Operating System Security

Synthesis Lectures on
Information Security,
Privacy and Trust

Editor
Ravi Sandhu, University of Texas, San Antonio

Operating System Security
Trent Jaeger
2008

Copyright © 2008 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in

printed reviews, without the prior permission of the publisher.

Operating System Security
Trent Jaeger

www.morganclaypool.com

ISBN: 9781598292121 paperback
ISBN: 9781598292138 ebook

DOI 10.2200/S00126 ED1V01Y200808SPT001

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON INFORMATION SECURITY, PRIVACY AND TRUST

Lecture #1
Series Editor: Ravi Sandhu, University of Texas, San Antonio

Series ISSN
Synthesis Lectures on Information Security, Privacy and Trust
ISSN pending.

Operating System Security

Trent Jaeger
The Pennsylvania State University

SYNTHESIS LECTURES ON INFORMATION SECURITY, PRIVACY AND
TRUST #1

1\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

Operating systems provide the fundamental mechanisms for securing computer processing. Since
the 1960s, operating systems designers have explored how to build “secure” operating systems —
operating systems whose mechanisms protect the system against a motivated adversary. Recently,
the importance of ensuring such security has become a mainstream issue for all operating systems.
In this book, we examine past research that outlines the requirements for a secure operating system
and research that implements example systems that aim for such requirements. For system designs
that aimed to satisfy these requirements, we see that the complexity of software systems often results
in implementation challenges that we are still exploring to this day. However, if a system design
does not aim for achieving the secure operating system requirements, then its security features fail
to protect the system in a myriad of ways. We also study systems that have been retrofit with secure
operating system features after an initial deployment. In all cases, the conflict between function on
one hand and security on the other leads to difficult choices and the potential for unwise compromises.
From this book, we hope that systems designers and implementors will learn the requirements for
operating systems that effectively enforce security and will better understand how to manage the
balance between function and security.

KEYWORDS

Operating systems, reference monitor, mandatory access control, secrecy, integrity, vir-
tual machines, security kernels, capabilities, access control lists, multilevel security, pol-
icy lattice, assurance

10 Dana, Alec, and David for their love and support

Contents

Synthesis Lectures on Information Security, Privacy and Trust................ 1l
oMt vttt et ettt e et et e e e e e e e e e e e ix
Preface ..o XV
Introductiono e 1
1.1 Secure Operating SYSteIms . ..« . v vttt ettt 3
1.2 Security Goals . ..ottt e 4
1.3 Trust Model . ..ot e e e e e e 6
1.4 Threat Model. ..ot e e et e 7
1.5 SUMMATIY. ot e 8
Access Control Fundamentals.o 9
2.1 Protection SYSteml.o.iutntntit it 9

2.1.1 Lampson’s Access Matrix.o 9

2.1.2 Mandatory Protection Systems, 11
2.2 Reference IMOonitor.ottt et et e 14
2.3 Secure Operating System Definition. ... 16
2.4 AssessmeEnt Criteria. . v v u it et ettt et et e et eeeaans 19
2.5 Summary 21
VUL CS vttt e e e e e e e 23
3.1 Multics History. .. .ouueui e e 23
3.2 The Multics System.........ooiiuiiiii 24

3.2.1 Multics Fundamentals ... 25

3.2.2 Multics Security Fundamentals ... 25

3.2.3 Multics Protection System Models ...l 28

X

CONTENTS

3.2.4 Multics Protection Systemoeveiriiir i 30

3.2.5 Multics Reference Monitor..............ooooiiiiiiiiiiiii 31

3.3 Multics Securityot 33
3.4 Multics Vulnerability Analysis. ... 36
3.5 SUMMALY .ottt e 37
4 Security in Ordinary Operating SyStemsv.vu vttt eenenn. 39
4.1 System HIstories.ot e 39
411 UNIX HIStOrY . o oottt 39

4.1.2 Windows Historyo 40

4.2 UNIX Securityo.ouiii e 41
4.2.1 UNIX Protection SYStemvutntneneeeii et ieaeenenns 41

4.2.2 UNIX Authorizationo, 43

4.2.3 UNIX Security Analysis.ooiuiiiiiiiiiiiiiiiiiiian.... 45

4.2.4 UNIX Vulnerabilities ovvenenen e 47

4.3 WIndows SECUIItY . ..o entt ettt 49
4.3.1 Windows Protection System......... ..., 50

4.3.2 Windows Authorizationc.oeueeninineneneneenenenineenann. 51

4.3.3 Windows Security Analysis..........o.ueuiniiiiiiiininiiinnen.. 53

4.3.4 Windows Vulnerabilities 55

44 SUMMATY « oottt 56
5 Verifiable Security Goals 57
5.1 Information Flow. 57
5.2 Information Flow Secrecy Models....................oooooiii 59
5.2.1 Denning’s Lattice Model.......... ... 60

5.2.2 Bell-LaPadulaModeloo i 62

5.3 Information Flow Integrity Models.....................o oo, 64
5.3.1 BibaIntegrity Model o i 65

5.3.2 Low-Water Mark Integrity.........cooveiiiiiiii i, 67

5.3.3 Clark-Wilson Integrity ..o 68

CONTENTS xi

5.3.4 The Challenge of Trusted Processest 69
54 Covert Channels........ ... 70
541 Channel Typesc.oiuiiuiii e 71
5.4.2 Noninterferenceouuiuiuiiiiii i 72
5.5 Summary 73
Security Kernels.ooo 75
6.1 The Security Kernel o 76
6.2 Secure Communications Processor.c.ooiiiiiiiiiiiiiiiiii 77
6.2.1 Scomp Architectureooiiuiuiiiiiiiiiiiiiiii i 78
6.2.2 Scomp Hardware.......... ... o i 79
6.2.3 Scomp Trusted Operating Program 82
6.2.4 Scomp Kernel Interface Package ...l 83
6.2.5 Scomp APPLCAtIONS vuutuettt et 84
6.2.6 Scomp Evaluation...........o i 84
6.3 Gemini Secure Operating Systemcoiuiiiiniuiiiiiniinenan... 86
6.4 SUIMIMALY « o\ ottt ettt ettt e e e e e e e 89
Securing Commercial Operating SYStemsouvutntentnt it eenann. 91
7.1 Retrofitting Security into a Commercial OSol 91
7.2 History of Retrofitting Commercial OS’s.................ooooiiiiia... 93
73 Commercial Erao 93
7.4 Microkernel Era o o 95
7.5 UNIX Era ..o 97
75 S 0 97
7.5.2 Domain and Type Enforcement. ... 98
7.5.3 Recent UNIX Systemsoevuieieinit e 100
7.6 SUIMIMIALY « .ottt ettt ettt e e e e e e e et 101
Case Study: Solaris Trusted Extensions....... ..., 103

Glenn Faden and Christoph Schuba, Sun Microsystems, Inc.
8.1 Trusted Extensions Access Controlooiiiiiiiiiiiniieannn.n. 104

xii

CONTENTS

8.2 Solaris Compatibility.vueirit i e 105
8.3 Trusted Extensions Mediationo 106
8.4 Process Rights Management (Privileges)coooiiiiiiii ... 108
8.4.1 Privilege Bracketing and Relinquishing............ 109

8.4.2 Controlling Privilege Escalationt 111

8.4.3 Assigned Privileges and Safeguardsol 112

8.5 Role-based Access Control (RBAC)o i 112
8.5.1 RBAC Authorizationsuueuiuiniti s, 112

8.5.2 Rights Profiles 114

8.5.3 Usersand Roleso 114

8.5.4 Converting the Superusertoa Role, 114

8.6 Trusted Extensions Networking oo 115
8.7 Trusted Extensions Multilevel Services........ ..., 116
8.8 Trusted Extensions Administrationo.vuiuiiiinnineneninennnn. 118
8.9 SUMMATY ...t 119
9 Case Study: Building a Secure Operating System for Linux......................... 121
9.1 Linux Security Modules 121
9.1.1 LOSM HIStory ..o 121

9.1.2 LSM Implementationcouiuiininiuiinininiiianannean.n.. 123

9.2 Security-Enhanced Linux i 126
9.2.1 SELinux Reference Monitorcoiiiiiiiiiiiiiiiii .. 126

9.2.2 SELinux Protection Stateooiuiiiiiiiiii i 129

9.2.3 SELinux Labeling State 132

9.2.4 SELinux Transition Stateooiiiiiiiiiiiiiiii . 134

9.2.5 SELinux AdminiStrationoeeetetet et aiaaeaeaenene. 135

9.2.6 SELinux Trusted Programs........... 136

9.2.7 SELinux Security Evaluation......... ...t 137

9.3 SUIMIMALY « ettt ettt e ettt 139

10 Secure Capability SYStemsoouuee ettt e 141

11

12

CONTENTS xiii

10.1 Capability System Fundamentals.......... ... 141
10.2 Capability Security.ouiuinin i 142
10.3 Challenges in Secure Capability Systems, 143
10.3.1 Capabilities and the »-Property... ..., 144
10.3.2 Capabilities and Confinementcoiiiiiiiiiiniiinn... 144
10.3.3 Capabilities and Policy Changes, 145
10.4 Building Secure Capability Systemsc.ocoeiiiiiiiiiii ... 146
10.4.1 Enforcing the x-Property 146
10.4.2 Enforcing Confinement. 147
10.4.3 Revoking Capabilitiesoueeneieiei i 149
10.5 SUMMATIY ..o e 151
Secure Virtual Machine Systems. 153
11.1 Separation Kernels. 155
11.2 VAX VMM Security Kernelo 157
11.2.1 VAX VMM DeSign ... oovvieiii e 158
11.2.2 VAX VMM Evaluationo.ouiuiniii i 160
11.23 VAX VMM Resultot 162
11.3 Security in Other Virtual Machine Systems 163
114 SUMMATY ..o 166
SYStEmM ASSUANCE . . . e ettt ettt ettt e e e e 169
121 Orange Book...... ... i 170
12.2 Common Criteria. . .. vttt ettt ettt ettt et et 173
12.2.1 Common Criteria Concepts.........o.viuiuiiiininiininaniinenan... 174
12.2.2 Common Criteria In Action..........oooiiiiiii i, 176
12,3 SUMMATIY oottt 178
Bibliographyot 179
Biographies 205

Preface

Operating system security forms the foundation of the secure operation of computer systems.
In this book, we define what is required for an operating system to ensure enforcement of system
security goals and evaluate how several operating systems have approached such requirements.

WHAT THIS BOOK IS ABOUT

| Chapter | Topic |
2. Fundamentals Define an Ideal, Secure OS
3. Multics The First OS Designed for Security Goals
4. Ordinary OS’s Why Commercial OS’s Are Not Secure
5. Verifiable Security Define Precise Security Goals
6. Security Kernels Minimize OS’s Trusted Computing Base
7. Secure Commercial OS’s Retrofit Security into Commercial OS’s
8. Solaris Trusted Extensions Case Study || MLS Extension of Solaris OS
9. SELinux Case Study Examine Retrofit of Linux Specifically
10. Capability Systems Ensure Security Goal Enforcement
11. Virtual Machines Identify Necessary Security Mechanisms
12. System Assurance Methodologies to Verify Correct Enforcement

Figure 1: Overview of the Chapters in this book.

In this book, we examine what it takes to build a secure operating system, and explore the major
systems development approaches that have been applied towards building secure operating systems.
This journey has several goals shown in Figure 1. First, we describe the fundamental concepts and
mechanisms for enforcing security and define secure operating systems (Chapter 2). Second, we
examine early work in operating systems to show that it may be possible to build systems that
approach a secure operating system, but that ordinary, commercial operating systems are not secure
fundamentally (Chapters 3 and 4, respectively). We next describe the formal security goals and
corresponding security models proposed for secure operating systems (Chapter 5). We then survey
a variety of approaches applied to the development of secure operating systems (Chapters 6 to 11).
Finally, we conclude with a discussion of system assurance methodologies (Chapter 12).

The first half of the book (Chapters 2 to 5) aims to motivate the challenges of building
a secure operating system. Operating systems security is so complex and broad a subject that we
cannot introduce everything without considering some examples up front. Thus, we start with just

xvi PREFACE

the fundamental concepts and mechanisms necessary to understand the examples. Also, we take the
step of showing what a system designed to the secure operating system definition (i.e., Multics in
Chapter 3) looks like and what insecure operating systems (i.e., UNIX and Windows in Chapter 4)
looks like and why. In Chapter 5, we then describe concrete security goals and how they can be
expressed once the reader has an understanding of what is necessary to secure a system.

The second half of the book surveys the major, distinct approaches to building secure operating
systems in Chapters 6 to 11. Each of the chapters focuses on the features that are most important to
these approaches. As a result, each of these chapters has a different emphasis. For example, Chapter 6
describes security kernel systems where the operating system is minimized and leverages hardware
features and low-level system mechanisms. Thus, this chapter describes the impact of hardware
features and the management of hardware access on our ability to construct effective and flexible
secure operating systems. Chapter 7 summarizes a variety of ways that commercial operating systems
have been extended with security features. Chapters 8 and 9 focus on retrofitting security features on
existing, commercial operating systems, Solaris and Linux, respectively. Glenn Faden and Christoph
Schuba from Sun Microsystems detail the Solaris (TM) Trusted Extensions. In these chapters, the
challenges include modifying the system architecture and policy model to enforce security goals.
Here, we examine adding security to user-level services, and extending security enforcement into
the network. The other chapters examine secure capability systems and how capability semantics are
made secure (Chapter 10) and secure virtual machine systems to examine the impact and challenges
of using virtualization to improve security (Chapter 11).

The book concludes with the chapter on system assurance (Chapter 12). In this chapter, we
discuss the methodologies that have been proposed to verify that a system is truly secure. Assurance
verification is a major requirement of secure operating systems, but it is still at best a semi-formal
process, and in practice an informal process for general-purpose systems.

The contents of this book derive from the work of many people over many years. Building
an operating system is a major project, so it is not surprising that large corporate and/or research
teams are responsible for most of the operating systems in this book. However, several individual
researchers have devoted their careers to operating systems security, so they reappear throughout the
book in various projects advancing our knowledge on the subject. We hope that their efforts inspire
future researchers to tackle the challenges of improving operating systems security.

WHAT THIS BOOKIS NOT ABOUT

As with any book, the scope of investigation is limited and there are many related and supporting
efforts that are not described. Some operating system development approaches and several repre-
sentative operating systems are not detailed in the book. While we attempted to include all broad
approaches to building secure systems, some may not quite fit the categorizations and there are
several systems that have interesting features that could not be covered in depth.

Other operating systems problems appear to be related to security, but are outside the scope of
this book. For example, fault tolerance is the study of how to maintain the correctness of a computation

PREFACE xvii

given the failure of one or more components. Security mechanisms focus on ensuring that security
goals are achieved regardless of the behavior of a process, so fault tolerance would depend on security
mechanisms to be able to resurrect or maintain a computation. The area of survivabilityis also related,
but it involves fault tolerance in the face of catastrophic failures or natural disasters. Its goals also
depend on effective computer security.

There are also several areas of computer science whose advances may benefit operating system
security, but which we omit in this book. For example, recent advances in source code analysis im-
proves the correctness of system implementations by identifying bugs [82, 209, 49] and even being
capable of proving certain properties of small programs, such as device drivers [210, 18]. Further,
programming languages that enable verifiable enforcement of security properties, such as security-
typed languages [219,291], also would seem to be necessary to ensure that all the trusted computing
base’s code enforces the necessary security goals. In general, we believe that improvements in lan-
guages, programming tools for security, and analysis of programs for security are necessary to verify
the requirements of secure operating systems.

Also, a variety of programs also provide security mechanisms. Most notably, these include
databases (e.g., Oracle) and application-level virtual machines (e.g., Java). Such programs are only
relevant to the construction of a secure operating system if they are part of the trusted computing
base. As this is typically not the case, we do not discuss these application-level mechanisms.

Ultimately, we hope that the reader gains a clearer understanding of the challenging problem
of building a secure operating system and an appreciation for the variety of solutions applied over
the years. Many past and current efforts have explored these challenges in a variety of ways. We hope
that the knowledge and experiences of the many people whose work is captured in this book will
serve as a basis for comprehensive and coherent security enforcement in the near future.

Trent Jaeger
The Pennsylvania State University
August 2008

xviii PREFACE

CHAPTER 1

Introduction

Operating systems are the software that provides access to the various hardware resources (e.g., CPU,
memory, and devices) that comprise a computer system as shown in Figure 1.1. Any program that
is run on a computer system has instructions executed by that computer’s CPU, but these programs
may also require the use of other peripheral resources of these complex systems. Consider a program
that allows a user to enter her password. The operating system provides access to the disk device
on which the program is stored, access to device memory to load the program so that it may be
executed, the display device to show the user how to enter her password, and keyboard and mouse
devices for the user to enter her password. Of course, there are now a multitude of such devices that
can be used seamlessly, for the most part, thanks to the function of operating systems.

As shown in Figure 1.1, operating systems run programs in processes. The challenge for an
operating system developer is to permit multiple concurrently executing processes to use these
resources in a manner that preserves the independence of these processes while providing fair sharing
of these resources. Originally, operating systems only permitted one process to be run at a time (e.g.,
batch systems), but as early as 1960, it became apparent that computer productivity would be greatly
enhanced by being able to run multiple processes concurrently [87]. By concurrently, we mean that
while only one process uses a computer’s CPU at a time, multiple other processes may be in various
states of execution at the same time, and the operating system must ensure that these executions are
performed effectively. For example, while the computer waits for a user to enter her password, other
processes may be run and access system devices as well, such as the network. These systems were
originally called #imesharing systems, but they are our default operating systems today.

To build any successful operating system, we identify three major tasks. First, the operating
system must provide various mechanisms that enable high performance use of computer resources.
Operating systems must provide efficient resource mechanisms, such as file systems, memory manage-
ment systems, network protocol stacks, etc., that define how processes use the hardware resources.
Second, it is the operating system’s responsibility to switch among the processes fairly, such that
the user experiences good performance from each process in concert with access to the computer’s
devices. This second problem is one of scheduling access to computer resources. Third, access to
resources should be controlled, such that one process cannot inadvertently or maliciously impact the
execution of another. This third problem is the problem of ensuring the security of all processes run
on the system.

Ensuring the secure execution of all processes depends on the correct implementation of
resource and scheduling mechanisms. First, any correct resource mechanism must provide boundaries
between its objects and ensure that its operations do not interfere with one another. For example, a
file system must not allow a process request to access one file to overwrite the disk space allocated

2 CHAPTER1. INTRODUCTION

Process 1 Process 2 Process n
Program Program Program
Data Data Data

t 7

t 7

\\ Operating System ~

\ Security //
\ [/
¥ Scheduling p
" Resource Mechanisms
/
Merhory Disk Netwdrk Display
ya L mEn
7 .’
7
Y \
p /s \
» A
Memory Disk Network Display
Device Device Device Device .

Figure 1.1: An operating system runs security, scheduling, and resource mechanisms to provide processes with
access to the computer system’s resources (e.g., CPU, memory, and devices).

to another file. Also, file systems must ensure that one write operation is not impacted by the data
being read or written in another operation. Second, scheduling mechanisms must ensure availability
of resources to processes to prevent denial of service attacks. For example, the algorithms applied by
scheduling mechanisms must ensure that all processes are eventually scheduled for execution. These
requirements are fundamental to operating system mechanisms, and are assumed to be provided
in the context of this book. The scope of this book covers the misuse of these mechanisms to
inadvertently or, especially, maliciously impact the execution of another process.

Security becomes an issue because processes in modern computer systems interact in a variety
of ways, and the sharing of data among users is a fundamental use of computer systems. First, the
output of one process may be used by other processes. For example, a programmer uses an editor
program to write a computer program’s source code, compilers and linkers to transform the program

1.1. SECURE OPERATING SYSTEMS 3

code into a form in which it can be executed, and debuggers to view the executing processes image
to find errors in source code. In addition, a major use of computer systems is to share information
with other users. With the ubiquity of Internet-scale sharing mechanisms, such as e-mail, the web,
and instant messaging, users may share anything with anyone in the world. Unfortunately, lots of
people, or at least lots of email addresses, web sites, and network requests, want to share stuff with
you that aims to circumvent operating system security mechanisms and cause your computer to share
additional, unexpected resources. The ease with which malware can be conveyed and the variety of
ways that users and their processes may be tricked into running malware present modern operating
system developers with significant challenges in ensuring the security of their system’s execution.

The challenge in developing operating systems security is to design security mechanisms that
protect process execution and their generated data in an environment with such complex interactions.
Aswe will see, formal security mechanisms that enforce provable security goals have been defined, but
these mechanisms do not account or only partially account for the complexity of practical systems.
As such, the current state of operating systems security takes two forms: (1) constrained systems
that can enforce security goals with a high degree of assurance and (2) general-purpose systems that
can enforce limited security goals with a low to medium degree of assurance. First, several systems
have been developed over the years that have been carefully crafted to ensure correct (i.e., within
some low tolerance for bugs) enforcement of specific security goals. These systems generally support
few applications, and these applications often have limited functionality and lower performance
requirements. That is, in these systems, security is the top priority, and this focus enables the system
developers to write software that approaches the ideal of the formal security mechanisms mentioned
above. Second, the computing community at large has focused on function and flexibility, resulting
in general-purpose, extensible systems that are very difficult to secure. Such systems are crafted to
simplify development and deployment while achieving high performance, and their applications
are built to be feature-rich and easy to use. Such systems present several challenges to security
practitioners, such as insecure interfaces, dependence of security on arbitrary software, complex
interaction with untrusted parties anywhere in the world, etc. But, these systems have defined how
the user community works with computers. As a result, the security community faces a difficult task
for ensuring security goals in such an environment.

However, recent advances are improving both the utility of the constrained systems and the
security of the general-purpose systems. We are encouraged by this movement, which is motivated
by the general need for security in all systems, and this book aims to capture many of the efforts in
building security into operating systems, both constrained and general-purpose systems, with the
aim of enabling broader deployment and use of security function in future operating systems.

1.1 SECURE OPERATING SYSTEMS

The ideal goal of operating system security is the development of a secure operating system. 4 secure
operating system provides security mechanisms that ensure that the system’s security goals are enforced despite
the threats faced by the system. These security mechanisms are designed to provide such a guarantee in

4 CHAPTER1. INTRODUCTION

the context of the resource and scheduling mechanisms. Security goals define the requirements of
secure operation for a system for any processes that it may execute. The security mechanisms must
ensure these goals regardless of the possible ways that the system may be misused (i.e., is threatened)
by attackers.

The term “secure operating system” is both considered an ideal and an oxymoron. Systems
that provide a high degree of assurance in enforcement have been called secure systems, or even
more frequently “trusted” systems 1. However, it is also true that no system of modern complexity is
completely secure. The difficulty of preventing errors in programming and the challenges of trying
to remove such errors means that no system as complex as an operating system can be completely
secure.

Nonetheless, we believe that studying how to build an ideal secure operating system to be useful
in assessing operating systems security. In Chapter 2, we develop a definition of secure operating system
that we will use to assess several operating systems security approaches and specific implementations
of those approaches. While no implementation completely satisfies this ideal definition, its use
identifies the challenges in implementing operating systems that satisfy this ideal in practice. The
aim is multi-fold. First, we want to understand the basic strengths of common security approaches.
Second, we want to discover the challenges inherent to each of these approaches. These challenges
often result in difficult choices in practical application. Third, we want to study the application of
these approaches in practical environments to evaluate the effectiveness of these approaches to satisfy
the ideal in practice. While it appears impractical to build an operating system that satisfies the ideal
definition, we hope that studying these systems and their security approaches against the ideal will
provide insights that enable the development of more effective security mechanisms in the future.

To return to the general definition of a secure operating system from the beginning of this
section, we examine the general requirements of a secure operating system. To build any secure
system requires that we consider how the system achieves its security goals under a set of threats (i.e.,
a threat model) and given a set of software, including the security mechanisms, that must be trusted 2
(i.e., a trust model).

1.2 SECURITY GOALS

A security goal defines the operations that can be executed by a system while still preventing unautho-
rized access. It should be defined at a high-level of abstraction, not unlike the way that an algorithm’s
worst-case complexity prescribes the set of implementations that satisfy that requirement. A secu-
rity goal defines a requirement that the system’s design can satisfy (e.g., the way pseudocode can be
proven to fulfill the complexity requirement) and that a correct implementation must fulfill (e.g.,
the way that an implementation can be proven experimentally to observe the complexity).

