,−1,−2})(x + y = 0). ”For all x ∈ {1, 2}, there exists a y ∈
{1, 2,−1,−2} such that x+ y = 0.”

5

4. (∃x ∈ {−1, 0, 1, 2} ∀y ∈ R)(x + y > y). ”There exists x ∈ {−1, 0, 1, 2} such that for all real
number y, x+ y > y.”

In the last two examples, the quantifiers are nested.

In particular in the statement : (∀x ∈ {1, 2} ∃y ∈ {1, 2,−1,−2})(x+ y = 0) given x one picks y to
be −x. In particular, y is allowed to depend on x.

The order of quantifier matters ! For instance (∀x ∈ R ∃y ∈ R)(x + y = 0) is true, but
(∃y ∈ R ∀x ∈ R)(x + y = 0) is false. You can’t swap the order as it changes the meaning of
statements.

Theorem 1. [De Morgan’s Law for Quantifier] For any predicate P(x) :

¬ (∀x ∈ S : P (x)) ↔ (∃x ∈ S : ¬P (x))

and similarly
¬ (∃x ∈ S : P (x)) ↔ (∀x ∈ S : ¬P (x))

.

So, when negating a quantified statement, you flip ∀ to ∃ and vice versa. And then negate P (x).

For instance:

• The negation of (∀x ∈ N)(x+ 0 = x) is (∃x ∈ N)(x+ 0 ̸= x).

• When dealing with nested quantifiers, you flip all of them, and then negate the predicate.

For instance the negation of

(∃x ∈ {−1, 0, 1, 2} ∀y ∈ R)(x+ y > y)

is
(∀x ∈ {−1, 0, 1, 2} ∃y ∈ R)(x+ y ≤ y) .

5 Strings and languages

Definition 10. An alphabet Σ is a finite set of symbols.

For instance: Σ = {0, 1} or Σ = {a, b, c} are alphabets.

6

Definition 11. A string s over Σ is a finite sequence of symbols from Σ. The length of a string
|s| is denoted |s|, this is the number of symbols in it.

For instance: If Σ = {0, 1}, then 00 (which has length 2) and 111001 (length 6) are strings. But
000 . . . isn’t a string since this isn’t finite.

A special string is the empty string ϵ. This is the (only) string of length 0 1.

If s has length n, we can write s = s1s2 . . . sn where each si ∈ Σ.

Given a string s its reverse sR is s in the reverse order. So sR = sn . . . s2s1.

Given two strings s, t we denote by s ◦ t their concatenation. Sometimes, we omit the ◦ and just
write st.

For instance: 11 ◦ 010 = 11010 and ϵ ◦ 00 = 00

Given an alphabet Σ, we denote by Σk the set of all strings of length k over Σ. And we denote :

Σ∗ = ∪∞
i=0Σ

i = { all strings over Σ}

For instance: If Σ = {0, 1}, we have Σ0 = {ϵ},Σ1 = {0, 1}, Σ2 = {00, 01, 10, 11}.

Definition 12. A language L over alphabet Σ is a set of string L ⊆ Σ∗

In particular, a language is just a set. It can be finite, infinite. We can take the union of two
language L ∪ L′ := {s : s is a string in L or in L′}, or their intersection etc...

Definition 13. The complement of language L over alphabet Σ denoted Lc (or also L) is the set
all strings over Σ that are not in L. That is:

Lc = Σ∗ \ L = {s ∈ Σ∗ : s ̸∈ L}

Here are some examples

1ϵ would correspond to the string ”” in Python.

7

1. L = {0, 1, 000111} is a finite language. We have 0 ∈ L, but ϵ ̸∈ L.

2. L = {0, 00, 000, . . .} is an infinite language. But note that every string in L is finite, so for
any s ∈ L, we have |s| = k for some integer k.

3. {} is the empty language, it also denoted ∅. For any string s, we have s ̸∈ ∅ (in particular
ϵ ̸∈ ∅).

8

6 Proof Techniques

If you’re not sure how to start proving a statement, you can always refer to these templates for
inspiration.

Proof Template 1 (Proving ”For all x ∈ S, P(x) is true”). To prove a statement of this
form, where P(x) is a predicate. You need to proceed as follow:

• Let x be an arbitrary element of S.

• Prove that for x the statement is true.

Make sure you don’t pick a specific x to work with.

Here’s an example.

Example 7. For all odd integers x, x2 is odd.

Proof. Let x be an odd integer. Then x = 2k + 1 for some integer k. So x2 = 4k2 + 4k + 1. In
particular, x2 = 2(2k2 + 2k) + 1. So x2 is odd.

In particular, in the above you can’t say ”Let x = 5, then x2 = 25 which is odd”. This is bad since
you’re proving the statement for a specific number x, not all odd integers.

Similarly, if you learn a statement of the form ”If A, then there exists x such that...”. Make sure
you don’t pick a specific x, as this is a very common mistake. For instance consider the following:

Theorem 2. ”If L is regular, then there exists k ≥ 1, such that L has a DFA with k states”.

