
Safety Verification and Robustness
Analysis of Neural Networks via

Quadratic Constraints and
Semidefinite Programming:

By: Mahyar Fazlyab, Manfred Morari,

George J. Pappas

Brief Overview

What we’ll talk about today:

I Background on semidefinite programming

I Introduction to the problem of neural network
verification

I Technical definitions and prerequisites

I Verification via SDP

I Experimental Results

What exactly is semidefinite programming?

First, general optimization

A general optimization problem takes the following
form:

minimize f (x)

subject to gi(x) ≤ bi , i ∈ [m]

A related example: linear programming

A linear program of vectors in Rn is an optimization
problem of the following sort:

maximize cTx

subject to Ax ≤ b

and x ≥ 0

A related example: linear programming

Figure: A polytope

Methods of solving LP’s

I simplex algorithm

I criss-cross algorithm

I ellipsoid algorithm

I ... and many more

What does a semidefinite program look
like?

First, some preliminaries:

I Definition: A matrix M is positive
semidefinite if there are vectors x1, . . . , xn such
that mi ,j = x i · x j . We denote M is positive
semidefinite as M � 0.

I Equivalently: A real matrix M is positive
semidefinite if, for any x ∈ Rn, we have
xTMx ≥ 0.

What does a semidefinite program look
like?

I Let Sn be the set of all n × n symmetric
matrices.

I Define an inner produce over Sn as
〈S ,T 〉 := tr(STT) =

∑
i ,j Si ,jTi ,j .

What does a semidefinite program look
like?

Doing this, a semidefinite programming (SDP)
problem looks as follows:

Minimize 〈S ,X 〉

Subject to 〈Ak ,X 〉 ≤ bk , k ∈ [m]

and X � 0

Where we can replace ≤ on the second line with =
by using slack variables.

What does a semidefinite program look
like?

Using the the definition of a semidefinite matrix (i.e.
mi ,j = x i · x j), we can rewrite to get:

Minimize
∑
i ,j∈[n]

ci ,j(x
i · x j)

Subject to
∑
i ,j∈[n]

ai ,j ,k(x i · x j) ≤ bk for all k

This looks a lot more like the traditional linear
programming (LP) example. Also, justifies the term
quadratic constraints.

What does a semidefinite program look
like

Figure: Feasible region for SDP

Linear Programs as SDP’s

Suppose you are given a linear program defined by
constant c , a1, . . . , ak ∈ Rn, and b1, . . . , bk ∈ R.
We can concoct the matrices:

Ai = diag(ai) C := diag(c)

To generate the program:

minimize 〈C ,X 〉

subject to 〈Ai ,X 〉 ≤ bi

and xi ,j = 0 when i 6= j , X � 0

Common Approaches

I Interior point methods

I First-order methods

I Many are approximate, all are slower than LP
approaches!

Now... Lets talk about some other stuff related to
SDP’s and semidefinite matrices.

Linear Matrix Inequalities (LMI’s)

Recall, we used X � 0 to denote that X is a
positive semidefinite matrix. More generally, we can
relate matrices X and Y by X � Y if and only if
X − Y � 0. Likewise, we can write 0 � X if X is
negative semidefinite. We can define Linear Matrix
Inequalities (LMI) as expressions of the form:

n∑
i=1

Ai �
m∑
j=1

Bj

Quadratically Constrained Quadratic
Programs (QCQP)

A general class of optimization problems of the
following sort:

minimize xTP0x + qT0 x

subject to xTPix + qTi x + ri ≤ 0

and Ax = b

In general, solving these is NP-Hard. However, if we
restrict P0 and the Pi ’s to semidefinite matrices,
can use SDP to solve! Likewise, can incorporate
LMI as in SDP!

So... why are SDP’s and optimization relevant to
neural network (NN) verification?

High-level problem overview

I Neural networks (NN’s) are being used to
emulate human decisions (e.g. in self-driving
cars, face-recognition systems)

I NN’s are still a relatively black-box tool.

I We want a better way to reason about how
NN’s classify large sets of inputs.

I That is, a way to prove security properties of
NN’s.

More detailed overview (Geometric)

Viewing a NN as a function f : Rn → Rm . . .

I Can view NN security properties as geometric
constraints on inputs and outputs.

I For a region X ⊂ Rn, another region
Y := f (X) ⊂ Rm, for some S ⊂ Rm, we may
ask 1[Y ⊂ S].

I e.g., if our NN f is a binary spam classifier, we
may ask ”is f (non spam messages) ⊂ {0}”,
where 0 indicates not spam.

More detailed overview (Optimization)

We can all see robustness guarantees as an
optimization problem:

I Suppose f is a NN for a classification problem.

I Suppose we have a pair (x , y) and want to
ensure for any point A(x) ∈ Bε(x),
f (x) = f (A(x)).

I Suppose NN returns the value arg max{f (x)i}
where i ranges over all labels.

