Handout 9b: Solutions to Exercises
(Reductions, Undecidability, Unrecognizability)

Ananya Gandhi and Nicolas Hortiguera
Credit to Eli Goldin and Alan Du (Fall 2020 TAs)

COMS 3261 Fall 2022

1 Countability

(No exercises)

2 Turing Reductions and Undecidability

1. Prove that $HALT_{TM} \leq_T A_{TM}$.

Answer:
Suppose that there were a decider O for A_{TM}. We will construct a decider R for $HALT_{TM}$ using O as follows:

R: -On input $\langle M, w \rangle$
-Run O on $\langle M, w \rangle$. If O accepts, accept.
-Create an encoding of a new TM $\langle M' \rangle$ as follows:
M':
"-On input x
-Run M on x
-If M accepts, reject. If M rejects, accept.
"$
-Run O on $\langle M', w \rangle$. If O accepts, accept.
-Reject.

If $\langle M, w \rangle \in HALT_{TM}$, then either M accepts w or M rejects w. In the former case, O accepts $\langle M, w \rangle$. In the latter case, M' accepts w and so O accepts $\langle M', w \rangle$. Either way, R accepts $\langle M, w \rangle$.
If $\langle M, w \rangle \notin HALT_{TM}$, then M runs forever on w. Thus, M' also runs forever on w. Therefore, $\langle M, w \rangle \notin A_{TM}$ and $\langle M', w \rangle \notin A_{TM}$ and so O rejects both cases. Thus, R rejects $\langle M, w \rangle$.

2. Prove that $L = \{ \langle M, D \rangle \mid M$ is a TM, D is a DFA, and $L(M) = L(D) \}$ is undecidable.

Answer:
We will prove this by showing that $A_{TM} \leq_T L$. Suppose that there were a decider O for L. We will
use O to construct a decider R for A_{TM} as follows:

R: -On input $\langle M, w \rangle$
 -Create an encoding of a new TM $\langle M' \rangle$ (or we could say $\langle M'_w \rangle$) as follows:
 M': -On input x
 -If $x \neq w$ reject.
 -If $x = w$, run M on w. If M accepts, accept. Otherwise, reject.

 -Create an encoding of a new DFA (D) such that $L(D) = L(w) = \{w\}$ (this is ok as we know an algorithm to construct DFAs from regular expressions).
 -Run O on (M', D) and output same.

If $\langle M, w \rangle \in A_{TM}$, then M accepts w. Thus, M' accepts w and rejects everything else, so $L(M') = \{w\}$. Therefore, $L(M') = L(D)$, and so O accepts (M', D). Thus, R accepts $\langle M, w \rangle$.

If $\langle M, w \rangle \notin A_{TM}$, then M does not accept w. Thus, $L(M') = \emptyset$. Therefore, $L(M') \neq L(D)$ since $L(D) = \{w\}$. Therefore, O rejects (M', D) and so R rejects x.

3. Prove that the following are equivalent
 1) $A \leq_T B$
 2) $\overline{A} \leq_T B$
 3) $\overline{A} \leq_T \overline{B}$
 4) $A \leq_T \overline{B}$

Answer:

1) $ \Rightarrow $ 2): Let $A \leq_T B$. Thus, if there exists a decider O for B, we can create a decider R for A. Let R' run R and return the opposite. R' is a decider for \overline{A} using O. Thus, $\overline{A} \leq_T B$.

2) $ \Rightarrow $ 3): Let $\overline{A} \leq_T B$. If there were a decider O for \overline{B}, then we could create a decider O' for B by running O and returning the opposite. But since $\overline{A} \leq_T B$, we could use O' to create a decider for \overline{A}. Thus, $\overline{A} \leq_T \overline{B}$.

3) $ \Rightarrow $ 4): Let $\overline{A} \leq_T \overline{B}$. Thus, if there exists a decider O for \overline{B}, we can create a decider R for \overline{A}. Let R' run R and return the opposite. R' is a decider for $A = \overline{\overline{A}}$ using O. Thus, $\overline{A} \leq_T B$.

4) $ \Rightarrow $ 1): Let $A \leq_T \overline{B}$. If there were a decider O for B, then we could create a decider O' for \overline{B} by running O and returning the opposite. But since $A \leq_T \overline{B}$, we could use O' to create a decider for A. Thus, $A \leq_T B$.

3 Using Rice’s Theorem to prove undecidability

1. Does Rice’s theorem apply to $L = \{\langle M \rangle \mid M$ is a TM and M accepts 0$\}$?

 Answer: Yes.
 Clearly $L \subseteq \{\langle M \rangle \mid M$ is a TM$\}$. If M_1, M_2 are TMs and $L(M_1) = L(M_2)$, then M_1 accepts 0 $\iff M_2$ accepts 0. Thus, $\langle M_1 \rangle \in L \iff \langle M_2 \rangle \in L$.