IFor example, the first description of criteria to verify that a system implements correct security mechanisms is called the Trusted
Computer System Evaluation Criteria [304].

2We assume that hardware is trusted to behave as expected. Although the hardware devices may have bugs, the trust model that
we will use throughout this book assumes that no such bugs are present.

1.2. SECURITY GOALS 5

Security goals describe how the system implements accesses to system resources that satisfy
the following: secrecy, integrity, and availability. A system access is traditionally stated in terms of
which subjects (e.g., processes and users) can perform which operations (e.g., read and write) on
which objects (e.g., files and sockets). Secrecy requirements limit the objects that individual subjects
can read because objects may contain secrets that not all subjects are permitted to know. Integrity
requirements limit the objects that subjects can wrife because objects may contain information that
other subjects depend on for their correct operation. Some subjects may not be trusted to modify those
objects. Availability requirements limit the system resources (e.g., storage and CPU) that subjects
may consume because they may exhaust these resources. Much of the focus in secure operating systems
is on secrecy and integrity requirements, although availability may indirectly impact these goals as
well.

The security community has identified a variety of different security goals. Some security
goals are defined in terms of security requirements (i.e., secrecy and integrity), but others are defined
in terms of function, in particular ways to limit function to improve security. An example of a
goal defined in terms of security requirements is the simple-security property of the Bell-LaPadula
model [23]. This goal states that a process cannot read an object whose secrecy classification is higher
than the process’s. This goal limits operations based on a security requirement, secrecy. An example
of an functional security goal is the principle of least privilege [265], which limits a process to only
the set of operations necessary for its execution. This goal is functional because it does not ensure
that the secrecy and/or integrity of a system is enforced, but it encourages functional restrictions that
may prevent some attacks. However, we cannot prove the absence of a vulnerability using functional
security goals. We discuss this topic in detail in Chapter 5.

The task of the secure operating system developer is to define security goals for which the
security of the system can be verified, so functional goals are insufficient. On the other hand, secrecy
and integrity goals prevent function in favor of security, so they may be too restrictive for some
production software. In the past, operating systems that enforced secrecy and integrity goals (i.e.,
the constrained systems above) were not widely used because they precluded the execution of too
many applications (or simply lacked popular applications). Emerging technology, such as virtual
machine technology (see Chapter 11), enables multiple, commercial software systems to be run in
an isolated manner on the same hardware. Thus, software that used to be run on the same system
can be run in separate, isolated virtual systems. It remains to be seen whether such isolation can
be leveraged to improve system security effectively. Also, several general-purpose operating systems
are now capable of expressing and enforcing security goals. Whether these general-purpose systems
will be capable of implementing security goals or providing sufficient assurance for enforcing such
goals is unclear. However, in either case, security goals must be defined and a practical approach for
enforcing such goals, that enables the execution of most popular software in reasonable ways, must

be identified.

6 CHAPTER 1. INTRODUCTION
1.3 TRUSTMODEL

A system’s trust model defines the set of software and data upon which the system depends for correct
enforcement of system security goals. For an operating system, its trust model is synonymous with
the system’s zrusted computing base (TCB).

Ideally, a system TCB should consist of the minimal amount of software necessary to enforce
the security goals correctly. The software that must be trusted includes the software that defines the
security goals and the software that enforces the security goals (i.e., the operating system’s security
mechanism). Further, software that bootstraps this software must also be trusted. Thus, an ideal
TCB would consist of a bootstrapping mechanism that enables the security goals to be loaded and
subsequently enforced for lifetime of the system.

In practice, a system TCB consists of a wide variety of software. Fundamentally, the en-
forcement mechanism is run within the operating system. As there are no protection boundaries
between operating system functions (i.e., in the typical case of a monolithic operating system), the
enforcement mechanism must trust all the operating system code, so it is part of the TCB.

Further, a variety of other software running outside the operating system must also be trusted.
For example, the operating system depends on a variety of programs to authenticate the identity of
users (e.g., Login and SSH). Such programs must be trusted because correct enforcement of security
goals depends on correct identification of users. Also, there are several services that the system must
trust to ensure correct enforcement of security goals. For example, windowing systems, such as the
X Window System [345], perform operations on behalf of all processes running on the operating
system, and these systems provide mechanisms for sharing that may violate the system’s security
goals (e.g., cut-and-paste from one application to another) [85]. As a result, the X Window Systems
and a variety of other software must be added to the system’s TCB.

The secure operating system developer must prove that their systems have a viable trust model.
This requires that: (1) the system TCB must mediate all security-sensitive operations; (2) verification
of the correctness of the TCB software and its data; and (3) verification that the software’s execution
cannot be tampered by processes outside the TCB. First, identifying the TCB software itself is a
nontrivial task for reasons discussed above. Second, verifying the correctness of TCB software is
a complex task. For general-purpose systems, the amount of TCB software outside the operating
system is greater than the operating system software that is impractical to verify formally. The level
of trust in TCB software can vary from software that is formally-verified (partially), fully-tested, and
reviewed to that which the user community trusts to perform its appointed tasks. While the former
is greatly preferred, the latter is often the case. Third, the system must protect the TCB software and
its data from modification by processes outside the TCB. That is, the integrity of the TCB must be
protected from the threats to the system, described below. Otherwise, this software can be tampered,
and is no longer trustworthy.

1.4. THREAT MODEL 7
1.4 THREAT MODEL

A threat model defines a set of operations that an aztacker may use to compromise a system. In this threat
model, we assume a powerful attacker who is capable of injecting operations from the network and
may be in control of some of the running software on the system (i.e., outside the trusted computing
base). Further, we presume that the attacker is actively working to violate the system security goals.
If an attacker is able to find a vulnerability in the system that provides access to secret information
(i.e., violate secrecy goals) or permits the modification of information that subjects depend on (i.e.,
violate integrity goals), then the attacker is said to have compromised the system.

Since the attacker is actively working to violate the system security goals, we must assume
that the attacker may try any and all operations that are permitted to the attacker. For example, if an
attacker can only access the system via the network, then the attacker may try to send any operation
to any processes that provide network access. Further, if an attacker is in control of a process running
on the system, then the attacker will try any means available to that process to compromise system
security goals.

This threat model exposes a fundamental weakness in commercial operating systems (e.g.,
UNIX and Windows); they assume that all software running on behalf of a subject is trusted by that
subject. For example, a subject may run a word processor and an email client, and in commercial
systems these processes are trusted to behave as the user would. However, in this threat model, both
of these processes may actually be under the control of an attacker (e.g., via a document macro virus
or via a malicious script or email attachment). Thus, a secure operating system cannot trust processes
outside of the TCB to behave as expected. While this may seem obvious, commercial systems trust
any user process to manage the access of that user’s data (e.g., to change access rights to a user’s files
via chmod in a UNIX system). This can result in the leakage of that user’s secrets and the modification
of data that the user depends on.

The task of a secure operating system developer is to protect the TCB from the types of
threats described above. Protecting the TCB ensures that the system security goals will always
be enforced regardless of the behavior of user processes. Since user processes are untrusted, we
cannot depend on them, but we can protect them from threats. For example, secure operating
system can prevent a user process with access to secret data from leaking that data, by limiting the
interactions of that process. However, protecting the TCB is more difficult because it interacts with
a variety of untrusted processes. A secure operating system developer must identify such threats,
assess their impact on system security, and provide effective countermeasures for such threats. For
example, a trusted computing base component that processes network requests must identify where
such untrusted requests are received from the network, determine how such threats can impact the
component’s behavior, and provide countermeasures, such as limiting the possible commands and
inputs, to protect the component. The secure operating system developer must ensure that all the
components of the trusted computing base prevent such threats correctly.

8 CHAPTER 1. INTRODUCTION
1.5 SUMMARY

While building a truly secure operating system may be infeasible, operating system security will
improve immensely if security becomes a focus. To do so requires that operating systems be designed
to enforce security goals, provide a clearly-identified trusted computing base that defines a trust
model, define a threat model for the trusted computing base, and ensure protection of the trusted

computing base under that model.

CHAPTER 2

Access Control Fundamentals

An access enforcement mechanism authorizes requests (e.g., system calls) from multiple subjects (e.g.,
users, processes, etc.) to perform gperations (e.g., read, write, etc.) on objects (e.g., files, sockets, etc.).
An operating system provides an access enforcement mechanism. In this chapter, we define the
fundamental concepts of access control: a profection system that defines the access control specifi-
cation and a reference monitor that is the system’s access enforcement mechanism that enforces this
specification. Based on these concepts, we provide an ideal definition for a secure operating system.

We use that definition to evaluate the operating systems security of the various systems examined
in this book.

2.1 PROTECTION SYSTEM

The security requirements of a operating system are defined in its prozection system.

Definition 2.1. A protection system consists of a protection state, which describes the operations that
system subjects can perform on system objects, and a set of protection state operations, which enable
modification of that state.

A protection system enables the definition and management of a protection state. A protection
state consists of the specific system subjects, the specific system objects, and the operations that those
subjects can perform on those objects. A protection system also defines profection state operations that
enable a protection state to be modified. For example, protection state operations are necessary to
add new system subjects or new system objects to the protection state.

2.1.1 LAMPSON’S ACCESS MATRIX

Lampson defined the idea that a protection state is represented by an access matrix, in general, [176].

Definition 2.2. An access matrix consists of a set of subjects s € S, a set of objects 0 € O, a set of
operations op € O P,and a function ops(s, 0) € O P,which determines the operations that subject
s can perform on object 0. The function ops (s, 0) is said to return a set of operations corresponding
to cell (s, 0).

Figure 2.1 shows an access matrix. The matrix is a two-dimensional representation where the
set of subjects form one axis and the set of objects for the other axis. The cells of the access matrix
store the operations that the corresponding subject can perform on the corresponding object. For
example, subject Process 1 can perform read and write operations on object File 2.

10 CHAPTER2. ACCESS CONTROL FUNDAMENTALS

I File1 File 2 File 3 Process1 Process 2
Process 1 || Read | Read, Write | Read, Write Read -
Process 2 - Read Read, Write - Read

Figure 2.1: Lampson’s Access Matrix

If the subjects correspond to processes and the objects correspond to files, then we need
protection state operations to update the protection state as new files and processes are created. For
example, when a new file is created, at least the creating process should gain access to the file. In
this case, a protection state operation create_file(process, file) would add a new column
for the new file and add read and write operations to the cell (process, file).

Lampson’s access matrix model also defines operations that determine which subjects can
modify cells. For example, Lampson defined an own operation that defines ownership operations
for the associated object. When a subject is permitted for the own operation for an object o, that
subject can modify the other cells associated with that object 0. Lampson also explored delegation
of ownership operations to other subjects, so others may manage the distribution of permissions.

The access matrix is used to define the protection domain of a process.

Definition 2.3. A protection domain specifies the set of resources (objects) that a process can access
and the operations that the process may use to access such resources.

By examining the rows in the access matrix, one can see all the operations that a subject is
authorized to perform on system resources. This determines what information could be read and
modified by a processes running on behalf of that subject. For a secure operating system, we will
want to ensure that the protection domain of each process satisfies system security goals (e.g., secrecy
and integrity).

A process at any time is associated with one or more subjects that define its protection domain.
That is, the operations that it is authorized to perform are specified by one or more subjects. Sys-
tems that we use today, see Chapter 4, compose protection domains from a combination of subjects,
including users, their groups, aliases, and ad hoc permissions. However, protection domains can
also be constructed from an intersection of the associated subjects (e.g., Windows 2000 Restricted
Contexts [303]). The reason to use an intersection of subjects’ permissions is to restrict the protec-
tion domain to permissions shared by all, rather than giving the protection domain subjects extra
permissions that they would not normally possess.

Because the access matrix would be a sparse data structure in practice (i.e., most of the cells
would not have any operations), other representations of protection states are used in practice. One
representation stores the protection state using individual object columns, describing which subjects
have access to a particular object. This representation is called an access control list or ACL. The other
representation stores the other dimension of the access matrix, the subject rows. In this case, the

2.1. PROTECTION SYSTEM 11

objects that a particular subject can access are stored. This representation is called a capability list or
C-List.

There are advantages and disadvantages to both the C-List and ACL representations of
protection states. For the ACL approach, the set of subjects and the operations that they can perform
are stored with the objects, making it easy to tell which subjects can access an object at any time.
Administration of permissions seems to be more intuitive, although we are not aware of any studies
to this effect. C-Lists store the set of objects and operations that can be performed on them are
stored with the subject, making it easy to identify a process’s protection domain. The systems in use
today, see Chapter 4, use ACL representations, but there are several systems that use C-Lists, as
described in Chapter 10.

2.1.2 MANDATORY PROTECTION SYSTEMS

This access matrix model presents a problem for secure systems: untrusted processes can tamper with
the protection system. Using protection state operations, untrusted user processes can modify the
access matrix by adding new subjects, objects, or operations assigned to cells. Consider Figure 2.1.
Suppose Process 1 has ownership over File 1.It can then grant any other process read or write
(or potentially even ownership) access over File 1. A protection system that permits untrusted
processes to modify the protection state is called a discretionary access control (DAC) system. This is
because the protection state is at the discretion of the users and any untrusted processes that they
may execute.

The problem of ensuring that particular protection state and all possible future protection states
derivable from this state will not provide an unauthorized access is called the safery problem [130] 1.
It was found that this problem is undecidable for protection systems with compound protection state
operations, such as for create_file above which both adds a file column and adds the operations
to the owner’s cell. As a result, it is not possible, in general, to verify that a protection state in such a
system will be secure (i.e., satisfy security goals) in the future. To a secure operating system designer,
such a protection system cannot be used because it is not tamperproof; an untrusted process can
modify the protection state, and hence the security goals, enforced by the system.

We say that the protection system defined in Definition 2.1 aims to enforce the requirement
of protection: one process is protected from the operations of another only if both processes behave
benignly. If no user process is malicious, then with some degree of certainly, the protection state will
still describe the true security goals of the system, even after several operations have modified the
protection state. Suppose that a File 1 in Figure 2.1 stores a secret value, such as a private key in
a public key pair [257], and File 2 stores a high integrity value like the corresponding public key.
If Process 1 is non-malicious, then it is unlikely that it will leak the private key to Process 2
through eitherFile 1or File2 orby changing the Process 2’s permissionstoFile 1.However,
if Process 1 is malicious, it is quite likely that the private key will be leaked. To ensure that the

LFor a detailed analysis of the safety problem see Bishop’s textbook [29].

12 CHAPTER2. ACCESS CONTROL FUNDAMENTALS

secrecy of File 1 is enforced, all processes that have access to that file must not be able to leak the
file through the permissions available to that process, including via protection state operations.

Similarly, the access matrix protection system does not ensure the integrity of the public key
file File 2, either. In general, an attacker must not be able to modify any user’s public key because
this could enable the attacker to replace this public key with one whose private key is known to the
attacker. Then, the attacker could masquerade as the user to others. Thus, the integrity compromise
of File 2also could have security ramifications. Clearly, the access matrix protection system cannot
protect File 2 from a malicious Process 1, as it has write access to File 2. Further, a malicious
Process 2 could enhance this attack by enabling the attacker to provide a particular value for the
public key. Also, even if Process 1 is not malicious, a malicious Process 2 may be able to trick
Process 1 into modifying File 2 in a malicious way depending on the interface and possible
vulnerabilities in Process 1. Buffer overflow vulnerabilities are used in this manner for a malicious
process (e.g., Process 2) to take over a vulnerable process (e.g.,Process 1) and use its permissions
in an unauthorized manner.

Unfortunately, the protection approach underlying the access matrix protection state is naive
in today’s world of malware and connectivity to ubiquitous network attackers. We see in Chapter 4
that today’s computing systems are based on this protection approach, so they cannot be ensure
enforcement of secrecy and integrity requirements. Protection systems that can enforce secrecy and
integrity goals must enforce the requirement of security: where a system’s security mechanisms can enforce
system security goals even when any of the software outside the trusted computing base may be malicious.
In such a system, the protection state must be defined based on the accurate identification of the
secrecy and integrity of user data and processes, and no untrusted processes may be allowed to perform
protection state operations. Thus, the dependence on potentially malicious software is removed, and
a concrete basis for the enforcement of secrecy and integrity requirements is possible.

This motivates the definition of a mandatory protection system below.

Definition 2.4. A mandatory protection system is a protection system that can only be modified by
trusted administrators via trusted software, consisting of the following state representations:

* A mandatory protection state is a protection state where subjects and objects are represented by
labels where the state describes the operations that subject labels may take upon object labels;

* A labeling state for mapping processes and system resource objects to labels;

* A transition state that describes the legal ways that processes and system resource objects may

be relabeled.

For secure operating systems, the subjects and objects in an access matrix are represented by
system-defined Jabels. A label is simply an abstract identifier—the assignment of permissions to a
label defines its security semantics. Labels are tamperproof because: (1) the set of labels is defined
by trusted administrators using trusted software and (2) the set of labels is immutable. Trusted

2.1. PROTECTION SYSTEM 13

administrators define the access matrix’s labels and set the operations that subjects of particular
labels can perform on objects of particular labels. Such protection systems are mandatory access
control (MAC) systems because the protection system is immutable to untrusted processes 2. Since
the set of labels cannot be changed by the execution of user processes, we can prove the security
goals enforced by the access matrix and rely on these goals being enforced throughout the system’s
execution.

Of course, just because the set of labels are fixed does not mean that the set of processes and
files are fixed. Secure operating systems must be able to attach labels to dynamically created subjects
and objects and even enable label transitions.

A labeling state assigns labels to new subjects and objects. Figure 2.2 shows that processes
and files are associated with labels in a fixed protection state. When newfile is created, it must be
assigned one of the object labels in the protection state. In Figure 2.2, it is assigned the secret label.
Likewise, the process newproc is also labeled as unclassified. Since the access matrix does not
permit unclassified subjects with access to secret objects, newproc cannot access newfile. As
for the protection state, in a secure operating system, the labeling state must be defined by trusted
administrators and immutable during system execution.

A transition state enables a secure operating system to change the label of a process or a system
resource. For a process, a label transition changes the permissions available to the process (i.e., its
protection domain), so such transitions are called protection domain transitions for processes. As an
example where a protection domain transition may be necessary, consider when a process executes
a different program. When a process performs an execve system call the process image (i.e., code
and data) of the program is replaced with that of the file being executed. Since a different program
is run as a result of the execve system call, the label associated with that process may need to be
changed as well to indicate the requisite permissions or trust in the new image.

A transition state may also change the label of a system resource. A label transition for a file
(i-e., object or resource) changes the accessibility of the file to protection domains. For example,
consider the file acct that is labeled trusted in Figure 2.2. If this file is modified by a process with
anuntrusted label, such as other, a transition state may change its label to untrusted as well. The
Low-Water Mark (LOMAC) policy defines such kind of transitions [101, 27] (see Chapter 5). An
alternative would be to change the protection state to prohibit untrusted processes from modifying
trusted files, which is the case for other policies. As for the protection state and labeling state,
in a secure operating system, the transition state must be defined by trusted administrators and
immutable during system execution.

2 Historically, the term mandatory access control has been used to define a particular family of access control models, lattice-based
access control models [271]. Our use of the terms mandatory protection system and mandatory access control system are meant to
include historical MAC models, but our definition aims to be more general. We intend that these terms imply models whose
sets of labels are immutable, including these MAC models and others, which are administered only by trusted subjects, including
trusted software and administrators. We discuss the types of access control models that have been used in MAC systems in
Chapter 5.

14 CHAPTER2. ACCESS CONTROL FUNDAMENTALS

. File:
Labeling (newfile)
State

‘ 4t
\ \ v

Transition
e State

\ secret unclassified trusted untrusted Protection

State
\ read read read
\ secret write

Process: A\ unclassified regd read read e
newproc write 4

read »

trusted write write write

Process: read read read
other untrusted write write write

\
AY
AN
N
N

Figure 2.2: A Mandatory Protection System: The protection state is defined in terms of labels and is

immutable. The immutable /abeling state and transition state enable the definition and management of
labels for system subjects and objects.

2.2 REFERENCE MONITOR

A reference monitor is the classical access enforcement mechanism [11]. Figure 2.3 presents a general-
ized view of a reference monitor. It takes a request as input, and returns a binary response indicating
whether the request is authorized by the reference monitor’s access control policy. We identify three
distinct components of a reference monitor: (1) its interface; (2) its authorization module; and (3) its
policy store. The interface defines where the authorization module needs to be invoked to perform
an authorization query to the protection state, a labeling query to the labeling state, or a transition
query to the transition state. The authorization module determines the exact queries that are to be

made to the policy store. The policy store responds to authorization, labeling, and transition queries
based on the protection system that it maintains.

Reference Monitor Interface 'The reference monitor interface defines where protection system queries
are made to the reference monitor. In particular, it ensures that all security-sensitive operations
are authorized by the access enforcement mechanism. By a security-sensitive operation, we mean an
operation on a particular object (e.g., file, socket, etc.) whose execution may violate the system’s security
requirements. For example, an operating system implements file access operations that would allow
one user to read another’s secret data (e.g., private key) if not controlled by the operating system.
Labeling and transitions may be executed for authorized operations.

2.2. REFERENCE MONITOR 15

Process Process Process Process
EEE
system call system call system call system call
\ 4 \ 4 \ Y
7 4 > N //, ~ ~

\ H \
/) / Operating System
AN 1 _ - -

-
-
-

Reference Monitor Interface Hooks

Reference Monitor

Authorization Module

Policy Store
Protection Labeling Transition
State State State

Figure 2.3: A reference monitor is a component that authorizes access requests at the reference monitor
interface defined by individual Aooks that invoke the reference monitor’s authorization module to submit
an authorization query to the policy store. The policy store answers authorization queries, labeling queries,
and label transition queries using the corresponding states.

The reference monitor interface determines where access enforcement is necessary and the
information that the reference monitor needs to authorize that request. In a traditional UNIX file
open request, the calling process passes a file path and a set of operations. The reference monitor
interface must determine what to authorize (e.g., directory searches, link traversals, and finally
the operations for the target file’s inode), where to perform such authorizations (e.g., authorize
a directory search for each directory inode in the file path), and what information to pass to the
reference monitor to authorize the open (e.g., an inode reference). Incorrect interface design may
allow an unauthorized process to gain access to a file.

Authorization Module The core of the reference monitor is its authorization module. The autho-
rization module takes interface’s inputs (e.g., process identity, object references, and system call

name), and converts these to a query for the reference monitor’s policy store. The challenge for the

16 CHAPTER2. ACCESS CONTROL FUNDAMENTALS

authorization module is to map the process identity to a subject label, the object references to an
object label, and determine the actual operations to authorize (e.g., there may be multiple oper-
ations per interface). The protection system determines the choices of labels and operations, but
the authorization module must develop a means for performing the mapping to execute the “right”
query.

For the open request above, the module responds to the individual authorization requests from
the interface separately. For example, when a directory in the file path is requested, the authorization
module builds an authorization query. The module must obtain the label of the subject responsible
for the request (i.e., requesting process), the label of the specified directory object (i.e., the directory
inode), and the protection state operations implied the request (e.g., read or search the directory).
In some cases, if the request is authorized by the policy store, the module may make subsequent
requests to the policy store for labeling (i.e., if a new object were created) or label transitions.

Policy Store The policy store is a database for the protection state, labeling state, and transition
state. An authorization query from the authorization module is answered by the policy store.
These queries are of the form {subject_label, object_label, operation_set} and re-
turn a binary authorization reply. Labeling queries are of the form {subject_label, resource}
where the combination of the subject and, optionally, some system resource attributes deter-
mine the resultant resource label returned by the query. For transitions, queries include the
{subject_label, object_label, operation, resource}, where the policy store deter-
mines the resultant label of the resource. The resource may be either be an active entity (e.g., a
process) or a passive object (e.g., a file). Some systems also execute queries to authorize transitions
as well.

2.3 SECURE OPERATING SYSTEM DEFINITION

We define a secure operating system as a system with a reference monitor access enforcement mecha-
nism that satisfies the requirements below when it enforces a mandatory protection system.

Definition2.5. A secure operating system is an operating system where its access enforcement satisfies
the reference monitor concept [11].