I Can write as optimization problem
maximizey ′∈[n]\{y}f (A(x))y ′ − f (A(x))y .

Why this question isn’t easy

While answering this yes/no question may seem
straightforward, it is not!

I Computing f (X) exactly is computationally
hard!

I Moreover, general NN’s are not convex! Hard
to use optimization techniques.

So how do we address this

I In general, we will try to over approximate
f (X) with some set Ỹ ⊂ Rm, and check ”is
Ỹ ⊂ S instead.

I Question is then: how do we balance
conservatism with tightness? (NN’s are highly
non-linear)

I Important as we can have false positives (i.e.
Y ⊂ S , but Ỹ 6⊂ S)

I How do we propogate X through the layers
without being too conservative?

Key observation!

We just need to bound the activation functions!

I Outside of the activation functions, NN’s just
consist of affine functions. Depending on X ,
we can usually just compute f (X) if f is affine.

I Examples of activation functions:
Relu(x) := max{0, x}, tanh(x), σ(x).

What are approaches for doing this?

I Symbolic linear relaxation and propagation

I Naive concretization

I Linear relaxation

I ... and quadratic constraints! (QC’s)

What are approaches for doing this?

What are approaches for doing this?

What are approaches for doing this?

And now... the subject of the talk... quadratic
constraints (QC’s) via SDP!

NN Notation

Throughout, we will assume a NN f takes its inputs
as a subset X ⊂ Rnx and has outputs as a set
Y ⊂ Rny

I We denote an input as x0 = x , the value passed
from layer i to i + 1 as x i+1 := φ(W ix i + bi),
and f (x) := W lx l + bl if the NN has l layers.

I We are assuming that the NN has an activation
φ(x) := [ϕ(x1), . . . , ϕ(xdi)]T where ϕ : R→ R
is a 1-D activation fn.

Overview of developing QC’s

We need to develop the following notions to use
QC’s to verify NN robustness.

(1) How to overestimate X using a set (potentially
infinite) of QC’s.

(2) Given QC’s for a previous layer and an
activation function φ, specify QC’s for the
subsequent layer.

(3) How to specify QC’s for a safety set in the
output layer.

(4) How to use SDP to check that, given input and
transition constraints, the safety QC’s in the
output layer hold true.

Specifying QC’s on the input layer

Quadratic relaxation: For hyperractangle
= {x ∈ Rd : x ≤ x ≤ x}, the quadratic constraints
can be phrased as:

(x − x)T (x − x) ≥ 0

But how could we encode it into a semidefinite
matrix so that we can solve it by SDP optimization?

Specifying QC’s on the input layer

Note that the inequality x ≤ x ≤ x can be written
as, for all Γi ,j ≥ 0, 1 ≤ i , j ≤ d (d is the input
dimension):

Γi ,j(xi − x i)
T (x j − xj) ≥ 0

Specifying QC’s on the input layer
Note that the inequality x ≤ x ≤ x can be written
as, for all Γi ,j ≥ 0, 1 ≤ i , j ≤ d (d is the input
dimension):

Γi ,j(xi − x i)
T (x j − xj) ≥ 0 (1)

We can construct matrix P with Γ = [Γi ,j] ∈ Rd×d :

P :=

{[
−(Γ + ΓT) Γx + ΓTx
xTΓT + xTΓ −xTΓTx − xTΓx

]}
such that making P semidefinite in constraint 2 is
the same as the quadratic constraint 1:[

x
1

]T
P

[
x
1

]
≥ 0 (2)

Specifying QC’s on the input layer

Definition: Suppose we are given a region
X ⊂ Rd . Let P ⊂ Sd+1 be all matrices such that,
for all P ∈ P , we have:[

x
1

]T
P

[
x
1

]
≥ 0

We say an input region X satisfies QC’s defined by
P . Here, P is a convex cone.

Note a convex cone is a set C such that x , y ∈ C
and α, β > 0 yields αx + βy ∈ C .

Convex Cone

Figure: Convex cone.

Convex Cone and Semidefinite Constraints

The set of matrix X � 0 (X ∈ Rn×n) is a convex
cone in Rn(n+1)/2.
Therefore, semidefinite matrix constraint can be
treated as a convex constraint during SDP
optimization procedure.

What’s next

So we have a way of specifying input constraints!
How do we handle output constraints?

Output Constraints

For a safety property of NN, it can be specified as a
polytope constraint:

S :=
m⋂
i=1

{y : aTi y − bi ≤ 0}

where y is the output of the NN and b is the
worst-case upper bound predefined as safe.

Output Constraints
For a safety property of NN, it can be specified as a
polytope constraint:

S :=
m⋂
i=1

{y : aTi y − bi ≤ 0} (3)

We can construct matrix Si :

Si :=

[
0 ai
aTi −2bi

]
such that restricting it to be not positive(S � 0)
as constraint 4 has the same effect as constraint 3:[

y
1

]T
Si

[
y
1

]
≤ 0 (4)

Output Constraints

Support output specifications which can be
inner-approximated by finitely many quadratic
inequalities S1, . . . , Sm, i.e.:

S :=
m⋂
i=1

{
y ∈ Rny :

[
y
1

]T
Si

[
y
1

]
≤ 0

}

What’s left now? Quadratic constraints for
activation functions!