 Now, take M accepting all strings, M' rejecting all strings. $M \in L$, $M' \notin L$. Thus, $L \neq \emptyset$ and $L \neq \{\langle M \rangle \mid M$ is a TM$\}$.

 Therefore, L is undecidable.

2. Does Rice’s theorem apply to $L = \{\langle M \rangle \mid M$ is a TM and M has exactly two states$\}$?

 Answer: No.
 L is not a property of recognizable languages. Consider any TM M with two states. We can always add useless states which can not be reached to create M' with the same language. Thus, $L(M) = L(M')$ and $\langle M \rangle \in L$ while $\langle M' \rangle \notin L$.

 In fact, L is decidable. We could create a Turing machine which simply counts the number of states and accepts if there are two, and rejects otherwise.
3. Does Rice’s theorem apply to \(L = \{ \langle M \rangle | M \text{ is a TM and } M \text{ rejects 0} \} \)?

Answer: No.

\(L \) is not a property of recognizable languages. Consider \(M_1 \) a TM which rejects all strings, \(M_2 \) a TM which runs forever on all strings. \(L(M_1) = L(M_2) = \emptyset \). \(M_1 \) rejects 0, so \(\langle M_1 \rangle \in L \). However, \(M_2 \) runs forever on 0, and specifically does not reject 0. Thus, \(\langle M_2 \rangle \notin L \).

Despite the fact that Rice’s theorem does not apply, \(L \) is undecidable. We can prove this e.g. by a reduction from the language in 3.1.

4. Does Rice’s theorem apply to \(E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \)?

Answer: Yes.

Clearly \(E_{TM} \subseteq \{ \langle M \rangle | M \text{ is a TM} \} \). If \(M_1, M_2 \) are TMs and \(L(M_1) = L(M_2) \), then \(L(M_1) = \emptyset \iff L(M_2) = \emptyset \). Thus, \(\langle M_1 \rangle \in E_{TM} \iff \langle M_2 \rangle \in E_{TM} \).

Now, take \(M \) accepting all strings, \(M' \) rejecting all strings. We have \(L(M) = \emptyset \), \(L(M') = \Sigma^* \). \(M \in E_{TM} \), \(M' \notin E_{TM} \). Thus, \(E_{TM} \neq \emptyset \) and \(E_{TM} \neq \{ \langle M \rangle | M \text{ is a TM} \} \).

Therefore, \(E_{TM} \) is undecidable.

5. Does Rice’s theorem apply to \(L = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \overline{A_{TM}} \} \)?

Answer: No.

Here, we have that \(L \) is indeed a property of recognizable languages. However, \(L \) is trivial. We know that \(\overline{A_{TM}} \) is unrecognizable, and so there exists no TM \(M \) such that \(L(M) = \overline{A_{TM}} \). Therefore, \(L = \emptyset \). Note that as \(\emptyset \) is a decidable language, so is \(L \). (For a decider, consider the TM: "on input \(x \), reject.").

6. Does Rice’s theorem apply to \(L = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is recognizable} \} \)?

Answer: No.

Note that for every TM \(M \), by definition \(L(M) \) is recognizable. Thus, \(L = \{ \langle M \rangle | M \text{ is a TM} \} \) and so \(L \) is trivial.

Note that \(\{ \langle M \rangle | M \text{ is a TM} \} \) is a decidable language, and so \(L \) is as well. (For a decider, consider the TM: "on input \(\langle M \rangle \) where \(M \) is a TM, accept.")

7. Does Rice’s theorem apply to \(L = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is decidable} \} \)?

Answer: Yes.

Clearly \(L \subseteq \{ \langle M \rangle | M \text{ is a TM} \} \). If \(M_1, M_2 \) are TMs and \(L(M_1) = L(M_2) \), then \(L(M_1) \) is decidable \(\iff L(M_2) \) is decidable. Thus, \(\langle M_1 \rangle \in L \iff \langle M_2 \rangle \in L \).

Let \(M \) reject all strings, and let \(U \) be a recognizer for \(A_{TM} \). We know that \(M \) is a decider (and \(L(\langle M \rangle) = \emptyset \) is a decidable language), and so \(\langle M \rangle \in L \). However, \(L(U) = A_{TM} \) is not decidable, and so \(\langle U \rangle \notin L \). Thus, \(L \) is non-trivial.