Definition 2.6. 'The reference monitor concept defines the necessary and sufficient properties of any
system that securely enforces a mandatory protection system, consisting of three guarantees:

1. Complete Mediation: The system ensures that its access enforcement mechanism mediates
all security-sensitive operations.

2. Tamperproof: The system ensures that its access enforcement mechanism, including its pro-
tection system, cannot be modified by untrusted processes.

2.3. SECURE OPERATING SYSTEM DEFINITION 17

3. Verifiable: The access enforcement mechanism, including its protection system, “must be small
enough to be subject to analysis and tests, the completeness of which can be assured” [11].
That is, we must be able to prove that the system enforces its security goals correctly.

The reference monitor concept defines the necessary and sufficient requirements for access
control in a secure operating system [145]. First, a secure operating system must provide complete
mediation of all security-sensitive operations. If all these operations are not mediated, then a security
requirement may not be enforced (i.e., a secret may be leaked or trusted data may be modified by an
untrusted process). Second, the reference monitor system, which includes its implementation and the
protection system, must all be tamperproof. Otherwise, an attacker could modify the enforcement
function of the system, again circumventing its security. Finally, the reference monitor system, which
includes its implementation and the protection system, must be small enough to verify the correct
enforcement of system security goals. Otherwise, there may be errors in the implementation or the
security policies that may result in vulnerabilities.

A challenge for the designer of secure operating system is how to precisely achieve these
requirements.

Complete Mediation Complete mediation of security-sensitive operations requires that all program
paths that lead to a security-sensitive operation be mediated by the reference monitor interface.
The trivial approach is to mediate all system calls, as these are the entry points from user-level
processes. While this would indeed mediate all operations, it is often insufficient. For example, some
system calls implement multiple distinct operations. The open system call involves opening a set of
directory objects, and perhaps file links, before reaching the target file. The subject may have different
permission for each of these objects, so several, different authorization queries would be necessary.
Also, the directory, link, and file objects are not available at the system call interface, so the interface
would have to compute them, which would result in redundant processing (i.e., since the operating
system already maps file names to such objects). But worst of all, the mapping between the file name
passed into an open system call and the directory, link, and file objects may be changed between
the start of the system call and the actual open operation (i.e., by a well-timed rename operation).
This is called a time-of-check-to-time-of-use (TOCTTOU) attack [30], and is inherent to the open
system call.

As a result, reference monitors require interfaces that are embedded in the operating system
itself in order to enforce complete mediation correctly. For example, the Linux Security Modules
(LSM) framework [342] (see Chapter 9), which defines the mediation interface for reference moni-
tors in Linux does not authorize the open system call, but rather each individual directory, link, and
file open after the system object reference (i.e., the inode) has been retrieved. For LSM, tools have
been built to find bugs in the complete mediation demanded of the interface [351, 149], but it is
difficult to verify that a reference monitor interface is correct.

18 CHAPTER2. ACCESS CONTROL FUNDAMENTALS

Tamperproof Verifying that a reference monitor is tamperproof requires verifying that all the refer-
ence monitor components, the reference monitor interface, authorization module, and policy store,
cannot be modified by processes outside the system’s zrusted computing base (TCB) (see Chapter 1).
This also implies that the TCB itself is high integrity, so we ultimately must verify that the entire
TCB cannot be modified by processes outside the TCB. Thus, we must identify all the ways that
the TCB can be modified, and verify that no untrusted processes (i.e., those outside the TCB) can
perform such modifications. First, this involves verifying that the TCB binaries and data files are
unmodified. This can be accomplished by a multiple means, such as file system protections and
binary verification programs. Note that the verification programs themselves (e.g., Tripwire [169])
must also be protected. Second, the running TCB processes must be protected from modification by
untrusted processes. Again, system access control policy may ensure that untrusted processes cannot
communicate with TCB processes, but for TCB processes that may accept inputs from untrusted
processes, they must protect themselves from malicious inputs, such as buffer overflows [232, 318],
format string attacks [305], and return-to-libc [337]. While defenses for runtime vulnerabilities are
fundamental to building tamperproof code, we do not focus on these software engineering defenses
in this book. Some buffer overflow defenses, such as StackGuard [64] and stack randomization [121],
are now standard in compilers and operating systems, respectively.

Second, the policy store contains the mandatory protection system which is a MAC system.
That is, only trusted administrators are allowed to modify its states. Unfortunately, access control
policy is deployment-specific, so administrators often will need to modify these states. While admin-
istrators may be trusted they may also use untrusted software (e.g., their favorite editor). The system
permissions must ensure that no untrusted software is used to modify the mandatory protection
system.

Tamperproofing will add a variety of specific security requirements to the system. These
requirements must be included in the verification below.

Verifiable Finally, we must be able to verify that a reference monitor and its policy really enforce
the system security goals. This requires verifying the correctness of the interface, module, and policy
store software, and evaluating whether the mandatory protection system truly enforces the intended
goals. First, verifying the correctness of software automatically is an unsolved problem. Tools have
been developed that enable proofs of correctness for small amounts of code and limited properties
(e.g., [18]), but the problem of verifying a large set of correctness properties for large codebases
appears intractable. In practice, correctness is evaluated with a combination of formal and manual
techniques which adds significant cost and time to development. As a result, few systems have been
developed with the aim of proving correctness, and any comprehensive correctness claims are based
on some informal analysis (i.e., they have some risk of being wrong).

Second, testing that the mandatory protection system truly enforces the intended security goals
appears tractable, but in practice, the complexity of systems makes the task difficult. Because the
protection, labeling, and transition states are immutable, the security of these states can be assessed.

2.4. ASSESSMENT CRITERIA 19

For protection states, some policy models, such as Bell-LaPadula [23] and Biba [27], specify security
goals directly (see Chapter 5), but these are idealizations of practical systems. In practice, a variety
processes are trusted to behave correctly, expanding the TCB yet further, and introducing risk that
the security goals cannot be enforced. For operating systems that have fine-grained access control
models (i.e., lots of unique subjects and objects), specifying and verifying that the policy enforces
the intended security goals is also possible, although the task is significantly more complex.

For the labeling and transition states, we must consider the security impact of the changes
that these states enable. For example, any labeling state must ensure that any label associated with a
system resource does not enable the leakage of data or the modification of unauthorized data. For
example, if a secret process is allowed to create public objects (i.e., those readable by any process),
then data may be leaked. The labeling of some objects, such as data imported from external media,
presents risk of incorrect labeling as well.

Likewise, transition states must ensure that the security goals of the system are upheld as
processes and resources are relabeled. A challenge is that transition states are designed to enable
privilege escalation. For example, when a user wants to update their password, they use an unprivileged
process (e.g., a shell) to invoke privileged code (e.g., the passwd program) to be run with the
privileged code’s label (e.g., UNIX root which provides full system access). However, such transitions
may be insecure if the unprivileged process can control the execution of the privileged code. For
example, unprivileged processes may be able to control a variety of inputs to privileged programs,
including libraries, environment variables, and input arguments. Thus, to verify that the system’s
security goals are enforced by the protection system, we must examine more than just the protection
system’s states.

2.4 ASSESSMENT CRITERIA

For each system that we examine, we must specify precisely how each system enforces the reference
monitor guarantees in order to determine how an operating system aims to satisfy these guarantees.
In doing this, it turns out to be easy to expose an insecure operating system, but it is difficult to define
how close to “secure” an operating system is. Based on the analysis of reference monitor guarantees
above, we list a set of dimensions that we use to evaluate the extent to which an operating system
satisfies these reference monitor guarantees.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

In this answer, we describe how the system ensures that the subjects, objects, and operations
being mediated are the ones that will be used in the security-sensitive operation. This can be a
problem for some approaches (e.g., system call interposition [3, 6,44, 84,102,115,171,250]),in
which the reference monitor does not have access to the objects used by the operating system.
In some of these cases, a race condition may enable an attacker to cause a different object to
be accessed than the one authorized by reference monitor [30].

20 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

2.

Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

We describe how the mediation interface described above mediates all security-sensitive op-
erations.

. Complete Mediation: How do we verify that the reference monitor interface provides com-

plete mediation?

We describe any formal means for verifying the complete mediation described above.

. Tamperproof: How does the system protect the reference monitor, including its protection

system, from modification?

In modern systems, the reference monitor and its protection system are protected by the
operating system in which they run. The operating system must ensure that the reference
monitor cannot be modified and the protection state can only be modified by trusted computing
base processes.

. Tamperproof: Does the system’s protection system protect the trusted computing base pro-

grams?

The reference monitor’s tamperproofing depends on the integrity of the entire trusted com-
perp g dep g
puting base, so we examine how the trusted computing base is defined and protected.

. Verifiable: What is basis for the correctness of the system’s trusted computing base?

We outline the approach that is used to justify the correctness of the implementation of all
trusted computing base code.

. Verifiable: Does the protection system enforce the system’s security goals?

Finally, we examine how the system’s policy correctly justifies the enforcement of the system’s
security goals. The security goals should be based on the models in Chapter 5, such that it is
possible to test the access control policy formally.

While this is undoubtedly an incomplete list of questions to assess the security of a system,

we aim to provide some insight into why some operating systems cannot be secure and provide some

means to compare “secure” operating systems, even ones built via different approaches.

We briefly list some alternative approaches for further examination. An alternative definition

for penetration-resistant systems by Gupta and Gligor [122, 123] requires tamperproofing and com-

plete mediation, but defines “simple enough to verify” in terms of: (1) consistency of system global

variables and objects; (2) timing consistency of condition checks; and (3) elimination of undesirable

2.5. SUMMARY 21

system/user dependencies. We consider such goals in the definition of the tamperproofing require-
ments (particularly, number three) and the security goals that we aim to verify, although we do not
assess the impact of timing in this book in detail. Also, there has been a significant amount of work on
formal verification tools as applied to formal specifications of security for assessing the information
flows among system states [79, 172, 331]. For example, Ina Test and Ina Go are symbolic execution
tools that interpret the formal specifications of a system and its initial conditions, and compare the
resultant states to the expected conditions of those states. As the formal specification of systems and
expectations are complex, such tools have not achieved mainstream usage, but remains an area of
exploration for determining practical methods for verifying systems (e.g., [134, 132]).

2.5 SUMMARY

In this chapter, we define the fundamental terminology that we will use in this book to describe the
secure operating system requirements.

First, the concept of a protection system defines the system component that enforces the access
control in an operating system. A protection system consists of a protection state which describes
the operations that are permitted in a system and protection state operations which describe how
the protection state may be changed. From this, we can determine the operations that individual
processes can perform.

Second, we identify that today’s commercial operating systems use protection systems that fail
to truly enforce security goals. We define a mandatory protection system which will enforce security in
the face of attacks.

Third, we outline the architecture of an access enforcement mechanism that would be imple-
mented by a protection system. Such enforcement mechanisms can enforce a mandatory protection
state correctly if they satisfy the guarantees required of the reference monitor concept.

Finally, we define requirements for a secure operating system based on a reference monitor
and mandatory protection system. We then describe how we aim to evaluate the operating systems
described in this book against those secure operating system requirements.

Such a mandatory protection system and reference monitor within a mediating, tamperproof,
and verifiable TCB constitute the #rust model of a system, as described in Chapter 1. This trust
model provides the basis for the enforcement of system security goals. Such a trust model addresses
the system zhreat model based on achievement of the reference monitor concept. Because the ref-
erence monitor mediates all security-sensitive operations, it and its mandatory protection state are
tamperproof, and both are verified to enforce system security goals, then is it possible to have a
comprehensive security model that enforces a system’s security goals.

Although today’s commercial operating systems fail to achieve these requirements in many
ways, a variety of operating systems designs in the past and that are currently available are working
toward meeting these requirements. Because of the interest in secure operating systems and the
variety of efforts being undertaken, it is more important than ever to determine how an operating

22 CHAPTER 2. ACCESS CONTROL FUNDAMENTALS

system design aims to achieve these requirements and whether the design approaches will actually
satisfy these secure operating system requirements.

23

CHAPTER 3

Multics

In this chapter, we examine the first modern operating system, the Multics system [62]. Multics
was a large, long-term operating system project where many of our fundamental operating systems
concepts, including those for secure operating systems, were invented. For operating systems, these
concepts include segmented and virtual memory, shared memory multiprocessors, hierarchical file
systems, and online reconfiguration among others. For secure operating systems, the ideas of the
reference monitor, protection systems, protection domain transitions, and multilevel security policies
(see Chapter 5), among others, were also pioneered in Multics.

We review the history of the Multics operating system, its security features, and then evaluate
how Multics satisfies the requirements of a secure operating system developed in Chapter 2. The
Moultics history has a number of interesting twists and turns that are relevant to those considering the
development or use of secure operating systems today. From a technology perspective, the Multics
system implementation demonstrates, often more extensively than many of the other secure operating
systems that we will study, the secure operating system definition in Chapter 2. In subsequent
chapters, we will often compare other operating system implementations to Multics.

3.1 MULTICS HISTORY

The Multics project began in 1963 with the aim of building a comprehensive, timesharing operating
system [217, 126]. Multics emerged from the work of an early timesharing system called the Com-
patible Timesharing System (CTSS) [87], a project led by Fernando Corbaté at MIT. Until 1960
or so, computers all ran batch systems, where individual jobs were run in sequence, one at a time.
Often users would have to wait hours or days to receive the results of their program’s executions.
Early timesharing systems could support a small number of programs by swapping the contents of
those not running to tape (i.e., there was not enough memory to keep them in memory). Operating
systems of the day, whether batch or timesharing, supported a very different set of functions as well,
aiming at building programs, loading them into memory, and automating some basic tasks of the
system administrators.

CTSS was demonstrated in 1961, and its success motivated the Advanced Research Projects
Agency (ARPA) of the US Department of Defense (DoD) to create Project MAC, which stood for
Multi-Access Computer among other things 1. Project MAC proposed to build general-purpose,
timesharing services to support large numbers of users simultaneously. It would have to support func-
tions that would enable the multiplexing of devices for multiple processes (i.e., running programs),
scheduling of those processes, communication between processes, and protection among processes.
Based on a summer study in 1962, the specifications for Multics were developed and submitted for

LMAC stood for Multiple Access Computers on the 5th floor of 545 Tech Square and Man and Computer on the 9th floor [217].”

24 CHAPTER 3. MULTICS

bid in 1963. Folklore has it that IBM was not interested in Project MAC’s ideas for paging and
segmentation, so instead General Electric (GE) was chosen to build the hardware for the project,
the eventual GE 645. Bell Labs joined the software development in 1965.

The Multics project had very ambitious and revolutionary goals, so it is not surprising that the
project had its moments of intrigue. The project called for delivery of the project in two and a half
years, but delivery of the GE 645 hardware was delayed such that Multics was not self-hosting ? until
1968. ARPA considered terminating the project in 1969, and Bell Labs dropped out of the project in
1969 as well. Ultimately, the Multics system itself proved to be bigger, slower, and less reliable than
expected, but a number of significant operating systems and security features were developed that
live on in modern systems, such as the UNIX system that was developed by some of the associated
Bell Labs researchers after they left the Multics project, see Chapter 4.

Multics emerged as a commercial product in 1973. Honeywell purchased GE’s hardware
business in 1970, and Honeywell sold Multics systems until 1985. As Multics systems were expensive
($7 million initially), only about 80 licenses were sold. The primary purchasers were government
organizations (e.g., US Air Force), university systems (e.g., the University of Southwest Louisiana
and the French university system), and large US corporations (e.g., General Motors and Ford).
Multics development was terminated in 1985, but Multics systems remained in use until 2000. The
last running Multics system was used by the Canadian Department of National Defense.

The Multics project was unusual for its breadth of tasks, diversity of partners, and duration
under development. While any hardware project requires the development of an ecosystem (e.g.,
compilers, system software, etc.) for people to program to the hardware, the Multics project was
both a substantial hardware project, a revolutionary operating systems project, and a groundbreaking
security project. This breadth of tasks would be daunting today. Secondly, the Multics project team
represented university and industry researchers in addition to a variety of government and industry
engineers. Many members of the project were among our greatest computer minds, so it is not easy
to assemble such a group. Thirdly, an astounding thing is that the project persisted for nearly 10
years before any commercial product was released. In today’s competitive environment, such a long
pre-production phase would be highly unusual. As a result, the Multics project had a unique situation
that enabled them to pursue ambitious, long-term goals, such as building a secure operating system.

3.2 THE MULTICS SYSTEM

The Multics system architecture is a layered architecture where executing programs may be permitted
to access named system resources that are organized hierarchically. In this section, we first examine
the basic principles of the system, then its security features. This information is culled from the many
research documents published on the Multics system. The most comprehensive documents written
about Multics were Organick’s book [237] and the Final Report of the project [280].

2A self-hosting system can be used to develop new versions of itself.

3.2. THE MULTICS SYSTEM 25
3.21 MULTICS FUNDAMENTALS

The fundamental concepts in the Multics system are processes and segments. Processes are the ex-
ecutable contexts in Multics—that is, they run program code. All code, data, I/O devices, etc. that
may be accessed by a process are stored as segments. Segments are organized into a hierarchy of
directories that may contain directories or segments.

A process’s protection domain defines the segments that it can access. A Multics process’s
protection domain consists of the segments that could be loaded into its descriptor segment and the
operations that the process could then perform on those segments. Each segment is associated with
its accessibility—i.e., the subjects whose processes can access the segment and the operations that
they are allowed to perform. Multics has three different ways of expressing accessibility that we will
describe in Section 3.2.1.

Segments are addressable either locally within the process’s context or by name from secondary
storage (i.e., analogous to modern file systems). For segments already in a process’s context, Figure 3.1
shows that each process is associated with its own descriptor segment that contains a set of segment
descriptor words (SDWs) that refer to all the segments that the process can directly access. That is,
these segments are directly addressable by the process in the system’s memory 3.

When Multics process requests a segment that is not already in its descriptor segment, it
must name the segment using what is analogous to a file path. Like modern file systems, Multics
segments are named hierarchically. For example, the name /U2/War/NewYearsDay is processed
starting with the root directory, continuing with subsequent descendant directories (i.e., U2 and
War), and finishing with the name of the actual segment (e.g., the NewYearsDay segment). Thus,
Multics segment access provided a blueprint for later hierarchical file systems of UNIX and beyond.
If the process’s subject has the permissions to perform the requested operation on the segment, then
a new SDW is created with those permissions and is loaded into the process’s descriptor segment.
Note that the process must also have the access to all the directories in the segment’s path as well to
access the segment.

3.2.2 MULTICS SECURITY FUNDAMENTALS

Multics security depends on some fundamental concepts that we introduce before we detail the
protection system and reference monitor. These concepts include the Multics supervisor, protection
rings, and Multics segment descriptor words.

Figure 3.2 shows the actions that take place when a user logs into a Multics system. First, a
user login requires that a component of the trusted computing base (TCB) verify the user’s password
and build a process for the user to perform their processing. User logins are implemented by a
process called the answering service. To authenticate the user, the answering service must retrieve the
password segment from the file system by loading the password SDW into its descriptor segment.
The loading and subsequent use of the password segment must be authorized by the core Multics

30f course, a segment may have been swapped out to secondary storage, but from the point of view of the process, the segment is
available in memory. It will be swapped in invisibly by the Multics kernel.

26 CHAPTER 3. MULTICS

Descriptor Base Register

Segment 0
Process Descriptor Segment
Segment Desc Word 0 <&
Segment Desc Word 1
Segment 1 Segment Desc Word 2

Segment N <—I_ Segment Desc Word N

Segment Desc Word N+1

Figure 3.1: Multics process’s segment addressing (adapted from [159]). Each process stores a reference
to its descriptor segment in its descriptor base register. The descriptor segment stores segment descriptor words
that reference each of the process’s active segments (e.g., segments 0, 1, and N).

component, the supervisor [322]. If authorized, a SDW for the password segment is loaded into the
answering service’s descriptor segment. The supervisor implements the most trusted functionality
in the Multics system, such as authorization, segmentation, file systems, 1/O, scheduling, etc. Early
Multics systems also included dynamic linking functionality in the supervisor, but that was later
removed [62] and is also implemented in user-space in modern systems.

The supervisor is isolated from other processes by prozection rings [281]. Protection rings form
a hierarchical layering from the most privileged ring, ring O where the most-privilege code in the
supervisor runs, to the least privileged ring. There were 64 rings in the GE 645 Multics system, but
only 8 were implemented in GE 645 hardware and the rest by some software tricks. The supervisor

3.2. THE MULTICS SYSTEM 27

Answering Service

Password | _____________
I Password SDW
____________ 1
.]
Password Segment Name
A
. . Authorize
Supervisor Reference Monitor Segment Load
AS Desc Segment Rlng 0
Password SDW 9| Password Segment
v]

Disk
Device

Password Segment

Figure 3.2: The Multics login process. The user’s password is submitted to the Multics answering service
which must check the password against the entries in the password segment. The Multics supervisor in
the privileged prozection ring 0 authorizes access to this segment and adds a SDW for it to the answering
service’s descriptor segment. The answering service cannot modify its own descriptor segment.

is protected from other processes because only its segments are assigned to rings 0 and 1 4, and
no process running in a higher ring can modify its segments. Thus, processes can only cause a
modification of the supervisor’s state by invoking supervisor code that runs in ring 0. Multics defines
mechanisms to protect the supervisor from malicious input in these calls. The Multics design aimed
for layering of function as advocated by other systems of the time, such as the THE system [76],
but the rings were ultimately used as a simple, coarse-grained mechanism to protect the integrity of
the supervisor and other trusted processes from untrusted code. Of course, modern processors also
protect their operating systems using protection rings, although only two levels, supervisor and user,

are typically utilized.

#The Multics supervisor is divided into ring 0 components, including access control, I/O, and memory management, and ring 1
components that are less primitive, such as accounting, stream management, and file system search.

28 CHAPTER 3. MULTICS

If the user and password match, then the answering service creates a user process with the
appropriate code and data segments for running on behalf of that user. Each live process segment
is accessed via a segment descriptor word (SDW) as mentioned above. Figure 3.3 shows the SDW
layout [281]. The SDW contains the address of the segment in memory, its length, its ring brackets,

Segment Descriptor Word

Address Length R1 R2 R3 R w E Gate

- ——)

Access Indicator

Figure 3.3: Structure of the Multics segment descriptor word (SDW): in addition to the segment’s address
and length, the SDW contains access indicators including ring brackets (i.e., R1, R2, R3), the process’s
ACL for the segment (i.e., the rwe bits), and the number of gates for the segment.

its process’s permissions (rwe) for this segment, and, for code segments, the number of gates defined
for the segment. When the process references an SDW, its ring bracket limits access based on the
current ring in which the process is running. The process permissions (rwe) limit the operations that
the process can ever perform on this segment. We examine the meaning of the SDW access fields
below.

3.2.3 MULTICS PROTECTION SYSTEM MODELS
The Multics protection system consists of three different, interacting models that individually provide
distinct aspects of the overall Multics protection system. For simplicity, We introduce the models in
isolation first, and the describe the overall authorization process.

Access Control List First, each object (i.e., segment or directory) is associated with its own access
control list (ACL). Each ACL entry specifies a user identity of processes and the operations that
processes with that identity can perform on this object. Note that a user may be specified using wild-
cards to represent groups of users. Segments and directories have different operation sets. Segments
may be read (r), written (w), or executed (e), and directories may be accessed to obtain the status of
the entry (s), modify an entry (i.e., delete or modify ACLs, (m), or append an entry to the directory
(a). Note that the ACLs for a segment are stored in its parent directory, so access is checked at the

3.2. THE MULTICS SYSTEM 29

parent. Also, any modification of an ACL for a segment requires the modification permission on
the parent directory.

Example 3.1. Examples of ACLs on a segment include:

rew Jaeger.SysAdmin.x*
r Backup.SysDaemon. *
rw *.SysAdmin. *

Also, examples of directory ACLs include:

sma Jaeger.SysAdmin.*
s Backup.SysDaemon. *
sm *.SysAdmin. *

When a process requests access to a segment, the ACL of the segment is checked to determine
if the user associated with the process has an entry in the ACL that permits the requested operations.
If so, the reference monitor authorizes the construction of an SDW with those operations.