QC for activation functions

Slope-restricted nonlinearities: A nonlinear
function φ(x) is slope-restricted on [α, β]
(0 ≤ α ≤ β) if the following condition holds:

(φ(x)−φ(x ′)−α(x−x ′))T (φ(x)−φ(x ′)−β(x−x ′)) ≤ 0

for any two pairs (x , φ(x)) and (x ′, φ(x ′)).

QC for activation functions

Figure: Slope restricted nonlinearity

QC for activation functions

Repeated nonlinearities (important): If we just
use slope-restricted nonlinearities to encode the
constraints of activation functions, we are actually
ingoring dependency between the nodes in the
earlier layers to the ones in the deeper layer.
Therefore, for activation φ(x) = [ρ(x1), ..., ρ(xd)]T ,
slope restriction can be written as:

(φ(xi)−φ(xj)−α(xi−xj)))(φ(xi)−φ(xj)−β(xi−xj))) ≤ 0

for all i , j = 1, ..., d , i 6= j

QC for activation functions

Repeated nonlinearities (important): Such
constraints can be rewritten as a semidefinite matrix
constraint:[

x
φ

]T [−2αβT (α + β)T
(α + β)T −2

] [
x
φ

]
≥ 0

where T =
∑

1≤i≤j≤d λij(ei − ej)(ei − ej)
T with

λij ≥ 0 and ei is the i-th unit vector in Rd .

QC for ReLU function

For a ReLU φ(x) = max(0, x) before considering
repeated nonliearities, it can be relaxed into the
following three quadratic constraints:

xφ(x) = φ2(x), φ(x) ≥ x , φ(x) ≥ 0

QC for ReLU function

For a ReLU φ(x) = max(0, x), it can be relaxed
into the following three quadratic constraints:

xφ(x) = φ2(x), φ(x) ≥ x , φ(x) ≥ 0 (5)

We can construct matrix Q such that restricting Q
to be semidefinite as 6 will produce the same
quadratic constraint as 5: x

φ(x)
1

T

Q

 x
φ(x)

1

 ≥ 0 (6)

QC for ReLU function

Formally, Q is defined as (not important):

Q :=

 0 T −v
T −2T v + η
−vT vT + ηT 0

Here η, v ≥ 0 and T is semidefinite given by:

T =
d∑

i=1

λieie
T
i +

d−1∑
i=1

d∑
j>i

λij(ei − ej)(ei − ej)
T

with λi ∈ R and λij ≥ 0.

Now we have semidefinite matrix constraints:
(1) P for input constraints;
(2) Q for activation constraints;
(3) S for output constraints;
Let’s try to solve the NN verification problem.

SDP for NN

We can prove the safety property of NN with SDP
problem by checking the feasibility of P and Q.

Obj : Min + Mmid + Mout � 0

Min,Mmid ,Mout are derived from P ,Q, S by
reshaping them into a huge matrix.
Conclusion: If there exist P and Q that makes it
feasible, then we prove the safety property S always
satisfied.

SDP for NN

Why exist P ,Q => proved safe?

Obj : Min + Mmid + Mout � 0

Min semidefinite for sure!
Mmid semidefinite for sure!

SDP for NN

Why exist P ,Q => proved safe?

Min + Mmid + Mout � 0

Min semidefinite for sure!
Mmid semidefinite for sure!
Mout if obj is feasible, then not positive for sure!
Remember we define S � 0 to be safe.

SDP for NN

Figure: How Min,Mmid ,Mout are derived from P ,Q, S .

SDP for NN

Let S = {y |aTy − b ≤ 0} to be the output
constraints. We can also have certified upper bound
by finding P and Q to minimize b:

min b

s.t. Min + Mmid + Mout � 0

Evaluation

Figure: The certified upper bound in terms of different number
of hidden layers. The network has 2 inputs, 10 outputs, and
100 hidden ReLU each layer.

Evaluation

Figure: The output polytope obtained by SDP, SDR, and
ground-truth output ranges. The number of hidden layers for
each plot is 1, 2, 4, 6, 8, and 10.

Drawback

The main object function Min + Mmid + Mout � 0 is
a huge matrix with O(N2) where N is the number
of all hidden nodes. Therefore, SDP relaxation will
take a lot of memory and cannot scale to large
models.

Takeaway

(1) More meaningful constraints encoded in
semidefinite matrix constraints, the better the
tightness of the estimation will be.
(2) Require much more memory and computation to
formulate and solve as SDP than linear
programming formulation.

Questions?

	Overview
	Background on SDP
	Neural Net Intro
	Paper Prelims