Using Rice’s theorem to prove undecidability: (Problem 5.18 in Sipser, p. 240)

Use Rice’s theorem to prove the undecidability of the following language:

\(INFINITE_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is an infinite language} \} \)

Solution: \(INFINITE_{TM} \) is a language of TM descriptions. It satisfies the conditions of Rice’s theorem. First, it depends only on the language: if two TMs \(M_1, M_2 \) recognize the same language, either both have descriptions in \(INFINITE_{TM} \) or neither do. Second, it is nontrivial because some TMs have infinite languages and others do not. For a specific example, take \(M \) a TM that accepts all inputs, and \(M' \) a TM that rejects all inputs, then \(\langle M \rangle \in INFINITE_{TM} \) while \(\langle M' \rangle \notin INFINITE_{TM} \). Thus, \(INFINITE_{TM} \) is a non-trivial property of recognizable languages, and so Rice’s theorem implies that it is undecidable.
4 Proving L is unrecognizable - Overview

(No exercises)

5 Using complements and undecidability to prove unrecognizability

(No exercises)

6 Mapping Reductions for unrecognizability

1. Prove that $L = \{\langle M, D \rangle | M$ is a TM, D is a DFA, and $L(M) = L(D)\}$ is not co-recognizable. That is, prove that \overline{L} is not recognizable.

Answer:
Note that the Turing-reduction given in the solution for 2.2 is actually a mapping reduction! Thus, $A_{TM} \leq_m L$, and so $A_{TM} \leq L$. Therefore, \overline{L} is not recognizable. To see this more formally, consider the computable function f as follows:

\[f: \text{On input } \langle M, w \rangle
\begin{align*}
\text{-Create an encoding of a new TM } &\langle M' \rangle \text{ (or we could say } \langle M'_w \rangle) \text{ as follows:} \\
M': &\text{-On input } x \\
&\text{-If } x \neq w \text{ reject.} \\
&\text{-If } x = w \text{, run } M \text{ on } w. \text{ If } M \text{ accepts, accept. Otherwise, reject.} \\
\text{"} \\
\text{-Create an encoding of a new DFA } &\langle D \rangle \text{ such that } L(D) = L(w) = \{w\} \text{ (this is ok as we know an algorithm to construct DFAs from regular expressions).} \\
\text{-Return } &\langle M', D \rangle.
\end{align*} \]

This f is computable, since every step is implementable.
If $\langle M \rangle \in A_{TM}$, then $L(M') = L(D)$ and so $\langle M', D \rangle \in L$.
If $\langle M, w \rangle \notin A_{TM}$, then $L(M') = \emptyset \neq L(D)$ and so $\langle M', D \rangle \notin L$.
Thus, $\langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in L$, and so $A_{TM} \leq_m L$.

2. Prove that $L = \{\langle M \rangle | M$ does not accept strings of length $\geq 50\}$ is not recognizable.

Answer:
We will show that $E_{TM} \leq_m L$. Consider the computable function f defined as follows:

\[f: \text{On input } \langle M \rangle
\begin{align*}
\text{-Create an encoding of a new TM } &\langle M' \rangle \text{ as follows:} \\
M': &\text{-On input } w^n \\
&\text{-If } |w| < 50, \text{ reject.} \\
&\text{-If } w \geq 50, \text{ let } w' \text{ be } w \text{ without the first 50 characters. Run } M \text{ on } w' \text{ and output the same.} \\
&\text{-Return } \langle M' \rangle.
\end{align*} \]

This f is computable, since every step is implementable.
If $\langle M \rangle \in E_{TM}$, M will never accept any string as $L(M) = \emptyset$. But the only time M' accepts a string
is if M accepts a (different) string. Thus, M' will never accept any string, and so will not accept any string of length ≥ 50. Thus, $f(M) = \langle M' \rangle \in L$.

If $\langle M \rangle \notin E_{TM}$, then $\exists w$ such that M accepts w. Let $a \in \Sigma$. Note that M' will accept $a^{50}w$. Thus, since $|a^{50}w| \geq 50$, $f(M) = \langle M' \rangle \notin L$.

Therefore, $w \in E_{TM} \iff f(w) \in L$, and so $E_{TM} \leq_m L$. Therefore, since E_{TM} is not recognizable, neither is L.

3. Let A be a language. Prove that $A \leq_m A$.

Answer: Let f be the identity. This is clearly computable. We have $w \in A \iff w = f(w) \in A$. Thus, $A \leq_m A$ by definition.

4. Is it necessarily true that $A \leq_m \overline{A}$?

Answer: No. Consider A_{TM}. We know that A_{TM} is recognizable, while $\overline{A_{TM}}$ is not. Thus, we cannot possibly have $\overline{A_{TM}} \leq_m A_{TM} = \overline{A_{TM}}$.

Note that for Turing-reductions, it IS true that for every A we have $A \leq_T oA$, as follows from exercise 2.3.