Rings and Brackets Multics also limits access based on the protection ring of the process. Each
segment is associated with a ing bracket specification that defines read, write, and execute permissions
of processes over that segment. Also, protection domain transition rules are defined by these brackets.
First, a segment’s access bracket defines the ranges of rings that can read and write to a segment. An
access bracket is specified by a range of rings (r1, r2) where r1 < r2 (i.e., r1 is more privileged than
r2). Suppose a process is running in ring r, then the access rights of that process to a segment with
an access bracket of (r1, r2) are determined by:

 If r < rl, then the process can read and write to the segment.
* Ifr1 < r <r2, then the process can read the segment only.
 If 72 < r, then the process has no access to the segment.

Such a policy ensures that lower rings (i.e., more privileged) have strictly greater access to
segments than the higher rings.

Multics also uses rings to control the invocation of code segments. A second access specifi-
cation, the call bracket, is used along with the access bracket to determine how a process in ring r
invokes a code segment. The call bracket is (r2, r3), where r2 is same r2 as in the access bracket
and 2 < r3.If a process at ring r tries to invoke a code segment with an access bracket of (r1, r2)
and a call bracket of (2, r3), the following cases are possible:

* If r < r1, then the process can execute the code segment, but there is a ring transition from r
to a lower privileged ring r1 < r’ < r2 specified by the segment (typically, r1 == r2, so the
transition is obvious).

30

CHAPTER 3. MULTICS

* If r1 <r <r2, then the process invokes the code segment in its current ring r (i.e., no ring
transition).

* Ifr2 <r < r3, then the process can execute the code segment, there is a ring transition from
r to the higher privileged ring r’ if authorized by the gates in the code segment’s SDW.

* If 73 < r, then the process cannot invoke the code segment.

The call brackets not only define execute privilege based on the process’s current protection
ring, but they also define transition rules describing the requirements for protection domain transition
(e.g., if authorized by all gates) and the resultant ring number for the executing code. Call brackets
are the only means of describing transition state in the Multics system.

Multilevel Security Multics pioneered the enforcement of Multilevel Security [23, 326] (MLS) in
operating systems °. An MLS policy prevents a subject from reading data that is more secret than
the subject or writing data to less secret objects. A detailed description of MLS and its semantics is
provided in Chapter 5.

In Multics, each directory stores a mapping from each segment to a secrecy level. Also, Multics
stores an association between each process and its secrecy level. A request is authorized if one of
three conditions are met:

1. Write: The process requests write access only and the level of the segment/directory is greater
than (i.e., dominates) or equal to the level of the process.

2. Read: The process requests read access only and the level of the segment/directory is less than
(i.e., dominated by) or equal to the level of the process.

3. Read/Write: The process requests read and write access and the level of the segment/directory
is the same as the process or the process is designated as trusted.

Intuitively, we can see that a process can only read a segment/directory if its level is more
secret or the same as the level of the object and write a segment/directory if its level is less secret
or the same as that of the object. This prevents information leakage by preventing a process from
reading information that is more secret than its secrecy level and preventing a process from writing
its information to objects of a lower secrecy level. In Chapter 5, we formally defines MLS secrecy
enforcement.

3.2.4 MULTICS PROTECTION SYSTEM
Multics’s protection system consists of these three policies. When a segment is requested, all three
policies must authorize the request for it to be allowed. If the requested operation is a read, the ACL

SMLS is called the Access Isolation Mechanism (AIM) in Multics documentation. We will use the current term of MLS for such
access control systems.

3.2. THE MULTICS SYSTEM 31

is checked to determine if the user has access, the MLS policy is checked to verify that the object’s
secrecy level is dominated by or equal to the process’s, and the access bracket is checked to determine
whether the process has read access to the object’s segment (r < r2). When the requested operation
is a write, the ACL is checked for write access, the MLS policy is checked to verify that the object’s
secrecy level dominates or is equal to the process’s, and the access bracket must permit the current
ring write access (r < r1).

An execute request is handled similarly, except the call bracket is used instead of the access
bracket, and the request may result in a protection domain transition. The process must have execute
permission in the segment’s ACL, the MLS policy must permit reading the segment, and the call
bracket must permit execution.

Execution of a segment may also result in a transition from the process’s current ring r to the
ring specified by the segment (we call this 7’) based on the call bracket. There are two cases. First,
when this process invokes a code segment with a call bracket where r < r1, then the process must
transition to r’ (i.e., a lower-privileged ring). Second, when this process invokes a code segment with
a call bracket where r2 < r < r3, then the process must use one of the valid segment gates as an
entry point and transition to r’ (i.e., enter a higher-privileged ring if the gates allow).

As described in Chapter 2, a secure protection system consists of a protection state, a labeling
state, and a transition state that may only be administered by trusted subjects. Multics defines its
protection state based on these three models. The ring brackets define the allowed protection domain
transitions in the system. There are no object transitions specified in the Multics policy. Labeling
is not specifically defined in the Multics policy. Presumably, new segments are assigned the MLS
labels and ring brackets from their creator, but this is not specified.

Both the ACL and ring bracket policies are discretionary access control policies. That is, the
ACLs and ring brackets for a segment may modified by any process that has the modify privilege
to the segment’s parent directory. Only the MLS policy is nondiscretionary or mandatory. The MLS
policy is loaded with the system at boot-time and is otherwise immutable.

3.2.5 MULTICS REFERENCE MONITOR

The Multics reference monitor is implemented by the supervisor. Each Multics instruction either
accesses a segment via a directory or via a SDW, so authorization is performed on each instruc-
tion. Originally, the supervisor performed such authorizations, but eventually hardware extensions
enabled most SDW authorizations to be performed directly by the hardware [281], as we now are
accustomed. The supervisor then became responsible for setting up the process’s descriptor segment
and preventing the process from modifying it.

In addition to protection state queries, the supervisor also performs protection domain transi-
tions by changing the process’s ring as described above. Accessing a code segment has three allowed
cases, two that result in a ring transition. Invoking code in a ring below (i.e., more privileged than)
the access bracket results in a ring transition to a more-privileged ring. Such transitions require entry
through a special gate segment that verifies: (1) the number of arguments expected; (2) the data type

32 CHAPTER3. MULTICS

on each argument; and (3) access requirements for each argument (e.g., read only or read-write). The
gate segment, also called a gatekeeper, aims to protect the invoked code from potentially malicious
input from lower-privileged code. The called procedure must also not depend on the caller for stack
memory, and it must return to the calling code in the proper ring number r.

The transition to a lower-privileged ring also generates some security issues. In this case, we
may leak information as a result of the call to a lower-privileged ring and that the higher privileged
code must protect itself on a return. In the first case, we need to ensure that the called procedure in
a high ring (i.e., less-privileged ring) has access to the procedure arguments. Since the granularity
of control is a segment, each segment in which an argument is contained must be accessible to the
called procedure. Multics can enforce protection on segments, such that the called procedure does
not get unauthorized access, but that may result in program failures. Thus, some form of copying
is necessary. For example, the supervisor copies arguments from its segment to another segment
accessible to the called procedure. However, the caller must be careful not to copy unauthorized
information, such as private keys, that the less-privileged code may be able to use to impersonate
the higher-privileged code.

In the second case, Multics enables the caller to provide a gate for the return, called a rezurn
gate. This mechanism is similar in concept to a call gate, except multiple calls may result in a stack of
return gates. Thus, the SDW is unsuitable for return gates. The supervisor must maintain the stack
of return gates for the process.

While supervisor functions are implemented in rings 0 and 1, the fundamental reference
monitor services are all in ring 0. For example, the file system search utility has been moved to
ring 1, such that the determination of a directory or segment from a name is performed there, but
authorization of whether this access is permitted is done in the ring 0 supervisor [279]. That is, the
code in ring 1 running due to a user’s process, may not have an ACL that permits it access to the
segment. Thus, ring 0 can limit the actions of code in ring 1. Decisions about what code belongs in
ring 0 and ring 1 was an ongoing process throughout the Multics project. Modern operating systems
have generally not made such fine-grained distinctions, potentially to their detriment for security.
Nonetheless, programming is much simpler in the modern case.

Some services running in less-privileged rings also must be trusted by the supervisor for some
functions. For example, the answering service (see Section 3.2.2) performs authentication, so it
assigns the user of a process. Clearly, if it is malicious, the process could get unauthorized permissions
by being assigned to the wrong user. Also, the administrator must be entrusted with several operations,
supported by code that must then be trusted, such as measuring storage usage, performing backups,
and changing permission assignments [264]. A TCB was defined for Multics’ B2 evaluation (see
Chapter 12 for a discussion on system security evaluation), but the Multics architecture continually
evolved, such that its TCB evolved over time. In 1973, Saltzer stated that 15% of Multics programs
ran in ring 0 [264], so these programs plus administrative and authentication programs minimally
defined the Multics TCB. The Multics team recognized that this was a large number of trusted

3.3. MULTICS SECURITY 33

programs, but the resolution of what should be in or what should be out of the TCB remained an
ongoing issue until the end of the project.

3.3 MULTICS SECURITY

We evaluate the security of Multics system using the reference monitor principles stated in Chapter 2:
complete mediation, tamperproofing, and verifiability. Unlike the commercial operating systems
discussed in the next chapter, Multics performs well on these metrics. Nonetheless, we will see that
it is difficult to completely achieve these requirements. In the next section, we will discuss how the
implementation may cause breaches in security, even in well designed systems.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

Since Multics requires that each instruction accesses a segment and each segment access
is mediated, Multics provides complete mediation at the segment level. Thus, all security
requirements that can be effectively expressed in segments can be mediated in Multics.

MLS labels for segments are stored in their directories rather than directly in the segments,
so Multics must ensure that the mapping between segments and their access classes is used
correctly. That is, Multics must prevent a TOCTTOU attack [30] where the attacker can
switch the segment assigned a particular name after the access class assigned to the name has
been authorized. Traditionally, this is done by restricting a directory to contain only segments
of a single access class.

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

Since Multics mediates each segment access at the instruction level, Multics mediates memory
access completely. Multics also mediates ring transitions, in both directions. Thus, the refer-
ence monitor provides mediation at memory and ring levels. Multics’ ring transitions provide
argument validation via gatekeepers, which is not part of the reference monitor in modern sys-
tems (although argument validation is performed procedurally in modern operating system).
In practice, the Multics master mode permits code to run in a higher ring level without the full
ring transition, see Section 3.4 below.

Also, TCB servers may have finer-grained access control (i.e., within segments), but this is
beyond the ability of Multics. If Multics had a server that s trusted to support clients of multiple
secrecy levels, it must also ensure that there is no way that an unauthorized information leak
can occur (e.g., the confused deputy problem, see Chapter 10). In general, such servers must be
trusted with such permissions.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

34 CHAPTER3. MULTICS

To verify complete mediation, we need to verify that ring transitions and segment accesses are
mediated correctly. These operations are well-defined, so it is straightforward to determine
that mediation occurs at these operations. However, the complexity of these operations still
made verification difficult. The complexity of addressing resulted in some mediation errors in
segment mediation, see Section 3.4.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

The Multics reference monitor is implemented by ring 0 procedures. The ring 0 procedures are
protected by a combination of the protection ring isolations and system-defined ring bracket
policy. The ring bracket policy prevents processes outside of ring 0 from reading or writing
reference monitor code or state directly.

Some ring 0 code must respond to calls from untrusted processes (e.g., system calls). The only
way that ring 0 can be accessed by an untrusted process is via a gate. As described above, gates
check the format of the arguments to higher-privileged, supervisor code to block malicious
inputs. Thus, if the gates are correct, then untrusted processes cannot compromise any ring 0
code, thus protecting the supervisor.

Multics master mode code was not designed to be accessed without a ring transition to ring 0,
but this restriction was later lifted, resulting in vulnerabilities (see Section 3.4 below). Thus,
a secure Multics system must not include the unprivileged use of master mode as Karger and

Schell identify.

5. Tamperproof: Does the protection system protect all the trusted computing base programs?

The Multics TCB consists of the supervisor and some system services in rings 1-3. Multics
relegates standard user processing to rings 4 and higher, so trusted code would be placed
no higher than ring 3. If we assume that all the code segments in rings 0-3 are part of the
trusted computing base, then the TCB is large, but can be protected in the same manner as
the supervisor in ring 0.

The integrity of the TCB depends on its system-defined ring bracket policy. However, the ring
bracket policy is a discretionary policy. It can be modified by any subject with modify access to
a directory containing a TCB code segment. Should any process in the TCB be compromised,
it could undo protections at its ring level, thus potentially compromising the entire ring. If
more-privileged rings contain any code that depends on trust in a less-privileged ring that
is compromised, then the compromise may spread further. Thus, Multics tamper-protection
is “securable” as Saltzer stated, but discretionary access control makes its tamperprotection
brittle. See Chapter 7 to see why the use of discretionary access control is problematic.

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?

3.3. MULTICS SECURITY 35

The implementation of the Multics TCB is too large to be formally verified [279]. The project’s
goal was to minimize the Multics implementation as much as possible, such that most, if not
all, of the TCB can be verified using manual auditing. This goal was not achieved by the
completion of the Multics project, and in fact this limitation motivated the subsequent work
in security kernels (see Chapter 6). As we will see in the next section, this resulted in some
security problems in Multics.

7. Verifiable: Does the protection system enforce the system’s security goals?
P Y Y g

Verifying that the system’s security goals are enforced correctly involves ensuring that the
policy: (1) protects the secrecy and integrity of the system and user data by the protection state;
(2) assigns subjects and objects to the policy labels correctly by the /abeling state;and (3) ensures
that all protection domain transitions protect the secrecy and integrity of the system and user
data based on the #ransition state defined by the call bracket rules.

First, the protection state ensures IVILS secrecy protection is enforced, although the discre-
tionary management of the ring bracket policy limits integrity protection to the system TCB
at best, and only if no TCB process can be compromised. The MLS secrecy policy is a manda-
tory policy of information flow secrecy goals, so the secrecy goals are enforced by the Multics
system given a trusted TCB.

Second, verifying the correct labeling of segments and processes is challenging since much
of this labeling is specified manually. The Multics policy does not explicitly state how new
processes and segments are labeled, although we would expect that the norm is to inherit the
labels of the creating process.

Third, the transition state permits low integrity code in a less-privileged ring to transfer control
to high integrity code in a more-privileged ring through either gates or return gates based on
the call bracket rules. As discussed above, the security of these transitions depends on the
correctness of the gates, but most systems do not even have this level of enforcement.

This informal analysis shows that Multics security is largely very good, but risks remain.
In this analysis, we describe powerful mediation, expressive tamperproofing, and verifiable secrecy
controls and system integrity controls. However, challenges still remain in managing the scope of
the TCB, verifying the correctness of system integrity policies, ensuring integrity protection for
all processes, labeling processes and segments correctly, and verifying the correctness of all gates.
Saltzer identifies nine areas of security risk in Multics as well [264]. In addition to the issues above,
Saltzer mentions the need for secure communication between systems, control of physical access
to machines, the weakness of user-specified passwords, the complexity of gate protections for the
supervisor, the possibility of leaking secrets via reuse of uncleared memory or storage, excessive
privileges for administrators, and others. These issues and challenges are not unique to Multics—as
we will see, every secure operating system design will fight with these challenges. For a first attempt
at building a secure operating system, the Multics project did an admirable job of identifying issues

36 CHAPTER3. MULTICS

and proposing solutions, but many difficult issues must be addressed. As Saltzer states, Multics was
“designed to be securable,” not a single secure configuration.

Of course, building any operating system also requires that the designers consider usability,
performance, and maintainability in their design. To a large extent, an operating system is supposed
to be invisible to applications. While applications have to use the system’s interface to obtain service,
the interface should just implement the requests, so programs can run as expected. Of course, the
addition of security enforcement may cause programs to no longer work as expected. Requests
may be denied for security reasons, and applications may not be prepared to handle such failures.
Also, security is supposed to be effectively invisible from a performance perspective. This was a
significant problem for Multics, especially given the limited computing power of that time. The
small number of deployed Multics systems probably also prevented the usability model of Multics
from spreading widely enough to become an accepted norm. As the UNIX community grew to
numbers that dwarfed the number of Multics administrators, the computing community came to
accept the open, but insecure, approach. Finally, operating systems are complex software components,
so they undergo a fair amount of evolution. This was particularly true in the case of Multics, but any
system maintenance must still preserve the security guarantees offered by the system. As we will see
in the next section, this was not always the case.

3.4 MULTICS VULNERABILITY ANALYSIS

In 1974, a couple of Air Force researchers, Paul Karger and Roger Schell, performed a vulnerability
analysis on the Multics system [159]. Unfortunately, the Multics system was too complex for them
to do any kind of analysis that may prove the security enforcement of the system (i.e., mediation,
tamperproofing, or verifiability), but they examined the system looking for implementation flaws.
That is, they were, and still are, firm believers in the Multics approach to building a secure operat-
ing system, but they found a number of vulnerabilities in the Multics implementation that raised
questions about how to build and maintain secure operating systems.

Karger and Schell’s vulnerability analysis investigates whether specific hardware, software,
and “procedural” (i.e., configuration) vulnerabilities are present in the Multics system. They found
vulnerabilities in each area.

First, a hardware vulnerability was found that would permit an execute instruction to bypass
access checking using the SDW. That is, complete mediation could be circumvented due to this
vulnerability. The details of the vulnerability require a deeper knowledge of Multics addressing than
we provide, but the basic problem is that the Honeywell 645 hardware 6 did not check the SDW
access if the segment was reached by a specific format of indirect addressing. Thus, access to the
segment containing the indirection was checked for access, but not the segment containing the
actual address to be executed. It was found that this error was introduced in a field modification
made at MIT and later applied to all processors. While this is was simply an erroneous update, the
pressures of balancing performance and security, makes such updates likely. Further, the Multics

6This analysis was done after Honeywell had purchased GE’s computer division in 1970.

3.5. SUMMARY 37

project had no tools to enable the verification of security impact of such changes, so errors should
not be unexpected.

Second, a variety of software vulnerabilities were reported by Karger and Schell. One of the
more significant vulnerabilities was an error caused by misuse of a supervisor mode of execution, called
master mode. Master mode is an execution state that permits any privileged processor instructions
to be executed in the current ring. The original Multics design required master mode code to be
restricted to ring 0 only [322]. However, this design choice resulted in all faults (i.e., divide-by-zero,
page faults, etc.) incurring a ring transition from the user ring to ring 0 where the fault handler
was located and then back to the user ring. A proposal to reduce the overhead on the system was
to enable execution of some fault handling (e.g., divide-by-zero and access violations) in the user
ring. These faults are reported to user programs anyway by a signaller module, so the proposal was
to run the signaller in user rings. But, the signaller uses some privileged instructions, so it must run
in master mode.

Permitting the signaller to run in master mode in a user ring was deemed secure because of the
restricted manner in which the signaller must be invoked, but this code was not designed to protect
itself from malicious calls. The problem is that the signaller’s code expects a register to be loaded
with a reference to a section of the signaller’s code when it is called. Unfortunately, the signaller does
not check that the register value is legitimate, so when the code became addressable in user rings, it
became possible for a malicious user program to set the register to an arbitrary location “permitting
him to transfer to an arbitrary location while the CPU was still in master mode [159].” Thus, a
significant vulnerability was created in the Multics system. The problem was that the signaller code
had been written with other design rules in mind. This is why it is important to: (1) have clear design
rules and (2) have approaches and (automated) tools to verify that the implementation meets the
design rules. Unfortunately, most operating systems are implemented without clear design rules for
security, and few approaches are available to verify compliance with such rules.

Third, Karger and Schell demonstrated that software vulnerabilities, such as the one above,
then enable compromise of all Multics security through further “procedural” vulnerabilities. They
demonstrate how an attacker can: (1) take control of the Multics patch utility enabling modification
of trusted programs; (2) forge the user identification of processes under the control of the attacker; (3)
modify the password file; and (4) hide the existence of the attacker by modifying the audit trail and
installing backdoors into the system. This work demonstrates many of the challenges that modern
operating system designers face of hidden threats, such as roozkits. Even if the design is secure and
comprehensive, implementation mistakes or poor maintenance decisions can introduce significant
vulnerabilities.

3.5 SUMMARY

The Multics designers were the first to tackle the challenge of building an operating system that
enables comprehensive enforcement of practical secrecy and integrity requirements. This challenge
was just one of several that the designers were faced with, as Multics was also one of the first,

38 CHAPTER3. MULTICS

structured, time-sharing operating systems as well. As the security analysis shows, the Multics
design addressed many facets of building a secure operating system, including defining a reference
monitor to enforce a mandatory secrecy policy and developing a protection ring model to protect the
integrity of the trusted code, among several innovations. Multics set the foundations for building
secure operating systems, but our security analysis and the vulnerability analysis of Karger and Schell
show that many difficult issues remain to be addressed. Subsequent work, described in Chapter 6,
aimed to address many of these problems, particularly reduction in TCB complexity. First, to clarify
the idea of a secure operating system further, we will examine why ordinary operating systems, such
as Windows and UNIX, are fundamentally not secure operating systems in Chapter 4.

39

CHAPTER 4

Security in Ordinary Operating

Systems

In considering the requirements of a secure operating system, it is worth considering how far ordinary
operating systems are from achieving these requirements. In this chapter, we examine the UNIX and
Windows operating systems and show why they are fundamentally not secure operating systems. We
first examine the history these systems, briefly describe their protection systems, then we show, using
the requirements of a secure operating system defined in Chapter 2, why ordinary operating systems
are inherently insecure. Finally, we examine common vulnerabilities in these systems to show the
need for secure operating systems and the types of threats that they will have to overcome.

4.1 SYSTEM HISTORIES

4.1.1 UNIXHISTORY
UNIX is a multiuser operating system developed by Dennis Ritchie and Ken Thompson at AT&T
Bell Labs [266]. UNIX started as a small project to build an operating system to play a game on an
available PDP-7 computer. However, UNIX grew over the next 10 to 15 years into a system with
considerable mindshare, such that a variety of commercial UNIX efforts were launched. The lack of
coherence in these efforts may have limited the market penetration of UNIX, but many vendors, even
Microsoft, had their own versions. UNIX remains a significant operating system today, embodied
in many systems, such as Linux, Sun Solaris, IBM AIX, the various BSD systems, etc.

Recall from Chapter 3 that Bell Labs was a member of the Multics consortium. However,
Bell Labs dropped out of the Multics project in 1969, primarily due to delays in the project. Ken
Thompson adapted some of the ideas of Multics when he initiated the construction of a system
that was named as a pun on the Multics system, UNICS (UNIplexed Information and Computing
Service). Eventually and mysteriously, the system was renamed UNIX, but the project had begun.

UNIX gained mindshare for a number of reasons. Ritchie rewrote UNIX in his new program-
ming language C which enabled UNIX to be the first portable operating system. This enabled the
development of a UNIX community, since lots of people could run UNIX on a variety of different
hardware. Next, an application program interface was designed for UNIX which enabled program-
mers to write application easily, without resorting to assembly language, and these applications ran
across the variety of UNIX-supported platforms. Finally, UNIX was truly simplified when compared
to Multics. While UNIX adopted many Multics principles, such as hierarchical file systems, virtual
memory, and encrypted passwords, UNIX was far simpler. UNIX aimed for a small base program
called the kernel/ with a standard interface to simplify the development of applications. As a result,

40 CHAPTER 4. SECURITY IN ORDINARY OPERATING SYSTEMS
the code size of UNIX (at the time) was smaller than Multics, UNIX performed better, and UNIX

was easier to program and administer.

Asastreamlined descendant of Multics, UNIX adopted several of the Multics security features,
such as password storage, protection ring usage, access control lists, etc., but most were streamlined
as well. Since UNIX was not a government-funded project like Multics, it was built with different
security goals in mind. For UNIX, the goal was to develop a common platform (e.g., devices and
file system) that could be shared by several users. As a result, the security problem became one of
protection 1 where the goal is to protect the users’ data from inadvertent errors in their programs.
However, protection does not ensure that secrecy and integrity goals (i.e., security) can be achieved
(see Chapter 5). Security enforcement requires that a system’s security mechanisms can enforce
system security goals even when all the software outside the trusted computing base is malicious.
Thus, when UNIX systems were connected to untrusted users via the Internet, a variety of design
decisions made for protection no longer applied. As we will discuss, the ordinary UNIX security
mechanisms are not capable of enforcing the requirements of a secure operating system. A variety of
efforts have aimed to extend or replace the insecure mechanisms for ordinary UNIX systems with
mechanisms that may achieve the requirements of a secure operating system (see Chapter 2), as we

describe in Chapters 7 and 9.