Now, if you want to use theorem in a proof, you can’t say ”By Theorem 2, since L = {0, 00, 000, . . . , }
is regular it has a DFA with k = 2 states”. The theorem doesn’t say anything about what value k
has, so you can’t pick k = 2.

Proof Template 2 (Proving ”The exists an x ∈ S, with P(x) true”). To prove a statement
of this form, where P(x) is a predicate. You need to proceed as follow:

• Pick a specific x ∈ S.

• Prove that for the x you picked P (x) is true.

Here it’s ok to pick a specific value for x.

Here’s an example.

Example 8. There is a language L over {0, 1} such that L has a DFA with one state.

Proof. Let L = Σ∗. Then the DFA for L has one state q0, such that q0 is the start state and an
accept state.

9

The transitions function is just δ(q0, 0) = δ(q0, 1) = q0.

Proof Template 3 (Proving ”If P then Q”). To prove a statement of this form, the easiest
way to is to say ”Assume P is true”. And then derive that Q has to be true.

Example 9. If n is even, then n2 is even.

Proof. Assume that n is even. Then we can write n = 2m for some integer m. So n2 = 4m2 =
2× (2m2). So 2 divides n2, which means n2 as to be even.

However when having to prove P → B, there are other ways to do. Here are the two most common
ones.

Important to remember: The negation of P → B is P ∧ ¬P .

Proof Template 4 (Proof by Contradiction). A proof by Contradiction starts by
assuming that the statement to be proved is false, and arrives at a contradiction, thus
concluding the statement was true. It is often applied to statements of the form P ⇒ Q.

Example 10. If 3n+ 2 is odd, then n is odd.

Proof. Assume for sake of contradiction that 3n+ 2 is odd, and n is even.
Because n is even, there is an integer k such that n = 2k.
This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). We can define t = 3k + 1 and thus
3n + 2 = 2t which implies that 3n + 2 is even. Thus we have arrived at a contradiction becuase
3n+ 2 cannot be both odd and even.
So it must be true that if 3n+ 2 is odd, then n is odd.

Another option, is a proof by contraposition. Do not confuse this with a proof by contradiction.

Proof Template 5 (Proof by Contraposition). In a proof by Contraposition, instead
of proving P ⇒ Q directly, we prove its contrapositive: ¬Q ⇒ ¬P .
A prove of P ⇒ Q by contraposition, goes like this: Say ”Assume ¬Q is true” and derive
that this ¬P is true.

Example:

Example 11. If x2 is even, then x is even.

Proof. The contrapositive of this statement, is ”If x is odd, then x2 is odd”. Hence the proof goes
like this:

Assume that x is odd. The product of two odd numbers is odd, thus x · x = x2 is odd. So x2 is
not even. Therefore, if x2 is even, then x is even.

10

A lot of times, we’ll ask you to prove P ↔ Q. This is how you should proceed.

Proof Template 6 (Proving ”P if and only if Q”). To prove P ↔ Q you must prove :

• P → Q,

• and Q → P .

Do not forget to prove both statements. Also, you can use different techniques for each.

For example, to prove P ↔ Q you can prove P → Q, and ¬P → ¬Q (the contrapositive of Q → P).

Induction is another common proof technique.

Proof Template 7 (Proof by Induction). To prove that P (n) is true for all positive
integers n we complete two steps:

1. Basis Step: We verifiy that P(1) is true.

2. Inductive Step: We show that the conditional statement P (k) → P (k + 1) is true
for all postive integers k. That is, we assume P (k) is true (called “the inductive
hypothesis”), and prove that P (k + 1) is also true.

• You can do a proof by induction for all integers ≥ 0, simply by adjusting the basis case
to prove P (0).

• Another concept is ”strong induction”. The Basis Step stays the same. But in the
Inductive Step, we want to show:

(∀i ∈ {1, . . . , k}, P (k)) → P (k + 1) .

So we assume P (i) is true for 1 ≤ i ≤ k, and then prove that P (k + 1) is also true.

Example 12. 1 + 2 + 22 + 23 + ...+ 2n = 2n+1 − 1 for all n ≥ 0.

Proof. Let P (n) be the proposition that 1 + 2 + 22 + ...+ 2n = 2n+1 − 1 for the integer n
Basis Step: P (0) is true because 20 = 1 = 21 − 1. This completes the basis step.
Inductive Step: We assume that P (k) is true for an arbitrary nonnegative integer k.
1 + 2 + 22 + ...+ 2k = 2k+1 − 1
We add 2k+1 to both sides of the above equation.
1 + 2 + 22 + ...+ 2k + 2k+1 = 2k+1 − 1 + 2k+1

1 + 2 + 22 + ...+ 2k + 2k+1 = 2 · 2k+1 − 1
1 + 2 + 22 + ...+ 2k + 2k+1 = 2(k+1)+1 − 1
Thus if P (k) is true then P (k + 1) is true.
By mathematical induction we know that P (n) is true for all n.
Thus, 1 + 2 + 22 + 23 + ...+ 2n = 2n+1 − 1

11

