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Intro
This document is a review of Discrete Math. The following list of definitions, theorems, and examples do not

encompass all of Discrete. These are just some aspects we consider to be helpful for our CS Theory class (the

class webpage has pointers to some other resources as well). Discrete Math is a prerequisite for this course: if you

are feeling shaky with the content, we suggest you look back and review your notes, and come to office hours if you

have any questions!

Boolean Logic
We use letters such as (P,Q,R) to denote variables, and use 1 for TRUE and 0 for FALSE. Important operations in

Boolean logic include: (¬) = NOT, (∧) = AND, (∨) = OR, (⊕) = XOR, (→) = IMPLIES, (↔) = EQiVALENT.

Example. The following are examples of boolean operations:

- 0 ∧ 0 = 0

- 0 ∧ 1 = 0

- 1 ∧ 0 = 0

- 1 ∧ 1 = 1

- 0 ∨ 0 = 0

- 0 ∨ 1 = 1

- 1 ∨ 0 = 1

- 1 ∨ 1 = 1

- 0⊕ 0 = 0

- 0⊕ 1 = 1

- 1⊕ 0 = 1

- 1⊕ 1 = 0

- 0 ↔ 0 = 1

- 0 ↔ 1 = 0

- 1 ↔ 0 = 0

- 1 ↔ 1 = 1

- 0 → 0 = 1

- 0 → 1 = 1

- 1 → 0 = 0

- 1 → 1 = 1

- ¬0 = 1

- ¬1 = 0

- P ∨Q ⇔ ¬(¬P ∧ ¬Q)

- P → Q ⇔ ¬P ∨Q

- P ↔ Q ⇔ (P → Q) ∧ (Q → P )

- P ⊕Q ⇔ ¬(P ↔ Q)

- P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R)

- P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R)

Predicates, Quantified expressions, and De Morgan’s Law
A proposition is a declarative statement that is either true or false. (1 + 1 = 2 and 4 < 3 are both propositions). A

predicate is a statement that is based on variables that when assigned will make the statement true or false. P(x) =

“x is even” is a predicate where P(x) is true for all even numbers. Predicates can also be quantified, there are two

types of quantification: universal quantification, existential quantification.

Definition 0.1. Universal quantification is quanitifying a predicate such that for any value, the predicate will be true.

The symbol ∀ is read “for all”. The proposition (∀xP (x)) is true if for all values of x, the predicate P(x) is true.

Definition 0.2. Existential Quantification is quantifying a predicate such that there exists a value where the predicate

is true. The symbol ∃ is read “exists”. The proposition (∃xP (x)) is true if there exists a value of x, such that the

predicate P(x) is ture.

Example. The following are examples of quantified statements:

- (∀x)(x+ 0 = x)

- (∃x)(x+ 5 = 20)

- (∀x∃y)(x+ y = 0)

- (∃x∀y)(x+ y > y)

Theorem 0.3. De Morgan’s Law for Quantifiers: for any predicate P(x), ¬∀x : P (x) ⇐⇒ ∃x : ¬P (x), and similarly

¬∃x : P (x) ⇐⇒ ∀x : ¬P (x).

What is a Set?
Sets are, informally, a collection of elements. They are characterized by the elements they contain; for a set A and

any x, we can say x ∈ A (x is in A), or x /∈ A (x is not in A). Sets can be defined both explicitly (by listing all

elements), or implicitly (as we will see below).

Example. The following are examples of sets:
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- {1, 5, 6}.

- {cat,dog,wolf}.

- The prime numbers.

- The real numbers.

Note that the ordering in a set does not matter: {cat,dog,wolf} and {dog,cat,wolf} are the same set, just written

two different ways. This is in contrast to a sequence, where order does matter – the sequence (cat,dog,wolf) is not

the same as (dog,cat,wolf). Also note that a set consists only of distinct elements – each element is either in the set

or not – it can’t be in the set twice (so the set {a, b, b, c, d} is just the set {a, b, c, d}).

Definition 0.4. The set with no elements is called the empty set, and is written as ∅ or {}.

Sets that are not explicitly defined can be described verbally or written in set-builder notation. Set-builder notation
follows the format { x | some condition applies to x }, pronounced “the set of all x such that some condition applies

to x.” (| can also be replaced with a colon (:), with the same meaning).

Example. Here are some examples of sets constructed using set-builder notation:

- The set of integers greater than 5 can be written as {x ∈ Z|x > 5} or {x ∈ Z : x > 5} (pronounced “all x in Z such

that x is greater than 5”).

- The prime numbers can be formally defined by {x ∈ N : ∄y ∈ N : 1 < y < x, y|x}, where y|x means “y divides x,”

or “x is divisible by y.”

- {x+ y|x, y ∈ Z, x > 2, y < 1}. This can actually be proved to be the same set as {n|n ∈ Z} = Z.

Example. The following are true statements about sets using the ∈ operation:

- 0 ∈ {0, 1, 2, 3, 4} - dog /∈ {cat, bird, tiger} - 3 ∈ {x|x < 5}

Set Cardinality
The cardinality of a set A, written as |A|, can be thought of as a measure of “how big” a set is. For finite sets, this

is simply the number of elements in the set.

Example. If A = {1, 2, 3}, then |A| = 3. If B = ∅, then |B| = 0.

Operations on Sets
Definition 0.5. The union of two sets A and B, written A ∪ B, is the set of all x that is in either A or B. Using

set-builder notation, A ∪B = {x|x ∈ A ∨ x ∈ B}.