4.1.2 WINDOWS HISTORY

The history of the Microsoft Windows operating system goes back to the introduction of MS-DOS,
which was the original operating system for IBM personal computers introduced in 1981 [24].
MS-DOS was constructed from the Quick and Dirty Operating System (QDOS) built by Tim
Paterson that Microsoft purchased from his employer Seattle Computer Products. QDOS was itself
based on an early microcomputer operating system called the Control Program for Microcomputers
(CP/M) [68, 75]. Compared to other operating systems of the time, such as Multics and UNIX,
MS-DOS was a very limited system. It was not a true multitasking system, and did not use many of
the features of the x86 processor. Over the next 20 years, Microsoft made improvements to MS-DOS
to support more efficient and flexible use of the x86 hardware.

Windows was originally a GUI for MS-DOS, but its visibility soon led to using its name for
the subsequent operating systems that Microsoft released. Early Windows systems were based on
various versions of MS-DOS, but MIS-DOS became less fundamental to the later “Windows 9x”
systems. A second, independent line of systems based on the NT kernel emerged starting with the
Windows NT 4.0. In 2000, the Windows systems derived from the original MS-DOS codebase
were discontinued. At this point, the Windows brand of operating systems dominated the desktop
computing market and spanned most computing devices, but the lack of focus on security in Windows
operating systems was becoming a significant limitation in these systems.

As the initial focus of the Windows operating system was on microcomputer platforms en-
visioned for a single user and disconnected from any network, security was not a feature of such

INamed after the protection system in Lampson’s famous paper [176] which achieves the same security goal.

4.2. UNIXSECURITY 41

systems. Users administered their systems, uploading new programs as they were purchased. How-
ever, the emergence of the world-wide web made connecting Windows computers to the network
fundamental to its use, and the networked services that users leveraged, such as email, web clients,
easy program download, etc., introduced vulnerabilities that the Windows systems were not designed
to counter. The usability model of Windows as a open, flexible, user-administered platform, plus its
ubiquity, made it an easy target for attackers. Further, Microsoft was slow to address such threats.
In 2000, features were nearly always enabled by default, leading to world-wide compromises due to
Windows vulnerabilities (e.g., Code Red and variants [88, 334]). Microsoft has focused with some
success on reducing its vulnerabilities through better code development practices [139], code analysis
tools [210], and more secure configuration settings. However, improvements in the security features
of the Windows operating systems have been less effective. The Windows 2000-based access con-
trol system is complex and largely unused [303], the Windows operating system trusted computing
base is extremely large (50 million lines of source code in the operating system alone), and recent
security enhancements for Windows Vista [152] are both insufficient to provide complete integrity
protection [221, 220] and so invasive as to be unpopular [243].

4.2 UNIXSECURITY

We provide a brief outline of a UNIX system prior to examining the security details. Those interested
in a comprehensive description of UNIX system concepts are encouraged to read one of the many
books on the subject [119, 201, 192].

A running UNIX system consists of an gperating system kernel and many processes each running
a program. A protection ring boundary isolates the UNIX kernel from the processes. Each process
has its own address space, that defines the memory addresses that it can access. Modern UNIX systems
define address spaces primarily in terms of the set of memory pages that they can access 2. UNIX uses
the concept of a fi/e for all persistent system objects, such as secondary storage, I/O devices, network,
and interprocess communication. A UNIX process is associated with an identity, based on the user
associated with the process, and access to files is limited by the process’s identity.

UNIX security aims to protect users from each other and the system’s trusted computing base
(TCB) from all users. Informally, the UNIX TCB consists of the kernel and several processes that
run with the identity of the privileged user, root or superuser. These root processes provide a variety
of services, including system boot, user authentication, administration, network services, etc. Both
the kernel and root processes have full system access. All other processes have limited access based
on their associated user’s identity.

4.2.1 UNIXPROTECTION SYSTEM
UNIX implements a classical protection system (see Definition 2.1 in Chapter 2), not the secure
protection system (see Definition 2.4). As stated in Definition 2.1, a UNIX protection system

2Segmentation is still supported in most modern processors, but it is not used as the primary access boundary in UNIX systems
anymore, as it was in Multics.

42 CHAPTER 4. SECURITY IN ORDINARY OPERATING SYSTEMS

consists of a protection state and a set of operations that enable processes to modify that state. Thus,
UNIX is a discretionary access control (DAC) system. However, UNIX does have some aspects of the
secure protection system in Definition 2.4. First, the UNIX protection system defines a zransition
state that describes how processes change between protection domains. Second, the labeling state is
largely ad hoc. Trusted services associate processes with user identities, but users can control the
assignment of permissions to system resources (i.e., files). In the final analysis, these mechanisms
and the discretionary protection system are insufficient to build a system that satisfies the secure
operating system requirements (see Definition 2.6 in Chapter 2).

Recall that a protection state describes the operations that the system’s subjects can perform
on that system’s objects. The UNIX protection state associates process identities (subjects) with their
access to files (objects). Each UNIX process identity consists of a user id (UID), a group id (GID),
and a set of supplementary groups. These are used in combination to determine access as described
below 3.

All UNIX resources are represented as files. The protection state specifies that subjects may
perform read, write, and execute operations on files, with the standard meaning of these operations.
While directories are not files, they are represented as files in the UNIX protection state, although
the operations have different semantics (e.g., execute means search for a directory).

Files are also associated with an owner UID and an owner GID which conveys special priv-
ileges to processes with these identities. A process with the owner UID can modify any aspect of
the protection state for this file. Processes with either the owner UID and group GID may obtain
additional rights to access the file as described below.

The limited set of objects and operations enabled UNIX designers to use a compressed access
control list format called UNLX mode bits, to specify the access rights of identities to files. Mode
bits define the rights of three types of subjects: (1) the file owner UID; (2) the file group GID;
and (3) all other subjects. Using mode bits authorization is performed as follows. First, the UNIX
authorization mechanism checks whether the process identity’s UID corresponds to the owner UID
of the file, and if so, uses the mode bits for the owner to authorize access. If the process identity’s
GID or supplementary groups correspond to the file’s group GID, then the mode bits for the group
permissions are used. Otherwise, the permissions assigned to all others are used.

Example 4.1. UNIX mode bits are of the form {owner bits, group bits, others bits} where each
element in the tuple consists of a read bit, a write bit, and an execute bit. The mode bits:

IrwXr——r—-—

mean that a process with the same UID as the owner can read, write, or execute the file, a
process with a GID or supplementary group that corresponds to the file’s group can read the file,
and others can also only read the file.

3 A process’s user identity is actually represented by a set of UIDs for effective, real, and file system access. These details are important
to preventing vulnerabilities, see Section 4.2.4, but for clarity we defer their definition until that section.

4.2. UNIX SECURITY 43

Suppose a set of files have the following owners, groups, and others mode bits as described

below:

Name Owner Group Mode Bits
foo alice faculty IrWXr--r--
bar bob students rw-rw-r--
baz charlie faculty TWXTWXTWX

Then, processes running as alice with the group faculty can read, write, or execute foo and
baz, but only read bar. For bar, Alice does not match the UID (bob), nor have the associated group
(students). The process has the appropriate owner to gain all privileges for foo and the appropriate
group to gain privileges to baz.

As described above, the UNIX protection system is a discretionary access control system.
Specifically, this means that a file’s mode bits, owner UID, or group GID may be changed by any
UNIX processes run by the file’s owner (i.e., that have the same UID as the file owner). If we trust
all user processes to act in the best interests of the user, then the user’s security goals can be enforced.
However, this is no longer a reasonable assumption. Nowadays, users run a variety of processes, some
of which may be supplied by attackers and others may be vulnerable to compromise from attackers,
so the user will have no guarantee that these processes will behave consistently with the user’s security
goals. As a result, a secure operating system cannot use discretionary access control to enforce user
security goals.

Since discretionary access control permits users to change their files owner UID and group
GID in addition to the mode bits, file labeling is also discretionary. A secure protection system
requires a mandatory /abeling state, so this is another reason that UNIX systems cannot satisfy the
requirements of a secure operating system.

UNIX processes are labeled by trusted services from a set of labels (i.e., user UIDs and group
GIDs) defined by trusted administrators, and child processes inherit their process identity from
their parent. This mandatory approach to labeling processes with identities would satisfy the secure
protection system requirements, although it is rather inflexible.

Finally, UNIX mode bits also include a specification for protection domain transitions, called
the setuid bit. When this bit is set on a file, any process that executes the file with automatically
perform a protection domain transition to the file’s owner UID and group GID. For example, if a
root process sets the setuid bit on a file that it owns, then any process that executes that file will
run under the root UID. Since the setuid bit is a mode bit, it can be set by the file’s owner, so it
is also managed in a discretionary manner. A secure protection state requires a mandatory fransition
state describe all protection domain transitions, so the use of discretionary setuid bits is insufficient.

4.2.2 UNIXAUTHORIZATION

The UNIX authorization mechanism controls each process’s access to files and implements protection
domain transitions that enable a process to change its identity. The authorization mechanism runs

44 CHAPTER 4. SECURITY IN ORDINARY OPERATING SYSTEMS

in the kernel, but it depends on system and user processes for determining its authorization queries
and its protection state. For these and other reasons described in the UNIX security analysis, the
UNIX authorization mechanism does not implement a reference monitor. We prove this in the
Section 4.2.3 below.

UNIX authorization occurs when files are opened, and the operations allowed on the file are
verified on each file access. The requesting process provides the name of the file and the operations
that will be requested upon the file in the open system call. If authorized, UNIX creates a file
descriptor that represents the process’s authorized access to perform future operations on the file.
File descriptors are stored in the kernel, and only an index is returned to the process. Thus, file
descriptors are a form of capability (see Chapter 2 for the definition and Chapter 10 for a discussion
on capability-based systems). User processes present their file descriptor index to the kernel when
they request operations on the files that they have opened.

UNIX authorization controls traditional file operations by mediating file open for read, write,
and execute permissions. However, the use of these permissions does not always have the expected
effect: (1) these permissions and their semantics do not always enable adequate control and (2) some
objects are not represented as files, so they are unmediated. If a user has read access to a file, this is
sufficient to perform a wide-variety of operations on the file besides reading. For example, simply
via possession of a file descriptor, a user process can perform any ad hoc command on the file using
the system calls ioctl or fcntl, as well as read and modify file metadata. Further, UNIX does not
mediate all security-sensitive objects, such as network communications. Host firewalls provide some
control of network communication, but they do not restrict network communication by process
identity.

The UNIX authorization mechanism depends on user-level authentication services, such as
login and sshd, to determine the process identity (i.e., UID, GID, and supplementary groups,
see Section 4.2.1). When a user logs in to a system, her processes are assigned her login identity.
All subsequent processes created in this login session inherit this identity unless there is a domain
transition (see below). Such user-level services also need root privileges in order to change the
identity of a process, so they run with this special UID. However, several UNIX services need to
run as root in order to have the privileges necessary to perform their tasks. These privileges include
the ability to change process identity, access system files and directories, change file permissions, etc.
Some of these services are critical to the correct operation of UNIX authorization, such as sshd and
passwd, but others are not, such as inetd and ftp. However, a UNIX system’s trusted computing
base must include all root processes, thus risking compromise of security critical services and the
kernel itself.

UNIX protection domain transitions are performed by the setuid mechanism. setuid is
used in two ways: (1) a root process can invoke the setuid system call to change the UID of a
process 4 and (2) a file can have its setuid mode bit set, such that whenever it is executed its identity
is set to the owner of the file, as described in Section 4.2.1. In the first case, a privileged process,

#There are similar commands, such as setgid and setgroups, to change the GID and supplementary groups, respectively.

4.2. UNIX SECURITY 45

such as login or sshd, can change the identity of a process. For example, when a user logs in, the
login program must change the process identity of the user’s first process, her shell, to the user to
ensure correct access control. In the second case, the use of the setuid bit on a file is typically used
to permit a lower privileged entity to execute a higher privileged program, almost always as root.
For example, when a user wishes to change her password, she uses the passwd program. Since the
passwd program modifies the password file, it must be privileged, so a process running with the
user’s identity could not change the password file. The setuid bit on the root-owned, passwd
executable’s file is set, so when any user executes passwd, the resultant process identity transitions
to root. While the identity transition does not impact the user’s other processes, the writers of the
passwd program must be careful not to allow the program to be tricked into allowing the user to
control how passwd uses its additional privileges.

UNIX also has a couple of mechanisms that enable a user to run a process with a reduced
set of permissions. Unfortunately, these mechanisms are difficult to use correctly, are only available
to root processes, and can only implement modest restrictions. First, UNIX systems have a special
principal nobody that owns no files and belongs to no groups. Therefore, a process’s permissions
can be restricted by running as nobody since it never has owner or group privileges. Unfortunately,
nobody, like all subjects, has others privileges. Also, since only root can do a setuid only a
superuser process can change the process identity to nobody. Second, UNIX chroot can be used
to limit a process to a subtree of the file system [262]. Thus, the process is limited to only its rights
to files within that subtree. Unfortunately, a chroot environment must be setup carefully to prevent
the process from escaping the limited domain. For example, if an attacker can create /etc/passwd
and /etc/shadovw files in the subtree, she can add an entry for root, login as this root, and escape
the chroot environment (e.g., using root access to kernel memory). Also, a chroot environment
can only be setup by a root process, so it is not usable to regular system users. In practice, neither
of these approaches has proven to be an effective way to limit process permissions.

4.2.3 UNIXSECURITY ANALYSIS

If UNIX can be a secure operating system, it must satisfy the secure operating system requirements
of Chapter 2. However, UNIX fails to meet any of these requirements.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

The UNIX reference monitor interface consists of hooks to check access for file or inode
permission on some system calls. The UNIX reference monitor interface authorizes access to
the objects that the kernel will use in its operations.

A problem is that the limited set of UNIX operations (read, write, and execute) is not expressive
enough to control access to information. As we discussed in Section 4.2.2, UNIX permits
modifications to files without the need for write permission (e.g., fcntl).

46 CHAPTER 4. SECURITY IN ORDINARY OPERATING SYSTEMS

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

UNIX authorization does not provide complete mediation of all system resources. For some
objects, such as network communications, UNIX itself provides no authorization at all.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

Since the UNIX reference monitor interface is placed where the security-sensitive operations
are performed, it difficult to know whether all operations have been identified and all paths
have been mediated. No specific approach has been used to verify complete mediation.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

The reference monitor and protection system are stored in the kernel, but this does not guar-
antee tamper-protection. First, the protection system is discretionary, so it may be tampered
by any running process. Untrusted user processes can modify permissions to their user’s data
arbitrarily, so enforcing security goals on user data is not possible.

Second, the UNIX kernel is not as protected from untrusted user processes as the Multics kernel
is. Both use protection rings for isolation, but the Multics system also explicitly specifies gazes
for verifying the legality of the ring transition arguments. While UNIX kernels often provide
procedures to verify system call arguments, such procedures are may be misplaced.

Finally, user-level processes have a variety of interfaces to access and modify the kernel itself
above and beyond system calls, ranging from the ability to install kernel modules to special
file systems (e.g., /proc or sysfs) to interfaces through netlink sockets to direct access to
kernel memory (e.g., via the device file/dev/kmem). Ensuring that these interfaces can only
be accessed by trusted code has become impractical.

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

In addition to the kernel, the UNIX TCB consists of a// root processes, including all pro-
cesses run by a user logged in as a root user. Since these processes could run any program,
guaranteeing the tamper-protection of the TCB is not possible. Even ignoring root users, the
amount of TCB code is far too large and faces far too many threats to claim a tamperproof
trusting computing base. For example, several root processes have open network ports that
may be used as avenues to compromise these processes. If any of these processes is compro-
mised, the UNIX system is effectively compromised as there is no effective protection among

root processes.

4.2. UNIX SECURITY 47

Also, any root process can modify any aspect of the protection system. As we show below,
UNIX root processes may not be sufficiently trusted or protected, so unauthorized modifi-
cation of the protection system, in general, is possible. As a result, we cannot depend on a
tamperproof protection system in a UNIX system.

6. Verifiable: What is basis for the correctness of the system’s TCB?

Any basis for correctness in a UNIX system is informal. The effectively unbounded size of the
TCB prevents any effective formal verification. Further, the size and extensible nature of the
kernel (e.g., via new device drivers and other kernel modules) makes it impractical to verify its
correctness.

7. Verifiable: Does the protection system enforce the system’s security goals?

Verifiability enforcement of security goals is not possible because of the lack of complete
mediation and the lack of tamperproofing. Since we cannot express a policy rich enough to
prevent unauthorized data leakage or modification, we cannot enforce secrecy or integrity
security goals. Since we cannot prove that the TCB is protected from attackers, we cannot
prove that the system will be remain able to enforce our intended security goals, even if they
could be expressed properly.

4.2.4 UNIXVULNERABILITIES

A secure operating system must protect its trusted computing base from compromise in order to
implement the reference monitor guarantees as well. In this section, we list some of the vulnerabilities
that have been found in UNIX systems over the years that have resulted in the compromise of the
UNIX trusted computing base. This list is by no means comprehensive. Rather, we aim to provide
some examples of the types of problems encountered when the system design does not focus on
protecting the integrity of the trusted computing base.

Network-facing Daemons UNIX has several root (i.e., TCB) processes that maintain network
ports that are open to all remote parties (e.g., sshd, ftpd, sendmail, etc.), called nerwork-facing
daemons. In order to maintain the integrity of the system’s trusted computing base, and hence
achieve the reference monitor guarantees, such process must protect themselves from such input.
However, several vulnerabilities have been reported for such processes, particularly due to buffer
overflows [232, 318], enabling remote attackers to compromise the system TCB. Some of these
daemons have been redesigned to remove many of such vulnerabilities (e.g., Postfix [317, 73] as a
replacement for sendmail and privilege-separated SSH [251]), but a comprehensive justification of
integrity protection for the resulting daemons is not provided. Thus, integrity protection of network-
facing dameons in UNIX is incomplete and ad hoc.

Further, some network-facing daemons, such as remote login daecmons (e.g., telnet,rlogin,
etc.) £tpd, and NFS, puts an undo amount of trust in the network. The remote login daemons and

48 CHAPTER 4. SECURITY IN ORDINARY OPERATING SYSTEMS

ftpd are notorious for sending passwords in the clear. Fortunately, such daemons have been obsoleted
or replaced by more secure versions (e.g., vsftpd for £tpd). Also, NFS is notorious for accepting
any response to a remote file system request as being from a legitimate server [38]. Network-facing
daemons must additionally protect the integrity of their secrets and authenticate the sources of
remote data whose integrity is crucial to the process.

Rootkits Modern UNIX systems support extension via kernel modules that may be loaded dy-
namically into the kernel. However, a malicious or buggy module may enable an attacker to execute
code in the kernel, with full system privileges. A variety of malware packages, called rootkits, have
been created for taking advantage of kernel module loading or other interfaces to the kernel avail-
able to root processes. Such rootkits enable the implementation of attacker function and provide
measures to evade from detection. Despite efforts to detect malware in the kernel [244, 245], such
rootkits are difficult to detect, in general, [17].

Environment Variables UNIX systems support environment variables, system variables that are
available to processes to convey state across applications. One such variable is LIBPATH whose value
determines the search order for dynamic libraries. A common vulnerability is that an attacker can
change LIBPATH to load an attacker-provided file as a dynamic library. Since environment variables
are inherited when a child process is created, an untrusted process can invoke a TCB program
(e.g., a program file which setuid’s to root on invocation, see Section 4.2.2) under an untrusted
environment. If the TCB process depends on dynamic libraries and does not set the LIBPATH itself,
it may be vulnerable to running malicious code. As many TCB programs can be invoked via setuid,
this is a widespread issue.

Further, TCB programs may be vulnerable to any input value supplied by an untrusted process,
such as malicious input arguments. For example, a variety of program permit the caller to define
the configuration file of the process. A configuration file typically describes all the other places that
the program should look for inputs to describe how it should function, sometimes including the
location of libraries that it should use and the location of hosts that provide network information. If
the attack can control the choice of a program’s configuration file, she often has a variety of ways to
compromise the running process. Any TCB program must ensure their integrity regardless of how
they are invoked.

Shared Resources If TCB processes share resources with untrusted processes, then they may be
vulnerable to attack. A common problem is the sharing of the /tmp directory. Since any process can
create files in this directory, an untrusted process is able to create files in this directory and grant
other processes, in particular a TCB process, access to such files as well. If the untrusted process
can guess the name of TCB process’s /tmp file, it can create this file in advance, grant access to the
TCB process, and then have access itself to a TCB file. TCB processes can prevent this problem

4.3. WINDOWS SECURITY 49

by checking for the existence of such files upon creation (e.g., using the 0_CREAT flag). However,
programmers have been prone to forget such safeguards. TCB process must take care when using
any objects shared by untrusted processes.

Time-of-Check-to-Time-of-Use (TOCTTOU) Finally, UNIX has been prone to a variety of
attacks where untrusted processes may change the state of the system between the time an operation
is authorized and the time that the operation is performed. If such a change enables an untrusted
process to access a file that would not have been authorized for, then this presents a vulnerability. The
attack was first identified by Dilger and Bishop [30] who gave it the moniker time-of-check-to-time-
of-use attacks or TOCTTOU attacks. In the classical example, a root process uses the system call
access to determine if the user for whom the process is running (e.g., the process was initiated by
a setuid) has access to a particular file /tmp/X. However, after the access system call authorizes
the file access and before the file open, the user may change the binding between the file name
and the actual file object (i.e., inode) accessed. This can be done by change the file /tmp/X to a
symbolic link to the target file /etc/shadow. As a result, UNIX added a flag, so the open request
could prevent traversal via symbolic links. However, the UNIX file system remains susceptible to
TOCTTOU attacks because the mapping between file names and actual file objects (inodes) can
be manipulated by the untrusted processes.

As a result of the discretionary protection system, the size of the system TCB, and these
types of vulnerabilities, converting a UNIX system to a secure operating system is a significant
challenge. Ensuring that TCB processes protect themselves, and thus protect a reference monitor
from tampering, is a complex undertaking as untrusted processes can control how TCB processes
are invoked and provide inputs in multiple ways: network, environment, and arguments. Further,
untrusted processes may use system interfaces to manipulate any shared resources and may even
change the binding between object name and the actual object. We will discuss the types of changes
necessary to convert an ordinary UNIX system to a system that aims to satisfy the secure operating
system definition in Chapters 7 and 9, so we will see that several fundamental changes are necessary to
overcome these problems. Even then, the complexity of UNIX systems and their trusted computing
base makes satisfying the tamperproof and verifiability requirements of the reference monitor concept
very difficult.

4.3 WINDOWS SECURITY

In this section, we will show that Windows operating systems also fail to meet the requirements
of a secure operating system. This section will be much briefer than the previous examination of
UNIX as many of the concepts are similar. For example, Windows also supports processes with their
own address spaces that are managed by a ring-protected kernel. For a detailed description of the
Windows access control system examined in this section, circa Windows 2000, see Swift et al. [303].

50 CHAPTER4. SECURITY IN ORDINARY OPERATING SYSTEMS

4.3.1 WINDOWS PROTECTION SYSTEM

The Windows 2000 protection system °, like the UNIX protection system, provides a discretionary
access control model for managing protection state, object labeling, and protection domain transi-
tions. The two protection systems manly differ in terms of flexibility (e.g., the Windows system is
extensible) and expressive power (e.g., the Windows system enables the description of a wider variety
of policies). Unfortunately, when we compare the Windows protection system to the definition of
a secure protection system, we find that improvements in flexibility and expressive power actually
make the system more difficult to secure.

Specifically, the Windows protection system differs from UNIX mainly in the variety of
its objects and operations and the additional flexibility it provides for assigning them to subjects.
When the Windows 2000 access control model was being developed, there were a variety of security
systems being developed that provided administrators with extensible policy languages that permitted
flexible policy specification, such as the Java 2 model [117]. While these models address some of the
shortcomings of the UNIX model by enabling the expression of any protection state, they do not
ensure a secure system.

Subjects in Windows are similar to subjects in UNIX. In Windows, each process is assigned
a foken that describes the process’s identity. A process identity consists of user security identifier
(principal SID, analogous to a UNIX UID), a set of group SIDs (rather than a single UNIX GID
and a set of supplementary groups), a set of alias SIDs (to enable actions on behalf of another
identity), and a set of privileges (ad hoc privileges just associated with this token). A Windows
identity is still associated with a single user identity, but a process token for that user may contain
any combination of rights.

Unlike UNIX, Windows objects can belong to a number of different data types besides files.
In fact, applications may define new data types, and add them to the active directory, the hierarchical
name space for all objects known to the system. From an access control perspective, object types are
defined by their set of operations. The Windows model also supports a more general view of the
operations that an object type may possess. Windows defines up to 30 operations per object type,
including some operations that are specific to the data type [74]. This contrasts markedly with the
read, write, and execute operations in the UNIX protection state. Even for file objects, the Windows
protection system defines many more operations, such as operations to access file attributes and
synchronize file operations. In addition, application may add new object types and define their own
operations.

The other major difference between a Windows and UNIX protection state is that Windows
supports arbitrary access control lists (ACLs) rather than the limited mode bits approach of UNIX.
A Windows ACL stores a set of access control entries (ACEs) that describe which operations an SID
(user, group, or alias) can perform on that object 6 The operations in an ACE are interpreted based
on the object type of the target object. In Windows, ACEs may either grant or deny an operation.

SWe simply refer to this as the Windows protection system for the rest of the chapter.
6Remember that access control lists are stored with the object, and state which subjects can access that object.

4.3. WINDOWS SECURITY 51

Thus, Windows uses negative access rights, whereas UNIX does not, generating some differences
in their authorization mechanisms.

Example 4.2. Figure 4.1 shows an example ACL for an object foo. foo’s ACL contains three
ACEs. The field principal SID specifies the SID to which the ACE applies. These ACE apply to

Access Control List

Process P1 Access Control Entry 1
Principal SID Alice / Principal SID Alice
Group SIDs Group1, Group2 ACE Type Grant
Alias SIDs Cheryl Access Rights Read, Execute
Privileges None
Access Control Entry 2
Principal SID Bob
Process P2 ACE Type Grant
Principal SID Bob Access Rights Read
Group SIDs Group 2
Alias SIDs None
Privileges None Access Control Entry 3
Principal SID Group1
ACE Type Deny
Access Rights Read, Write

Figure 4.1: Windows Access Control Lists (ACLs) and process tokens for Examples 4.2 and 4.3

the SIDs Alice, Bob, and Groupl. The other two important fields in an ACE are its #ype (grant
or deny) and the access rights (a bitmask). The Alice and Bob ACEs grant rights, and the Group1
ACE denies access to certain rights. The access rights bitmask is interpreted based on the object zype
field in the ACE. We describe how the ACL is used in authorization in the next section.

4.3.2 WINDOWS AUTHORIZATION

Windows authorization queries are processed by a specific component called the Security Reference
Monitor (SRM). The SRM is a kernel component that takes a process token, an object SID, and a
set of operations, and it returns a boolean result of an authorization query. The SRM uses the object
SID to retrieve its ACL from which it determines the query result.

52 CHAPTER4. SECURITY IN ORDINARY OPERATING SYSTEMS

Because of the negative permissions, the way that the SRIM processes authorization queries
is more complicated than in the UNIX case. The main difference is that the ACEs in an ACL are
ordered, and the ACEs are examined in that order. The SRM searches the ACEs until it finds a set
of ACEs that permits the operation or a single ACE that denies the operation. If an ACE grants
the necessary operations ’, then the request is authorized. However, if a deny ACE is encountered
that includes one of the requested operations, then the entire request is denied.

Example4.3. Returning to Example 4.2 above, the ACEs of the object’s ACL are ordered as shown
in Figure 4.1. Note that the ACE field for access rights is really a bitmap, but we list the operations to
simplify understanding. Further, we specify the process tokens for two processes, P1 and P2. Below,
we show the authorization results for a set of queries by these processes for the target object.

P1, read: ok
P1, read, write: no
P2: read: ok
P2: read, write: no

Both P1 and P2 can read the target object, but neither can write the object. P1 cannot write
the object because the P1 token include Groupl which matches the deny ACE for writing. P2
cannot write the object because the ACE for Bob does not permit writing.

Mediation in Windows is determined by a set of object managers. Rather than a monolithic set
of system calls to access homogeneous objects (i.e., files) in UNIX, each object type in Windows has
an object manager that implements the functions of that type. While the Windows object managers
all run in the kernel, the object managers are independent entities. This can be advantageous from
a modularity perspective, but the fact that object managers may extend the system presents some
challenges for mediation. We need to know that each new object manager mediates all operations
and determines the rights for those operations correctly. There is no process for ensuring this in
Windows.

In Windows, the trusted computing base consists of all system services and processing running
as a trusted user identity, such as Administrator . Windows provides a setuid-like mechanism
for invoking Windows Services that run at a predefined privilege, at least sufficient to support all
clients. Thus, vulnerabilities in such services would lead to system compromise. Further, the ease
of software installation and complexity of the discretionary Windows access control model often
result in users running as Administrator. In this case, any user program would be able to take
control of the system. This is often a problem on Windows systems. With the release of Windows
Vista, the Windows model is extended to prevent programs downloaded from the Internet from
It may take multiple ACEs to grant all the requested operations, so this refers to the ACE that grants whatever remaining

operations were requested.

81n addition, these services and processes may further depend on non-Administrator processes, which would make the system
TCB even less secure.

4.3. WINDOWS SECURITY 53

automatically being able to write Windows applications and the Windows system, regardless of the
user’s process identity [152]. While this does provide some integrity protection, it does not fully
protect the system’s integrity. It prevents low integrity processes from writing to high integrity files,
but does not prevent invocation, malicious requests, or spoofing the high integrity code into using
a low integrity file. See Chapter 5 for the integrity requirements of a secure operating system.

Windows also provides a means for restricting the permissions available to a process flexibly,
called restricted contexts. By defining a restricted context for a process, the permissions necessary to
perform an operation must be available to both the process using its token and to the restricted
context. That is, the permissions of a process running in a restricted context are the inzersection of the
restricted context and the process’s normal permissions. Since a restricted context may be assigned an
arbitrary set of permissions, this mechanism is much more flexible than the UNIX option of running
as nobody. Also, since restricted contexts are built into the access control system, it less error-prone
than and chroot. Nonetheless, restricted contexts are difficult for administrators to define correctly,
so they are not used commonly, and not at all by the user community.

4.3.3 WINDOWS SECURITY ANALYSIS

Despite the additional expressive power offered by the Windows access control model, it also does
not satisfy any of the reference monitor guarantees either. Although Windows can express any
combination of permissions, it becomes more difficult to administer. In my informal polls, no users
use the Windows permission model at all, whereas most at least were aware of how to use the UNIX
model (although not always correctly). Windows is effectively no more or less secure than ordinary

UNIX—they are both insecure.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

In Windows, mediation is provided by object managers. Without the source code, it is difficult
to know where mediation is performed, but we would presume that object managers would
authorize the actual objects used in the security-sensitive operations, similarly to UNIX.

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

Object managers provide an opportunity for complete mediation, but provide no guarantee of
mediation. Further, the set of managers may be extended, resulting in the addition of potentially
insecure object managers. Without a formal approach that defines what each manager does
and how it is to be secured, it will not be possible to provide a guarantee of complete mediation.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

As for UNIX, no specific approach has been used to verify complete mediation.

54 CHAPTER4. SECURITY IN ORDINARY OPERATING SYSTEMS

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, for modification?

Windows suffers from the same problems as UNIX when it comes to tampering. First, the
protection system is discretionary, so it may be tampered by any running process. Untrusted
user processes can modify permissions to their user’s data arbitrarily, so enforcing security goals
on user data is not possible. Since users have often run as Administrator to enable ease of
system administration, any aspect of the protection system may be modified.

Second, there are limited protections for the kernel itself. Like UNIX, a Windows kernel can
be modified through kernel modules. In Microsoft Vista, a code signing process can be used
to determine the certifier of a kernel module (i.e., the signer, not necessarily the writer of
the module). Of course, the administrator (typically an end user) must be able to determine
the trustworthiness of the signer. Security procedures that depend on the decision-making of
users are often prone to failure, as users are often ignorant of the security implications of such
decisions. Also, like UNIX, the Windows kernel also does not define protections for system
calls (e.g., Multics gates).

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

The TCB of Windows system is no better than that of UNIX. Nearly any program may be
part of the Windows TCB, and any process running these programs can modify other TCB
programs invalidating the TCB.

Like UNIX, any compromised TCB process can modify the protection system invalidating
the enforcement of system security goals, and modify the Windows kernel itself through the
variety of interfaces provided to TCB processes to access kernel state.

Unlike UNIX, Windows provides APIs to tamper with other processes in ways that UNIX
does not. For example, Windows provides the CreateRemoteThread function, which enables
a process to initiate a thread in another process [207]. Windows also provides functions for
writing a processes memory via OpenProcess and WriteProcessMemory, so one process can
also write the desired code into that process prior to initiating a thread in that process. While
all of these operations require the necessary access rights to the other process, usually requiring
a change in privileges necessary for debugging a process (via the AdjustTokenPrivileges).
While such privileges are typically only available to processes under the same SID, we must
verify that these privileges cannot be misused in order to ensure tamper-protection of our

TCB.

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?

As for UNIX, any basis for correctness is informal. Windows also has an unbounded TCB
and extensible kernel system that prevent any effective formal verification.

4.3. WINDOWS SECURITY 55

7. Verifiable: Does the protection system enforce the system’s security goals?

The general Windows model enables any permission combination to be specified, but no
particular security goals are defined in the system. Thus, it is not possible to tell whether a
system is secure. Since the model is more complex than the UNIX model and can be extended
arbitrarily, this makes verifying security even more difficult.

4.3.4 WINDOWS VULNERABILITIES

Not surprisingly given its common limitations, Windows suffers from the same kinds of vulnerabil-
ities as the UNIX system (see Section 4.2.4). For example, there are books devoted to constructing
Windows rootkits [137]. Here we highlight a few vulnerabilities that are specific to Windows systems
or are more profound in Windows systems.

The Windows Registry The Windows Registry is a global, hierarchical database to store data for
all programs [206]. When a new application is loaded it may update the registry with application-
specific, such as security-sensitive information such as the paths to libraries and executables to
be loaded for the application. While each registry entry can be associated with a security context
that limits access, such limitations are generally not effectively used. For example, the standard
configuration of AOL adds a registry entry that specifies the name of a Windows library file (i.e.,
DLL) to be loaded with AOL software [120]. However, the permissions were set such that any user
could write the entry.

This use of the registry is not uncommon, as vendors have to ensure that their software will
execute when it is downloaded. Naturally, a user will be upset if she downloads some newly-purchased
software, and it does not execute correctly because it could not access its necessary libraries. Since the
application vendors cannot know the ad hoc ways that a Windows system is administered, they must
turn on permissions to ensure that whatever the user does the software runs. If the registry entry
is later used by an attacker to compromise the Windows system, that is not really the application
vendor’s problem—selling applications is.

Administrator Users We mentioned in the Windows security evaluation that traditionally users
ran under the identity Administrator or at least with administrative privileges enabled. The reason
for this is similar to the reason that broad access is granted to registry entries: the user also wants to be
sure that they can use what function is necessary to enable the system to run. If the user downloads
some computer game, the user would need special privileges to install the game, and likely need
special privileges to run the device-intensive game program. The last thing the user wants is to have
to figure out why the game will not run, so enabling all privileges works around this issue.

UNIX systems are generally used by more experienced computer users who understand the
difference between installing software (e.g., run sudo) and the normal operation of the computer. As

56 CHAPTER4. SECURITY IN ORDINARY OPERATING SYSTEMS

a result, the distinction between root users and sudo operations has been utilized more effectively

in UNIX.

Enabled By Default Like users and software vendors, Windows deployments also came with full
permissions and functionality enabled. This resulted in the famous Code Red worms [88] which
attacked the SQL server component of the Microsoft IIS web server. Many people who ran IIS did
not have an SQL server running or even knew that the SQL server was enabled by default in their
IIS system. But in these halcyon times, IIS web servers ran with all software enabled, so attackers
could send malicious requests to SQL servers on any system, triggering a buffer overflow that was
the basis for this worm’s launch. Subsequent versions of IIS are now “locked down” ? such that
software has to be manually enabled to be accessible.

4.4 SUMMARY

This investigation of the UNIX and Windows protection systems shows that it is not enough just to
design an operating system to enforce security policies. Security enforcement must be comprehensive
(i-e., mediate completely), mandatory (i.e., tamperproof), and verifiable. Both UNIX and Windows
originated in an environment in which security requirements were very limited. For UNIX, the only
security requirement was protection from other users, and for Windows, users were assumed to be
mutually-trusted on early home computers. The connection of these systems to untrusted users and
malware on the Internet changed the security requirements for such systems, but the systems did
not evolve.

Security enforcement requires that a system’s security mechanisms can enforce system secu-
rity goals even when any of the software outside the trusted computing base may be malicious. This
assumption is required in today’s world where any network request may be malicious or any user
process may be compromised. A system that enforces security goals must implement a mandatory
protection system, whereas these system’s implement discretionary protection that can be modi-
fied and invalidated by untrusted processes. A system that enforces security goals must identify
and mediate all security-sensitive operations, whereas these systems have incomplete and informal
mediation of access. Finally, a system that enforces security goals must be tamperproof, and these
systems have unbounded TCBs that provide many unchecked opportunities for untrusted processes
to tamper with the kernel and other TCB software. When we consider secure commercial systems
in Chapters 7 and 9, we will see that significant changes are necessary, but it is still difficult to undo
fully the legacy of insecurity in these systems.

9Features that are not required are disabled by default. Bastille Linux performs a similar role to lock down all services in Linux
systems [20].

57

CHAPTER 5

Verifiable Security Goals

In this chapter, we examine access control models that satisfy the mandatory protection system of
Definition 2.4 in Chapter 2. A mandatory protection system provides a tamperproof description of
the system’s access control policy. A mandatory protection system consists of: (1) a protection state
that defines the operations that a fixed set of subject labels can perform on a fixed set of object
labels; (2) a labeling state that maps system processes and resources to their subject and object labels,
respectively; and (3) a fransition state that defines the legal ways that system processes and resources
may be assigned to new labels. As such, it manages the access rights that all system processes will
ever obtain.

A mandatory protection system is necessary for a secure operating system to implement two
of the requirements of the reference monitor concept as defined in Definition 2.6: tamperproofing and
verifiability. A mandatory protection system is tamperproof from untrusted processes as the system
defines the labeling of subjects and objects, transitions in these labels, and the resulting protection
state. Because these access control models in mandatory protection systems only allow the system to
modify the protection state, they are called mandatory access control models [179] 1. Also, a mandatory
protection system describes the access control policy that we use to verify the enforcement of the
system’s security goals. Often, such models support the definition of policies that describe concrete
security goals, which we will define below.

In this chapter, we describe mandatory protection systems and the security goals that they
imply. In general, a secure operating system should ensure the enforcement of secrecy goals, includ-
ing for covert channels, and integrity goals. We present the basic concept for expressing secrecy and
integrity goals, information flows, and then describe models for expressing these goals in mandatory
access control policies. The models that we present here mainly focus on either secrecy or integrity,
not both, but there are several mandatory models that combine both facets, such as Type Enforce-
ment [33], Chinese Wall [37], and Caernarvon [278]. Unifying secrecy and integrity effectively in
systems is an ongoing challenge in practice, as we will see.

5.1 INFORMATION FLOW

Secure operating systems use information flow as the basis for specifying secrecy and integrity security
requirements. Conceptually, information flow is quite simple.

Definition 5.1. An information flow occurs between a subject s € S and an object 0 € O if the
subject performs a read or write operation on the object. The information flow s — o is from the

Historically, the term mandatory access control model has been used to describe specific access control models, such as the multilevel
secrecy models, but we use the broader definition in this book that is based on how the policies in these models are administered.

58 CHAPTERS5. VERIFIABLE SECURITY GOALS

subject to the object if the subject writes to the object. The information flow s <— o0 is from the
object to the subject if the subject reads from the object.

Information flow represents how data moves among subjects and objects in a system. When
a subject (e.g., process) reads from an object (e.g., a file), the data from the object flows into the
subject’s memory. If there are secrets in the object, then information flow shows that these secrets
may flow to the subject when the subject reads the object. However, if the subject holds the secrets,
then information flow also can show that the subject may leak these secrets if the subject writes to
the object.

Note that every operation on an object is either an information flow read (i.e., extracts data
from the object), an information flow write (i.e., updates the object with new data), or a combination
of both. For example, execute reads the data from a file to prepare it for execution, so the process
reads from the file. When we deleze a file from a directory, the directory’s set of files is changed. The
result is that an entire protection state of a mandatory protection system can be represented by a set
of information flow reads and writes.

Thus, any protection state can be represented by an information flow graph.

Definition 5.2. An information flow graph for a protection state is a directed graph G = (V, E)
where: (1) the set of vertices V consists of the union of the set of subjects and set of objects in the
protection state and (2) the set of directed edges E consists of each read and write information flow
in the protection state.

An information flow graph for a protection state can be constructed as follows. First, we create
avertex for each subject and object in the protection state. Then, we add the information flow edges.
To do this, we determine whether each operation in the protection state results in a read, write, or
combination information flow. Then, we add an information flow edge from a subject vertex to an
object vertex when the subject has permission to a write information flow operation for the object
in the protection state. Likewise, we add an information flow edge from an object vertex to a subject
vertex when the subject has permission to a read information flow operation in the protection state.

Example 5.3. Consider the access matrix shown in Figure 5.1. It defines the set of operations that
the subjects S1, S2, and S3 can perform on objects O1 and O2. Note that some operations, such as
append, getattr, and ioctl have to be mapped to their resultant information flows, write, read,
and both, respectively. As a result, this access matrix represents the corresponding information flow
graph shown in Figure 5.1.

Information flow is used in secure operating systems as an approximation for secrecy and
integrity. For secrecy, the information flow edges in the graph indicate all the paths by which data
may be Jeaked. We can use the graph to determine whether a secret object 0 may be leaked to an

5.2. INFORMATION FLOW SECRECY MODELS 59
Information Flow Graph

Access Matrix

01 02 / \
read read
St append getattr
read
S2 ioctl /
read
S3 write append

Figure 5.1: The information flow graph on the right represents the information flows described by the
access control matrix on the left.

unauthorized subject s. If there exists a path in the information flow graph from o to s, then there
is an unauthorized leak in the corresponding protection state.

For integrity, we require that no high integrity subject depends on any low integrity subjects or
objects. We can use the graph to determine whether a high integrity subject s1 receives input from a
low integrity subject s2 (e.g., an attacker). If there exists a path in the information flow graph from
52 to s1, then the high integrity subject s1 receives input from the low integrity subject s2. When
a high integrity subject receives input from a low integrity subject, it is assumed that it depends on
that low integrity subject.

5.2 INFORMATION FLOW SECRECY MODELS

For information flow secrecy, we want to ensure that no matter which programs a user runs, she
cannot leak information to an unauthorized subject. The classical problem is that the user may be
coerced into running a program that contains malware that actively wants to leak her information.
For example, a Trojan horse is a type of malware that masquerades as a legitimate program, but
contains a malicious component that tries to leak data to the attacker.

The access control models of UNIX and Windows cannot prevent such an attack, because:
(1) they do not account for all the information flows that may be used to leak information and (2)
the policies are discretionary, so the malware can modify the policy to introduce illegal information
flows. First, UNIX and Windows policies often define some files shared among all users, but any
user’s secret data may also be leaked through such public files by well-crafted malware. For example,
the UNIX model permits the sharing of files with all users by granting read access to the others.
However, if a user has write access to any file that others can read, then the malware can leak secrets
by writing them to this file. Second, discretionary access control (DAC) protection systems, such

60 CHAPTERS5. VERIFIABLE SECURITY GOALS

as those used by UNIX and Windows, permit the users to modify access control policies. However,
any program that the user runs can modify the permission assignments to files that the user owns.
Thus, any of the user’s files may be leaked by malware simply by changing the file permissions.

The security policy models used in mandatory protection systems aim to solve these problems.
First, they explicitly restrict information flows to not leak secret data. Second, such models do not
permit users or their programs to modify the information flows permitted. In addition to the secrecy
models presented here, see the High-Water Mark model of Weissman [329].

5.2.1 DENNING’S LATTICE MODEL

Denning refined the general information flow graph to express information flow secrecy require-
ments [70, 271] based partly on the work of Fenton [93].

Definition 5.4. An information flow model is a quintuple {N, P, SC, ®, —}, where: (1) N is the
set of storage objects (e.g., files); P is the set of subjects (e.g., processes) that cause information flows;
SC is a set of security classes; (2) —C SC x SC is a binary can-flow relation on SCj; and (3) &:
SC x SC — SC is a binary join operator on SC.

In ainformation flow model, each subject and object is assigned a security class. Secure classes
are labels in the mandatory protection system defined in Definition 2.4, and both subjects and objects
may share security classes. For example, a subject and object may both be assigned to security class
X . However, another subject, to whom X data must not be leaked, is assigned security class Y. The
can-flow relation — defines the legal information flows in the model. Thatis, ¥ — X specifies that
information at security class ¥ can flow to subjects and objects in security class X 2. Since we have
a secrecy requirement that information in security class X not be leaked to subjects and objects of
security class Y, X 4 Y.The join operator determines the security class that results from combining
data of two distinct security classes X @ Y = Z. In this case, the combination of data from X and
Y security classes is labeled Z.

Example 5.5. Figure 5.2 shows two information flow model policies. In (a), this policy isolates
users iy, U, U3, ..., 4; by assigning them to distinct security classes. Any data in security class u;
cannot be read or written by any process running with security class u ; where i # j.

Figure 5.2 (b) shows an information flow model policy that totally orders security classes, such
that data in higher classes will not be leaked to lower security class. These security classes represent
the traditional governmental secrecy classes, fop-secret, secret, confidential, and unclassified. In this
policy, fop-secret data may not be read by processes running in the lower classes in the information
flow model policy. Further, processes running in fop-secret may not write to objects in the lower
security classes. Lower security classes, such as secrez, may have information flow by permitting
higher security classes (e.g., fop-secret) to read their data or by writing up to objects in the higher

2Infix notation.

5.2. INFORMATION FLOW SECRECY MODELS

Top-
secret

*

O ®®-C

(@) (b)

Unclass
-ified

Figure 5.2: Two information flow model policies: (a) consists of isolated security class where no infor-
mation flows among them and (b) is a totally-ordered sequence of security classes where information
flows upwards only.

security classes. Since processes in the lower security classes do not even know the name of objects
in higher security classes, such writing is implemented by a polyinstantiated file system where the
files have instances at each security level, so the high security process can read the lower data and
update the higher secrecy version without leaking whether there is a higher secrecy version of the

file.

Such information flow model policies actually can be represented by a finite /az#ice. Denning
defines four axioms required for lattice policies.

Definition 5.6. An information flow model forms a finite lattice if it satisfies the following axioms.
1. The set of security classes SC is finite.
2. The can-flow relation — is a partial order on SC.

3. SC has a lower bound with respect to —.

61

62 CHAPTERS5. VERIFIABLE SECURITY GOALS
4. The join operator @ is a totally defined least upper bound operator.

The key result comes from axiom 4. In a finite lattice, the join operator is defined for any
combination of security classes. Thus, for X1 @ X2 @ ... @ X,, = Z, the security class Z that results
from a combination of data from any security classes in SC must also be in SC. For lattice policies,
the results of any join operation can be modeled because the security class of the operation can always
be computed.

Note that the Example 5.5(b) satisfies the Denning axioms, so it is a finite lattice. Any
combination of data can be assigned a security class. For example, when a secres process generates
data read from confidential and unclassified inputs, the data generated is labeled secrez, which is the
least upper bound of the three security classes. However, we can see that Example 5.5(a) does not
satisfy axioms 3 and 4, so we cannot label the results from any operation that uses the data from two
different users.

Finally, a useful concept is the inverse of the can-flow relation, called the dominance relation.
Dominance is typically used in the security literature.

Definition5.7. A > B (read as A dominates B) if and only if B — A.The strictly dominates relation
> is defined by A > B if and only if A > B and A # B. We say that A and B are comparable if
A > Bor B > A. Otherwise, A and B are incomparable.