Example. {1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4}.

Definition 0.6. The intersection of two sets A and B, written A ∩ B, is the set of all x that is in both A and B.

Using set-builder notation, A ∩B = {x|x ∈ A ∧ x ∈ B}.

Example. {1, 2, 3} ∩ {2, 3, 4} = {2, 3}.

Definition 0.7. The Cartesian product of two sets A and B, written as A × B, is the set of pairs (p, q) such that

p ∈ A and q ∈ B. Using set-builder notation, A×B = {(p, q) : p ∈ A, q ∈ B}.

Example. {1, 2, 3} × {4, 5} = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

Subsets and Powersets
Definition 0.8. For two sets A,B, we say A ⊆ B (or “A is a subset of B”) if, for all x ∈ A, x ∈ B. For such sets, we

can also say B ⊇ A (“B is a superset of A”).

Example. {0} ⊆ {0, 1}.
Note that A ⊆ A for any set A. If we want to convey that A ⊆ B and A ̸= B, then we can write A ⊊ B (“A is a

proper subset of B”). Authors vary in their usage of the symbol ⊂ (which could mean either a subset or a proper

subset), so this symbol should usually be avoided for clarity.

Definition 0.9. The powerset of a set A, or P(A), is the set of all subsets of A.

Example. P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Functions
A function f : A → B (pronounced “f taking A to B” or “f from A to B”) is a subset of A×B satisfying the following.

f : A → B is a function precisely when each element x ∈ A is matched to one value f(x) ∈ B.

Injections, Surjections, and Bijections
Definition 0.10. A function is called injective if f maps distinct elements of its domain to distinct elements. f(x1) =

f(x2) ⇒ x1 = x2

Definition 0.11. A function is called surjective if f maps an element x to every element y. For every y, there is an x

such that f(x) = y.

Definition 0.12. A function is called bijective if it is both injective and surjective.

Theorem 0.13. The composition of injective functions is also injective.

Theorem 0.14. The composition of surjective functions is injective.

Corollary 0.15. The composition of bijective functions is bijective.

Proof Techniques
Proof by Contradiction assumes that the statement to be proved is false, and arrives at a contradiction, thus

concluding the statement was true. It is often applied to statements of the form P ⇒ Q. Here’s an example.

Theorem 0.16. If 3n+ 2 is odd, then n is odd.

Proof. Assume for sake of contradiction that 3n+ 2 is odd, and n is even.

Because n is even, there is an integer k such that n = 2k.

This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). We can define t = 3k + 1 and thus 3n + 2 = 2t which

implies that 3n+ 2 is even. Thus we have arrived at a contradiction becuase 3n+ 2 cannot be both odd and even.

So it must be true that if 3n+ 2 is odd, then n is odd. ■

Proof by Contraposition is often confused with proof by contradiction. To prove P ⇒ Q by contraposition, assume

¬Q and derive that this must mean ¬P . This proves that ¬Q ⇒ ¬P which is equivalent to P ⇒ Q. Example:

Theorem 0.17. if x2 is even, then x is even.

Proof. Assume that x is odd. The product of two odd numbers is odd, thus x · x = x2 is odd. So x2 is not even.

Therefore, if x2 is even, then x is even. ■

Induction is another common proof technique. To prove that P(n) is true for all positive integers n, where P(n) is a

propositional function, we complete two steps:

(1) Basis Step: We verifiy that P(1) is true.

(2) Inductive Step: We show that the conditional statement P (k) → P (k+1) is true for all postive integers k. That

is, we assume P (k) is true (called “the inductive hypothesis”), and prove that P (k + 1) is also true.

Definition 0.18. The principle of mathematical induction: (P (1) ∧ ∀k(P (k) ⇒ P (k + 1))) ⇒ ∀n ≥ 1, P (n).

The above can be generalized to proofs for all nonnegative integers ≥ 0 (or any other starting point), simply by

adjusting the basis case to prove P (0). Here is an example.

Theorem 0.19. 1 + 2 + 22 + 23 + ...+ 2n = 2n+1 − 1 for all n ≥ 0.

Proof. Let P (n) be the proposition that 1 + 2 + 22 + ...+ 2n = 2n+1 − 1 for the integer n

Basis Step: P (0) is true because 20 = 1 = 21 − 1. This completes the basis step.

Inductive Step: We assume that P (k) is true for an arbitrary nonnegative integer k.

1 + 2 + 22 + ...+ 2k = 2k+1 − 1

We add 2k+1 to both sides of the above equation.

1 + 2 + 22 + ...+ 2k + 2k+1 = 2k+1 − 1 + 2k+1

1 + 2 + 22 + ...+ 2k + 2k+1 = 2 · 2k+1 − 1

1 + 2 + 22 + ...+ 2k + 2k+1 = 2(k+1)+1 − 1

Thus if P (k) is true then P (k + 1) is true.

By mathematical induction we know that P (n) is true for all n.

Thus, 1 + 2 + 22 + 23 + ...+ 2n = 2n+1 − 1 ■
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Strong induction strengthens the inductive hypothesis to assume P (1) . . . P (k) (rather than just P (k)), and uses it

to prove P (k + 1). This is very useful when P (k + 1) depends on some combination of P (1), P (2), ..., P (k)

Definition 0.20. The principle of strong mathematical induction: (P (1)∧∀k([P (1)∧P (2)∧...∧(P (k))] ⇒ P (k+1))) ⇒
∀nP (n)
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