Dominance indicates which security class is more sensitive (i.e., contains data that is more
secret). From a security perspective, dominance defines the information flows that are not allowed.
Thatis,if A > B, then A’s data must not flow to B or this constitutes a leak.

5.2.2 BELL-LAPADULA MODEL

The most common information flow model in secure operating systems for enforcing secrecy re-
quirements is the Bell-LaPadula (BLP) model [23]. There are a variety of models associated with
Bell and LaPadula, but we describe a common variant here, known as the Multics interpretation.
This BLP model is a finite lattice model where the security classes represent two dimensions of
secrecy: sensitivity level and need-to-know. The sensitive level of data is a total order indicating se-
crecy regardless of the type of data. In the BLP model, these levels consist of the four governmental
security classes mentioned previously: zop-secret, secret, confidential, and unclassified. However, it was
found that not everyone with a particular security class “needs to know” all the information labeled
for that class. The BLP model includes a set of cazegories that describe the topic areas for data, defin-
ing the need-to-know access. The BLP model assigns a sensitivity level that defines the secrecy level
that the subject is authorized for, and also a set of categories, called a compartment, to each subject
and object. The combination of sensitivity level and compartment for a subject are often called its
clearance. For objects, their combination of sensitivity level and compartment are called its access c/ass.

Example 5.8. Figure 5.3 shows a Bell-LaPadula policy with two sensitivity levels and three cate-
gories. The edges show the direction of information flow authorized by the Bell-LaPadula policy. If

5.2. INFORMATION FLOW SECRECY MODELS 63
Top-
secret:
MIL+ST

Top-
secret:

Top- \
ALL

secret: \

\

D
\ Top- |
secret: \
NUC+MILY

Figure 5.3: This a Haase diagram (with the information flow direction added in edges) of a Bell-

LaPadula policy consisting of two sensitivity levels (¢gp-secret and secret where top-secret dominates) and

three categories (NUC, MIL, and ST). The edges show the information flows authorized by the Bell-
LaPadula model for this lattice.

a subject is cleared for top-secret:MIL, it is able to read from this class, top-secret:none,

and secret:MIL. However, information cannot flow to the top-secret:MIL class from

top-secret :MIL+ST or others that include categories besides MIL. Even information that is labeled
with the secret sensitivity level, but has additional categories may not flow to top—secret :MIL.

Of course, subjects at the top-secret :MIL clearance can write to any top-secret class that in-
cludes the category MIL, but none of secret classes. The latter is not possible because the sensitivity

level top-secret dominates or is incomparable to any secret class. Writes may only be allowed
to classes that dominate the subject’s clearance.

The BLP model defines two key properties for information flow secrecy enforcement.

Definition5.9. The simple-security property states that subject s can read an object 0 only if SC(s) >
SC(0). Thus, a subject can only read data that at their security class or is less secret. Second, the

64 CHAPTERS5. VERIFIABLE SECURITY GOALS

x-security property states that subject s can write an object 0 only if SC(s) < SC(0). Thus, a subject
can only write data that is at their security class or is more secret.

The simple-security property solves the obvious problem that subjects should not read data
that is above their security class. That is, the BLP policy identifies unauthorized subjects for data
as subjects whose security class is dominated by the object’s security class. Thus, the simple-security
property prevents unauthorized subjects from receiving data.

The »-security property handles the more subtle case that results when the user runs malware,
such as a Trojan horse. This property prevents any process from writing secrets to a security class that
they dominate, so even if the process is a Trojan horse, it cannot leak data to unauthorized subjects.

The BLP model and its variants are also called multilevel security models and mandatory
access control models. A multilevel security (MLS) model is a lattice model consisting of multiple
sensitivity levels. While the BLP models are simply instances of MLS models, they are MLS models
used predominantly in practice. Thus, the BLP models are synonymous with MLS models.

The Bell-LaPadula model implements a mandatory protection system (see Definition 2.4 in
Chapter 2. First, this model implements a mandatory protection state. A fixed set of security classes
(labels), consisting of sensitivity levels and categories, are defined by trusted administrators. The
dominance relationship among security classes is also fixed at policy definition. Since information
flow in the Bell-LaPadula model is determined by the dominance relation, the set of accesses that
are possible are fixed.

Second, the Bell-LaPadula model defines a /abeling state where subjects and objects are labeled
based on the label of the process that created them. At create time, a subject or object may be labeled
at a security class that dominates the security class of the creating process. Once the subject or object
is created and labeled, its label is static.

Third, the Bell-LaPadula model defines a null #ransition state. That is, once a subject or object
is labeled (i.e., when it is created), the label may not change. The assumption that the assignment of
security classes to subjects and objects does not change is called #ranguility. Thus, the Bell-LaPadula
model satisfies the requirements for a mandatory protection system.

5.3 INFORMATION FLOW INTEGRITY MODELS

Secure operating systems sometimes include policies that explicitly protect the integrity of the
system. Integrity protection is more subtle than confidentiality protection, however. The integrity
of a system is often described in more informal terms, such as “it behaves as expected.” A common
practical view of integrity in the security community is: @ process is said to be high integrity if it does
not depend on any low integrity inputs. That is, if the process’s code and data originate from known,
high integrity sources, then we may assume that the process is running in a high integrity manner
(e.g., as we would expect).

Like data leakage, dependence can also be mapped to information flows. In this case, if a high
integrity process reads from an object that may be written to by a low integrity process, then the

5.3. INFORMATION FLOW INTEGRITY MODELS 65

high integrity process may be compromised. For example, if an attacker can modify the configuration
files, libraries, or code of a high integrity process, then the attacker can take control of the process,
compromising its integrity.

5.3.1 BIBAINTEGRITY MODEL

Based on this view, an information flow model was developed by Biba [27], now called the Biba
integrity model 3 The Biba model is a finite lattice model, as described above, but the model defines
properties for enforcing information flow integrity.

Definition 5.10. 'The simple-integrity property states that subject s can read an object o only if
SC(s) < SC(0).Thus, a subject can only read data that is at their security class or is higher integrity.
Second, the x-integrity property states that subject s can write an object o only if SC(s) > SC(0).
Thus, a subject can only write data that is at their security class or is lower integrity.

Example5.11. A Bibalattice model only uses inzegrity levels, not categories. Like the Bell-LaPadula
model, the integrity levels are typically totally-ordered. However, unlike the Bell-LaPadula model,
there is no commonly-agreed set of levels. An example Biba lattice could include the integrity levels of
trusted, system, application, user, and untrusted where trusted is the is highest integrity
level and untrusted is the lowest. In the Biba model, information flows are only allowed from
the higher integrity levels to the lower integrity levels. Thus, subjects and objects that are labeled
untrusted should not be able to write to subjects or objects in the other levels.

Thus, the flows allowed in a Biba policy are reverse of the flows allowed in the BLP model.
Where BLP allows a subject to read objects of a security class dominated by the subject, Biba does
not because the objects in a lower security class in Biba are lower integrity. As a result, if we combine
BLP and Biba using a single set of security classes, subjects can only read and write data in their
security class, which is too limiting for most systems. Also, the integrity and secrecy of a particular
object are not necessarily the same, so, in practice two lattices, one for secrecy and one for integrity
are created. Further, these lattices contain two distinct sets of security classes. From here, we will call
the nodes in a secrecy lattice SC, secrecy classes, and the nodes in an integrity lattice SC;, integrity
classes. The two sets of security classes are disjoint.

Example 5.12. Figure 5.4 shows Biba and Bell-LaPadula lattices (levels only) where both must be
authorized before an operation is permitted. This joint model enables the enforcement of secrecy
and integrity goals. Each subject and object is assigned to a secrecy class and an integrity class which
then defines the allowed information flows.

3There were actually three different integrity models proposed in this paper, called low-water mark integrity, ring integrity, and

strict integrity. The strict integrity model became the most prominent of the three models, and it is the one we now call the Biba
integrity model. The low-water mark integrity gained renewed interest later under the acronym LOMAC, see Section 5.3.2.

66 CHAPTER5. VERIFIABLE SECURITY GOALS

Biba Policy Bell-LaPadula Policy

Top-
secret

Confi-
dential

Unclass
-ified

0, 0,0,0,0

Figure 5.4: For a system that enforces both secrecy and integrity goals, Biba and Bell-LaPadula can
be jointly applied. Subjects and objects will be assigned both Biba integrity classes and Bell-LaPadula

secrecy classes from the set as shown.

Suppose that an objectis a top-secret, user object (i.e., secrecy class, then integrity class).
Only subjects that are authorized to read both top-secret objects according to the Bell-LaPadula
policy and user objects according to the Biba policy are permitted to read the object. For example,
neither secret, low nor top-secret, appl are allowed to read this object because both the
Biba and Bell-LaPadula requirements are not satisfied for these subjects. A subject must be able to
both read the object in Bell-LaPadula (i.e., be top-secret) and read the object in Biba (i.e., be
low or user).

As for reading, a subject’s integrity and secrecy classes must individually permit the subject to
write to the object for writes to be authorized.

Lipner defined specific integrity and secrecy levels and categories could be chosen with the aim
of constructing a useful composite model for commercial systems [190]. Lipner chose two secrecy
levels, audit manager and system low, where audit manager is more secret (i.e.,logs cannot be read once
they are written). Also, there are three secrecy categories, production, development, system development.
Production is used for production code and data, and the development categories separate system
and user program development. In modern systems, we probably need at least one more secrecy level
or category for untrusted programs (e.g., to prevent them from downloading the commercial entity’s
data). For integrity, the lattice has three levels, system programs, operational, and system low. The

first two levels separate system code from user applications. There are still two integrity categories,

5.3. INFORMATION FLOW INTEGRITY MODELS 67

production and development. Given the wider range of sources of data, more integrity levels are
probably necessary today (e.g., Vista defines six integrity levels [152], although it is not a mandatory
integrity system).

Biba is derived from Bell-LaPadula in such a way that it is also a mandatory protection system.
The Biba protection state is mandatory, and, like Bell-LaPadula, its labeling state only permits the
labeling to dominate integrity classes (i.e., lower in the Biba lattice) at creation time. Also, Biba has
a null transition state, as integrity class assignments are fixed at creation time.

While the Biba model makes some intuitive sense, it differs from the BLP model in that
there are no practical analogues for its use. The BLP model codifies the paper mechanism used by
government agencies to protect the secrecy of documents. Thus, there was a practical application of
the BLP model, so its application to computerized documents satisfied some users. We note that
commercial systems do not use BLP in most cases.

A question is whether equating reading and writing with dependence in the Biba model is a
practical way to enforce integrity. Many processes whose integrity must be protected, such as system
services, databases, and web servers, accept input from untrusted sources. Biba explicitly prohibits
such communication unless a formally-assured (see Chapter 12) guard process is inserted to filter
such untrusted input. Since such guards must be application-specific, the development of such guards
is expensive. Thus, the Biba model has not been applied to the extent that the BLP model has.

5.3.2 LOW-WATER MARK INTEGRITY

An alternative view of integrity is the Low-Water Mark integrity or LOMAC model [27, 101].
LOMAC differs from Biba in that the integrity of a subject or object is set equal to the lowest
integrity class input. For example, a subject’s integrity starts at the highest integrity class, but as
code, libraries, and data are input, its integrity class drops to the lowest class of any of these inputs.
Similarly, a file’s integrity class is determined by the lowest integrity class of a subject that has written
data to the file.

Example 5.13. Suppose a process p uses four inputs whose integrity levels are defined in the
integrity lattice of Example 5.12 in Figure 5.4: (1) its code is at the application integrity level,
(2) its libraries are also at the system integrity level; (3) its configuration files are at application
integrity; and (4) it receives input from untrusted network subjects at the Low integrity level. As a
result, process p’s integrity level will be 1ow. If process p does not receive inputs from untrusted
network subjects, then its integrity level will be application. However, if it is tricked into using
a library that was provided by a untrusted network subject (i.e., the library is at the low integrity
level), then process p will also be Low protecting the integrity of application data.

LOMAC differs from BLP and Biba in that the integrity class of a subject or object may
change as the system runs. That is,a LOMAC transition state is nonnull, as the protection state is

68 CHAPTER5. VERIFIABLE SECURITY GOALS

not tranquil (see Section 5.2.2). LOMAC relaxes the tranquility requirement securely because it only
lowers the security class of a subject or object. For a subject, the lowering of its security class reduces
the set of objects that it can modify, reducing the number of objects whose integrity is dependent on
the subject. For objects, the lowering of its security class reduces the number of subjects that can read
the object, reducing the risk of subjects reading a low integrity object. Tranquility may be relaxed in
other ways that still preserve the information flow requirements.

Like Biba, LOMAC does not correspond to how high integrity programs are built in practice,
so its use has been limited. Since most high integrity processes receive some low integrity input, a
LOMAC policy will result in most processes running at a low integrity class. In practice, systems
depend on high integrity programs to protect themselves from malicious input. Despite the fact that
there are many instances where this is not the case (e.g., buffer overflows in web server and network
daemon software), most applications aim for self-protection.

5.3.3 CLARK-WILSON INTEGRITY

While some secure operating system architectures advocate the extensive use of guards (e.g., MILS,
see Chapter 6), it is still an unresolved question whether the expensive of separate guards is justified.
In the Clark-Wilson integrity model [54], no such external guard processes are required.

Ten years after the Biba model, Clark and Wilson aimed to bring integrity back into the focus
of security enforcement. Clark-Wilson specified that high integrity data, called constrained data
items (CDIs), must be validated as high integrity by special processes, called integrity verification
procedures (IVPs), and could only be modified by high integrity processes, called rransformation
procedures (T'Ps). IVPs ensure that CDIs satisfy some known requirements for integrity (analogously
to double-bookkeeping in accounting), so that the system can be sure that it starts with data that
meets its integrity requirements. TPs are analogous to high integrity processes in Biba in that only
they may modify high integrity data. That is, low integrity processes may not write data of a higher
integrity level (i.e., CDI data). These two requirements are defined in two certification rules of the
model, CR1 and CR2.

The Clark-Wilson model also includes enforcement rules that limit the users and TPs that may
access CDIs, ER1 and ER2. When a CDI is accessed, it can be accessed only using a TP authorized
for that CDI (ER1), and only by a user authorized to run that TP to access that CDI (ER2).

The Clark-Wilson model is comprehensive in that it defines rules for authentication, auditing,
and administration. Clark-Wilson requires that all users must be authenticated before they can run
a'TP (ER3). Also, auditing is enforced by the rule that states that all TPs must append operational
information sufficient to reconstruct any operation in an append-only CDI (CR4). Administration
is enforced via two rules. First, Clark-Wilson restricts the certifier of a TP to be an entity who does
not have execute permission for that TP (ER4). Second, administration of permissions assigning
users and TPs to CDIs must satisfy the principle of separation of duty, defined by Clark and Wilson.
According to this principle, no single principal can execute all the transactions in a separation
transaction set. For example, a subject cannot both execute a payment and authorize that payment.

5.3. INFORMATION FLOW INTEGRITY MODELS 69

However, the most significant part of the model was the portion concerned with integrity
protection. The Clark-Wilson model also includes a rule (CR5) to prevent the high integrity pro-
cesses (IVPs and TPs) from depending on low integrity data. A high integrity process may read
low integrity data, called unconstrained data items (UDIs), but it must either upgrade or discard that
data upon receipt. That is, Clark-Wilson does not require a separate guard process like Biba, but it
requires that the high integrity process guard itself. In order for a high integrity process to justify its
ability to both write CDIs correctly and protect itself when it reads UDIs, the Clark-Wilson model
requires that TPs be fully assured themselves. As we have discuss in Chapter 12, methodologies for
comprehensive assurance are expensive, so few applications have ever been assured at this level.

5.3.4 THE CHALLENGE OF TRUSTED PROCESSES

With MLS and Biba, we can formally show that a system’s information flows adhere to these policies,
but they assume that there are no processes that would ever require illegal information flows. For
MLS, some processes may be required to leak some information processed at a secret clearance
to processes that can only read public information. This is analogous to a general holding a news
conference or submitting orders to subordinates. For Biba, some trusted processes may be required to
process inputs received from untrusted processes. This is analogous to an oracle providing responses
to questions. The integrity of the oracle cannot be impacted by the integrity of the questions.

Such computations must be implemented by trusted processes. In Multics, it was found [333]
that system processes could “not operate at a single clearance level,” so these processes must be
trusted “never [to] violate the fundamental security rules.” In the design of KSOS; the set of trusted
user-level programs including 10 different groups of programs [97].

While MLS and Biba models support the use of trusted processes (e.g., guards), the number of
programs that need to be trusted became nontrivial and remain so today. For example, SELinux/MLS
(see Chapter 9) specifies over 30 trusted subjects. One approach has been to reduce the scope of
trust required of such programs. GEMSOS models permitted processes to work within ranges of
access classes [277,290]. The Caernarvon model [278] permits processes to work within access class
ranges encompassing both secrecy and integrity. To obtain such authorization, programs must be
certified in some manner analogous to Common Criteria assurance.

In lieu of formal assurance models, other approaches for building and using trusted processes
have emerged. For example, security-typed languages ensure that compiled programs satisfy associated
secrecy and integrity requirements [291, 219]. Such languages depend on trust in compilers and
runtime environments that are not presently assured. Nonetheless, the idea of leveraging language
level guarantees is gaining momentum.

Presuming that a basis for trust in programs emerges, a variety of recent work is already
exploring how to manage such trust. A number of researchers have reverted to information flow as
the ideal basis for security, and the problem is now to define the parameters of trust over information
flow.

70 CHAPTERS5. VERIFIABLE SECURITY GOALS

Some recent models leverage the concepts of the decentralized label model (DLM) [218] used
in security-typed languages at the system-level (i.e., per process) to ensure information flow and
define trust in processes. The key features of the DLM model are its representation of both secrecy
and integrity in information flow policies, and its inclusion of specifications of trust in downgrading
secret information (declassifiers) and upgrading low integrity information (endorsers). The Asbestos
label model [316] expresses both secrecy and integrity requirements, and provides a special level
value * that designates trust, but this trust can be limited to specific categories of data. Subsequent
generalization of the Asbestos model into the decentralized information flow control (DIFC) model
even more closely resembles the DLM model [174, 349, 350]. Processes may change the label of
data under the limitations of information flow, unless the process has a privilege that permits it to
downgrade or upgrade per specific labels. For example, a privilege 1~ permits a holding process to
remove the label 7 from its data, thus permitting it to downgrade such data.

Other recent integrity models define how processes may manage low integrity data, yet be
trusted to maintain their high integrity [182, 285, 300]. For example, CW-Lite [285] leverages the
semantics of the Clark-Wilson where a high integrity process may receive low integrity data if it
immediately discarded or upgrades such data. In CW-Lite, trusted, filtering interfaces are identified
as the only locations that such discard/upgrade is permitted for a process. Only such interfaces
must be trusted. Usable Mandatory Integrity Protection (UMIP) [182] has a similar approach, but
it defines trust in terms of the types of information flows (e.g., network, IPC) that a process may
be entrusted. Finally, Practical Proactive Integrity (PPI) [300] permits definition of all previous
integrity model semantics into policy options that enable flexible definition of trust in a process’s
handling of low integrity data.

5.4 COVERT CHANNELS

Lampson identified the problem that systems contain a variety of implicit communication channels
enabled by access to shared physical resources [177, 189]. For example, if two processes share access
to a disk device, they can communicate by testing the state of the device (i.e., whether it is full
or not). These channels are now called covers channels because they are not traditionally intended
for communication. Such channels are present in most system hardware (e.g., keyboards [284],
disks [160], etc.) and across the network (e.g., [110, 294, 338]). Millen has provided a summary of
covert channels in multilevel security systems [212].

From a security perspective, the problem is that these communication mechanisms are outside
the control of the reference monitor. Assume a BLP policy. When a secret process writes to a secret
file, this is permitted by BLP. When a unclassified process writes to an unclassified file this is also
permitted. However, if the two files are stored on the same disk device, when the secret process fills
the disk (e.g., via a Trojan horse) the unclassified process can see this. Thus, a covert communication
is possible. Different covert channels have different data rates, so the capacity of the channel is an
important issue in determining the vulnerability of the system [211, 215].

5.4. COVERT CHANNELS 71
54.1 CHANNELTYPES

Covert channels are classified into two types: storage and timing channels. A storage covert channel
requires the two communicating processes to have access to a shared physical resource that may be
modified by the sending party and viewed by the receiving party. For example, the shared disk device
is an example of a storage channel because a process may modify the disk device by adding data to
the disk. This action is observable by another party with access to this disk because the disk contents
may be consumed. For example, a full disk may signal the binary value of one, and an available disk
may signal the binary value of zero. Uses of the disk as a storage channel have been identified [160].
Additionally, the communicating parties also need a synchronized clock in order to know when to
test the disk. For example, how do we differentiate between the transmission of a single “one” and
two consecutive “ones.” Of course, a system has many forms of time keeping available, such as dates,
cycle counters, etc. As a result, storage covert channels are quite practical for the attacker [315].

A timing covert channel requires that the communicating party be able to affect the timing
behavior of a resource [341]. For example, if a communicating process has high priority to a network
device, then it can communicate by using the device for a certain among of time. For example, if
the communicating process is using the device, then it is transmitting a binary “one,” otherwise it is
transmitting a binary “zero.” Reliable timing channels are a bit harder to find because often there
are many processes that may affect the timing of a device, and the scheduling of the device may not
always be so advantageous to communication. In addition to the source whose timing behavior may
be affected, timing channels also require synchronized clock.

Covert channels are problematic because they may be built into a system unknowingly, and
they may be difficult to eradicate completely. A storage channel is created whenever a shared resource
of limited size is introduced to the system. This may be a storage device, or it may be artificially
created. For example, limiting the number of sockets that a system may have open at one time would
introduce a storage channel. The challenge is to identify the presence of such channels. Once they
are found, they are easily removed by prohibiting the processes from using the same resource.

Initially, the techniques to identify covert channels in software was ad hoc, but researchers
developed systematic techniques to enable the discovery of covert channels. First, Kemmerer defined
the Shared Resource Matrix [162, 163] (SRM) where shared resources and the operations that may
access these resources are identified. A matrix is then constructed that shows how the resources
are accessed by the operations. Given the matrix, we can determine whether a high process can
use the resource and operations to leak data to the low process. The SRM technique is a manual
technique for reviewing source code, but later techniques analyzed source code directly [40, 164].
For example, Kemmerer later defined Covert Flow Trees [164] (CFT) in which trees represent the
flow of information in a program that serves shared resources, such as a file system. See Bishop [29]
for a more detailed description of these approaches as well.

While it is at least theoretically possible to remove all covert storage channels from a system,
timing channels cannot be completely removed. This is because the timing behavior of a system
is available to all processes. For example, a process can cause a longer page fault handling time

72 CHAPTERS5. VERIFIABLE SECURITY GOALS

by consuming a large amount of pages 4, Techniques to address timing channels, such as fuzzy
time [140, 311], involve reducing the bandwidth of channels by randomizing their timing behavior.
In a fuzzy time system, the response time of an operation is modified to prevent the operation’s
process from communicating. In theory, the time of every operation must be the same in order to
prevent any communication. Thus, operations must be delayed in order to hide their performance
(i-e., slow operations cannot be made faster), thus effecting the overall performance of the system.
Other techniques to address timing channels have similar negative performance effects [160].

A question is whether BLP enforcement could be extended to control covert channels. If an
unclassified process stores files on a disk, then the disk must be assigned the unclassified access class
because the unclassified process can “read” the state of the disk. Thus, we would not store secret files
on the disk, so a Trojan horse running in a secret process could not write to this disk. Unfortunately,
this analogy cannot be carried out completely, as some resources, such as CPU, must be shared, and
the cost of having a device per access class is sometimes impractical (e.g., one network device per
access class). As a result, the covert channel problem is considered as an implementation issue that
requires analysis of the system [249].

542 NONINTERFERENCE

An alternative for controlling covert channels is to use models that express the input-output re-
quirements of a system. These models are based on the notion of noninterference [113]. Intuitively,
noninterference among processes requires that the actions of any process have no effect on what any
other process sees. For example, the actions of one process writing to a file should not be seen by
any other process should the system enforce noninterference between them.

More formally, noninterference has been assessed as follows [113,202,203]. Consider a system
in which the output of user u is given by the function out (u, hist.read(u)) where hist.read(u) is
the trace of inputs to u and read (u) was the latest input. Noninterference is defined based on what
part of a trace can be purged from the input of other users u’ (and their processes) whose security
class SC(u") is dominated by SC (u).

Definition 5.14. Let purge be a function from users X traces to traces where
purge(u', hist.command(u)) = purge(u'.hist) if SC(u") < SC(u).

That is, purge ensures that lower secrecy subjects are not impacted by the commands run by
higher secrecy subjects.

In general, noninterference is not comparable to BLP. Since BLP does not prevent covert
channels, BLP enforcement is weaker than nonintereference. However, noninterference does not
prevent the inputs of lower secrecy subjects from impacting higher secrecy subjects, implying that
lower secrecy subjects may learn the state of higher secrecy data (i.e., illegally read up). In addition,

#T'his attack has a combination of storage and timing issues. The size of memory is finite which implies a storage channel, but the
measurement of value involve the timing of the memory access.

5.5. SUMMARY 73

noninterference traces do not address problems caused by timing channels, as such channels are
not represented in the traces. On the other hand, noninterference prevents the more secret subject
from passing encrypted data to the secret subject [302], so noninterference, like the other security
properties that we have discussed, is also a more conservative approximation of the security than
necessary, in practice. There is a large body of formal modeling of noninterference and assessment of
its properties [70, 203,218,261, 144, 55,91, 246], but this beyond the scope of this book. In practice,
nonintereference properties are too complex for manual analysis, and while research applications have
had some successes [33, 125], support for enforcing noninterference requirements, in general, has
not been developed.

5.5 SUMMARY

In this chapter, we examined the policy models that have been used in mandatory protection systems.
Such policies must provide mandatory protection states that define the desired secrecy and integrity
protection required, labeling states that securely assign system processes and resources to security
classes, and transition states that ensure that any change in a process or resource’s security class is
also secure. These models define security goals, labeling, and transitions in terms of information
flow. Information flow describes how any data in the system could flow from one subject to another.
Information flow is conservative because it shows the possible flow paths, but these may or may
not actually be used. The information flow abstraction works reasonably well for secrecy, at least for
the government sector where a version of information flow was employed prior to computerization.
However, information flow has not been practical for integrity, as the abstraction is too conservative.

Secrecy is defined in terms of a finite lattice of security classes where the security class deter-
mines who is authorized to access the data. It turns out that the more secret the data, the fewer the
subjects that can read it. This has been codified in the Bell-LaPadula (BLP) model. Only subjects
whose security class dominates or is equal to that of the data may read it (simple-security property).
However, in order to prevent leakage via malware, subjects can only write to objects whose security
class dominates that of the subject (x-security property).

For integrity, the information flow requirements are reversed. This is because we are concerned
about high integrity processes reading less trusted data. Thus, the simple-integrity and x-integrity
properties are defined with reverse flows. The Biba model defines these requirements. Since it was
found that integrity was largely independent of secrecy, a second set of security classes is generally
used. In practice, information flow has been too conservative an approximation for integrity because
data input does not imply dependence. Few secure operating systems use formal integrity management
at present, despite the many vulnerabilities that result from the improper handling of malicious input.

Finally, we examined the problem of covert information flows. In these, access to shared
resources is used to convey information. If a subject can modify a shared resource, the others that
use this resource can receive this “signal.” In theory, we cannot prevent two processes running on the
same system from using a covert channel availed by the system, but we can reduce the bitrate. The
noninterference property formalizes information flow in terms of input and output, such that a covert

74 CHAPTERS5. VERIFIABLE SECURITY GOALS

channel must convey some input that affects the behavior of an unauthorized subject. However,
practical application of noninterference is complex and supporting tools are not available.

CHAPTER 6

Security Kernels

While the Multics project was winding down in the mid-1970s, a number of vendors and researchers
gained confidence that a secure operating system could be constructed and that there was a market for
such an operating system, within the US government anyway. Many of the leaders of these operating
system projects were former members of the Multics team, but they now led other research groups
or development groups. Even Honeywell, the owner of the Multics system, was looking for other
ways to leverage the knowledge that it gained through the Multics experience.

While the Multics security mechanisms far exceeded those of the commercial operating sys-
tems of the day, it had become a complex system and some of the decisions that went into its design
needed to be revisited. Multics was designed to be a general-purpose operating system that enforced
security goals, but it was becoming increasingly clear that balancing generality, security, and perfor-
mance was a very difficult challenge, particularly given the performance of hardware in the mid-70s.
As a result, two directions emerged, one that focused on generality and performance with limited
security mechanisms (e.g., UNIX) and another that emphasized verifiable security with reasonable
performance for limited application suites (i.e., the security kernel). In the former case, popular, but
insecure, systems (see Chapter 4) were built and a variety of efforts have been subsequently made
to retrofit a secure infrastructure for such systems (see Chapters 7 through 9). In this chapter we
examine the latter approach.

In the late 1970s and early 1980s, there were several projects that aimed to build a secure
operating system from scratch, addressing security limitations of the Multics system. These included
the Secure Communications Processor (Scomp) [99] from Honeywell, the Gemini Secure Operating
System (GSOS or GEMSOS) [290] from Gemini, the Secure Ada Target (SAT) [34, 125, 124]
and subsequent LOCK systems [293, 273,274,292, 276] from Honeywell and Secure Computing,
respectively, which are based on the Provably Secure Operating System (PSOS) design [92,226], the
Kernelized Secure Operating System (KSOS) [198] from Ford Aerospace and Communications,
the Boeing Secure LAN [298], and several custom guard systems (mostly proprietary, unpublished
systems). In this chapter, we examine two of these systems, Scomp and GEMSOS, to demonstrate
the design and implementation decisions behind the development of security kernels. These two
systems represent two different implementation platforms for building a security kernel: Scomp uses
custom hardware designed for security enforcement, whereas GEMSOS was limited to existing,
commercially-popular hardware (i.e., the Intel x86 platform). These systems show what can be done
when even the hardware is optimized for security (Scomp) and the limitations imposed on the design
when available hardware is used (GEMSOS). Recent advances in commercial hardware, such as 1/O
MMUs, may enable us to revisit some Scomp design decisions.

75

76 CHAPTER 6. SECURITY KERNELS
6.1 THE SECURITY KERNEL

The major technical insight that emerged at this time was that a secure operating system needed
a small, verifiably correct foundation upon which the security of the system can be derived. This
foundation was called a security kernel [108]. A security kernel is defined as the hardware and
software necessary to realize the reference monitor abstraction [10]. A security kernel design includes
hardware mechanisms leveraged by a minimal, software trusted computing base (TCB) to achieve
the reference monitor concept guarantees of tamperproofing, complete mediation, and verifiability
(see Definition 2.6).

The first security kernel was prototyped by MITRE in 1974. It directly managed the system’s
physical resources with less than 20 subroutines in less than 1000 source lines of code. In addition
to identifying whar is necessary to build a security kernel that implements a reference monitor,
this experience and the Multics experience indicated Aow a security kernel should be built. While
mediation and tamperproofing are fundamental to the design of a security kernel, in building a
security kernel the focus became verification. Three core principles emerged [10]. First, a security
kernel has to implement a specific security policy, as it can only be verified as being secure with respect
to some specific security goals. A security goal policy (e.g., based on information flow, see Chapter 5)
must be defined in a mandatory protection system (see Definition 2.4) to enable verification. Second,
the design of the security kernel must define a verifiable protection behavior of the system as a whole.
That is, the system mechanisms must be comprehensively assessed to verify that they implement
the desired security goals. This must be in the context of the security kernel’s specified security
policy. Third, the implementation of the kernel must be shown to be faithful to the security model’s
design. While a mathematical formalism may describe the design of the security kernel and enable
its formal verification, the implementation of the security kernel in source code must not invalidate
the principles established in the design.

Thus, the design and implementation of security kernels focused on the design of hardware,
a minimal kernel, and supporting trusted services that could be verified to implement a specific
security policy, multilevel security. While Multics had been designed to implement security on a
particular hardware platform, the design of security kernels included the design of hardware that
would enable efficient mediation of all accesses. The design of security kernel operating systems
leverages this hardware to provide a small number of mechanism necessary to enforce multilevel
security. Finally, some trusted services are identified, such as file systems and process management,
that are necessary to build a functional system.

The primary goal of most security kernel efforts became werification that the source level
implementation satisfies the reference monitor concept. This motivated the exploration of formal
and semi-formal methods for verifying that a design implemented the intended security goals and for
verifying that a resultant source code implementation satisfied the verified design. As Turing showed
that no general algorithm can show that any program satisfies a particular property (e.g., halts or
is secure), such security verification must be customized to the individual systems and designs. The
work in security kernel verification motivated the subsequent methodologies for system security

6.2. SECURE COMMUNICATIONS PROCESSOR 77

assurance (see Chapter 12). The optimistic hope that formal tools would be developed that could
automatically support formal assurance has not been fulfilled, but nonetheless assurance is still the
most practical means known to ensure that a system implements a security goal.

Verification that an implementation correctly enforces a system’s security goals goes far beyond
verifying the authorization mechanisms are implemented correctly. The system implementation must
be verified to ensure that all system resource mechanisms (see Chapter 1) are not vulnerable to attack.
As computing hardware is complex, assurance of correct use of hardware for implementing system
resources is nontrivial. Consider the memory system. A hardware component called the Translation
Lookaside Buffer (TLB) holds a cache of mappings from virtual memory pages to their physical
memory counterparts. If an attacker can modify these mappings they may be able to compromise
the secrecy and integrity of system and user application data. Depending on the system architecture,
TLBs may be filled by hardware or software. For hardware-filled TLBs, the system implementation
must ensure that the page table entries used to fill the TLB cannot be modified by attackers. For
software-filled TLBs, the refill code and data used by the code must be isolated from any attacker
behavior. Further, other attacks may be possible if an attacker can gain access to secret memory
after it is released. For example, heap allocation mechanisms must be verified to ensure clearing of
all secret memory (e.g., to prevent object reuse). Even across reboots, secret data may be leaked as
BIOS systems are inconsistent about whether they clear memory on boot or not, and data remains
in memory for sometime after shutdown. As a result of these and other possible attack vectors (e.g.,
covert channels, see Chapter 5), careful verification of system implementations is necessary to ensure
reference monitor guarantees, but it is a complex task.

In this chapter, we examine two of systems whose designs aimed for the most comprehen-
sively assured security, Honeywell’s Scomp [99] and Gemini’s GEMSOS [290]. Both these systems
achieved the highest assurance rating ever achieved for an operating system, A1l as defined by the
Orange Book [304] assurance methodology 1 Scomp was used as the basis for the design of the
assurance criteria. GEMSOS is still available today [5].

6.2 SECURE COMMUNICATIONS PROCESSOR

The Honeywell Secure Communications Processor (Scomp) system is a security kernel-based sys-
tem [99] designed to implement the Multics’s multilevel security (MLS) requirements [23], see
Chapter 3. The original idea was to build a security kernel and an emulator to enable execution of
an ordinary operating system (UNIX), as was done by KSOS [198] and the UCLA Secure Data
UNIX system [248]. After the performance and security of such emulated systems was found to
be insufficient, a decision was made to build a new application interface for Scomp that provides
applications with the necessary security that runs with reasonable performance.

The performance of a emulated system run on a security kernel is impacted by two issues. First,
the emulation may involve converting between incompatible representations of the two systems.

For example, UNIX I/O copies data directly to the application’s address space (e.g., on a file or

1The GEMSOS A1 evaluation was as part of the BLACKER system.

78 CHAPTER 6. SECURITY KERNELS

network read), but Scomp maintains data in individually managed segments to which access must
be authorized. As a result, rather than getting a filled buffer as in UNIX, Scomp I/O provides a
reference to a segment with the data. Second, the hardware features of a system may not supply
efficient primitives for emulated function. For example, Multics hardware did not provide hardware
support for ring crossings (i.e., protection domain transitions), so these must be implemented in
software at a higher cost.

Further, the emulated system may include mechanisms that are not secure with respect the
requirements of the security kernel. For example, UNIX supports the transfer of file descriptors on
fork and exec operations. Thus, a parent process may be able to leak data to the child or provide
the means for the child to leak its own data. This problem must be addressed in secure versions of
commercial operating systems, see Chapter 7, but the Scomp designers felt these and similar issues
warranted a new application interface. The conflict between functional interfaces and how to secure
them is fundamental to the design of secure systems.

As a result of these performance and security concerns, the Scomp designers developed not
only a security kernel, but also new hardware mechanisms and a new application interface for writing
programs to the security kernel. Below, we discuss the overall architecture, major features, and impact
on application development.

6.2.1 SCOMPARCHITECTURE

The Scomp system architecture is shown in Figure 6.1. The Scomp trusted computing base consists
of three components running in rings 0, 1, and 2. The Scomp Trusted Operating System (STOP)
consists of a security kernel running in ring 0 and trusted software running in ring 1. The trusted
functions of the Scomp Kernel Interface Package (SKIP) run in ring 2. Applications access protected
resources managed by the Scomp trusted computing base using the SKIP library running in the
application’s address space.

The Scomp security kernel mediates access to all protected resources using an MLS policy.
When an application process needs access to a protected resource (i.e., a memory or I/O segment),
it must ask the security kernel for a hardware descriptor sufficient to access this resource. The security
kernel authorizes whether the process can access the resource, and if authorized, builds a hardware
descriptor for accessing this resource. The security kernel stores the hardware descriptor and returns
areference to the descriptor to the process for subsequent use. A Scomp hardware descriptor includes
an object reference and the authorized access permissions for that process.

Isolation, and hence tamperproofing, is implemented by a ring protection mechanism. Similar
to Multics, an access bracket mechanism controls whether code in one ring is permitted to request
services from another ring. Unlike Multics, all rings and ring transitions are implemented in hardware.

Complete mediation is implemented in hardware. All requests for memory or device access
are mediated by security protection hardware described below in Section 6.2.2.

For the first time in an operating system development process, verification that the Scomp
security model and implementation enforce the MLS policy was a first-class task. Scomp’s trusted

6.2. SECURE COMMUNICATIONS PROCESSOR 79

Scomp Kernel Interface Package (6.2.4)

Applications (6.2.5) (Libraries)

Ring 3 (untrusted)

Scomp Kernel Interface Package (6.2.4)

(Trusted Functions) Ring 2 (trusted)

Scomp Trusted Scomp Trusted Operating System (6.2.3)

Computing Base (Scomp Trusted Software) Ring 1 (trusted)

Scomp Trusted Operating System (6.2.3)

(Security Kernel) Ring 0 (trusted)

Scomp Hardware (6.2.2)

Figure 6.1: The Scomp system architecture consists of hardware security mechanisms, the Scomp Trusted
Operating System (STOP), and the Scomp Kernel Interface Package (SKIP). The Scomp trusted com-
puting base consists of code in rings 0 to 2, so the SKIP libraries are not trusted.

software is verified using two technologies. First, SRI’s Hierarchical Development Methodology [48]
is used to verify that a formal model of the security kernel’s specification, called the formal top-level
specification (FLT'S), enforces the MLS policy. Second, trusted software outside the kernel is verified
using a procedural specification applied using the Gypsy methodology [118].

Based on the hardware enforcement features (complete mediation), protected software in the
trusted computing base (tamperproofing), and the formal verification of the security kernel and
other trusted software (verification), Scomp defined a process for building secure systems to satisfy
the reference monitor concept. This process became the basis for the A1l evaluation level (i.e., the
most secure evaluation level) of the DoD’s Trusted Computer System Evaluation Criteria [304].

6.2.2 SCOMP HARDWARE
The Scomp hardware design is based on the ideas of the Multics system with two key changes. First,
the Multics protection ring mechanism is concentrated in four protection rings and is extended to
enforce more limited access for applications on ring transitions. Second, a security protection module
is defined to mediate all memory and I/O accesses in the Scomp system.

First, the Scomp hardware implements four protection rings. The security kernel runs in the
most privileged protection ring, ring 0, and user software runs in the least privileged ring, ring 3.
Trusted software outside of the security kernel may occupy either ring 1 or 2.

80 CHAPTER6. SECURITY KERNELS

The Scomp hardware supports a call-return mechanism that enables procedures in a less-
privileged ring to invoke a procedure in a higher-privileged ring. The Scomp call-return mechanism
is similar to the ring bracket access mechanism in Multics. However, Scomp hardware also pro-
vides a mechanism to access caller-supplied arguments at the caller’s privilege level, called argument
addressing mode. This mechanism enables the kernel to prevent itself from accessing data that the
caller could not access. For example, the kernel interface can define a memory-mapping operation
that requires the caller to supply a memory page. Using argument addressing mode, the kernel could
only use the memory reference if the caller has access to this memory reference. This prevents the
confused deputy problem [129] in a manner analogous to capability systems, see Chapter 10.

Second, the Scomp hardware includes a component called the security protection module (SPM)
that provides a tamperproof service to mediate all memory and I/O accesses, as required for a reference
monitor. As shown in Figure 6.2, the SPM mediates the main system bus (called the Level 6/DPS
6 bus) that provides access to peripherals and memory (e.g., memory and PCI buses combined).
Also, the virtual memory interface unit uses the SPM to convert virtual address to physical segment
addresses.

Each process has a descriptor base root that references the memory and I/O descriptors available
to a process. Any virtual memory access references a descriptor that is used to authorize the request
and access the physical location. Memory descriptors contain a pointer to physical memory, access
permissions, and memory management data. Note that each access to words in memory is mediated
by the SPM, so an access check accompanies any reference to memory. Since each instruction may
make a memory reference for its instruction and its operands, plus access to page table entries,
multiple access control checks may occur on each instruction. Accesses that hit in the hardware
cache do not incur a memory reference and its accompanying authorization. Contrast this with
modern systems, which authorize memory access at the page level, with a simple check on the page
table or TLB entry for read or write access.

Mediation of I/O is similar to that for memory. An I/O operation is a request to a virtual
name for a physical device. The SPM uses this virtual name to retrieve an I/O descriptor for the
device. Access to this I/O descriptor is authorized similarly to memory descriptors. This mechanism
supports two types of direct memory access(DMA) 2. First, for premapped DMA, the SPM authorizes
access to the device and the memory prior to the first request only. Since the I/O descriptors have been
authorized and are used for each I/O request, subsequent requests no longer require authorization
(i.e., the authorized descriptors are cached). Second, for mapped I/0, the I/O addresses for DMA
are sent to the device. Thus, each access of the device to physical memory is authorized by the SPM
(e.g., based on the process that owns the device).

Because the kernel builds the I/O descriptor and the hardware authorizes the I/O operation,
it is possible to run I/O commands (i.e., drivers) in unprivileged processes (i.e., outside the kernel).
This has performance and security advantages. First, once the access is mediated, the user process
may interact with the devices directly, thus removing the need for kernel processing and context

2Direct memory access (DMA) enables devices to write into the system’s physical memory without involving the system’s CPU.

6.2. SECURE COMMUNICATIONS PROCESSOR 81

Security I/0 Controller Memory
CPU Protection
Module
A
Virtual
Memory |[€——
Unit
CPU
Bus
Logic
I/0O Bus

Figure 6.2: The Scomp security protection module (SPM) mediates all accesses to I/O controllers and
memory by mediating the I/O bus. The SPM also translates virtual addresses to physical segment addresses

for authorization.

switches. Second, drivers have been shown to be the source of many kernel errors [82], so the ability
to remove them from the trusted computing base would improve software correctness. Further, in
this architecture, new I/O devices can be added without modifying the kernel or the SPM, so the
system’s extensibility does not suffer from this approach.

Modern hardware, such as the x86 architecture, adopted the four-ring architecture of Scomp,
but not the I/O mediation provided by the SPM. As a result, such systems are vulnerable to DMA
devices. Buggy or malicious drivers can configure a DMA device to write at any physical memory
location, so kernel memory may be overwritten. Since DMA bypasses the CPU, the kernel cannot
prevent such writes in software. Recently, both Intel and AMD have released processors with I/O
memory protection, called an I/O MMU [141, 8]. An I/O MMU also mediates an 1/O bus (the

82 CHAPTER6. SECURITY KERNELS

PCI bus), but the devices communicate using virtual addresses rather than I/O descriptors. The
170 MMU translates these virtual I/O addresses to physical addresses, authorizing access to the
resultant physical address. The I/O MMU approach provides the advantages envisioned by the
SPM architecture. For example, passthrough I/0 built on I/O MMUs enables 1/0 to be conveyed
directly from the device to untrusted processes.

The use of virtual I/O addresses rather than the I/O descriptors as in Scomp reflects the
change from segmented protection of early systems to page protection of modern systems. While
segmentation is still supported, modern operating systems use address spaces based on sets of pages
managed by page tables rather than by managing memory segments.

6.2.3 SCOMPTRUSTED OPERATING PROGRAM

Technically, the Scomp Trusted Operating Program (STOP) consists of three components: (1)
a security kernel, (2) a set of trusted software; and (3) a Scomp kernel interface package for user
applications. We describe the first two in this subsection, and discuss user applications and the
interface package in the following subsection.

Security Kernel 'The Scomp security kernel provides fundamental system processing in ring 0. The
security kernel provides memory management, process scheduling, interrupt management, auditing,
and reference monitoring functions. Consistent with the idea of a security kernel, the function of the
Scomp security kernel is minimized to reduce the amount of trusted code. As a result, the Scomp
security kernel is only 10K source lines of code, mostly written in Pascal.

Kernel objects consist of processes, segments, and devices. Each are identified by a globally-
unique, immutable 64-bit identifier. The kernel maintains access control information and status data
for each object. The Scomp access control model is essentially the same as the Multics approach,
see Chapter 3, consisting of multilevel security (i.e., Bell-LaPadula sensitivity levels and category
sets [23]), ring bracket policies, and discretionary policies. The ring bracket representation is modified
to describe access based on the owner of the object, groups, or others. Thus, an owner may be allowed
to access an object from a different set of rings than an arbitrary user.

The security kernel defines 38 gates for processes running outside the kernel to invoke kernel
services. Gates are analogous to system calls in modern operating systems, providing function to
create objects, map segments, and pin physical memory to virtual addresses. Scomp gates are also
analogous to Multics gates in that they provide argument validation to protect the integrity of security
kernel.

Trusted Software Scomp trusted software runs services that do not require ring 0 privilege, but
provide functions that must be trusted to enforce control on user applications properly. There are
two types of trusted software. The first type of trusted software is trusted not to violate system
secrecy or integrity goals. For example, secure loader is trusted to load a process for any subject
that ensures correct enforcement of that subject’s information flows. The second type of trusted

6.2. SECURE COMMUNICATIONS PROCESSOR 83

software is trusted to maintain the security policy correctly. For example, services that modify user
authentication data must be trusted.

Scomp has 23 processes that implement trusted functions, consisting of 11K source lines of
code, written in the C language. There are three general types of trusted software. First, zrusted user
services provide an interface to Scomp for the user. User services include login, discretionary access
control management, mandatory level selection, and process management. Second, frusted operation
services provide functions that enable the system administrators to manage the system. Scomp require
system management by operators who started the system, maintain mandatory policies (multilevel
security and ring bracket policies), and collect and evaluate audit logs. Trusted operation services
include a secure startup service and various operator commands (e.g.,setting time). Third, Scomp
trusted maintenance services enable the system administrator to modify system data, such as install
new versions of programs.

Scomp trusted software are invoked via a trusted communications path with the user. This is
the familiar “secure attention sequence” used in modern systems. The purpose of this communication
path is to prevent malicious software (e.g., Trojan horses) from masquerading as the user (e.g., trying
to guess passwords and login). Further, the user also learns that she is communicating directly with
the trusted software when the trusted communications path is invoked. Only the kernel can receive
the interrupt invoked, so the user can be certain that the resulting response originated from trusted
software.

6.2.4 SCOMP KERNEL INTERFACE PACKAGE

The Scomp kernel interface package (SKIP) provides a uniform interface for user applications to
access trusted functions. SKIP code is divided into two parts. First, SKIP functions implement
trusted operations on user-level objects: files via a hierarchical file system, processes via process
management, and concurrent I/O via an event mechanism. SKIP functions are allowed to manipulate
system state, so they are also trusted not to violate MLS requirements, like trusted software. Second,
a SKIP library provides a high-level interface for accessing such functions. SKIP libraries run in the
protection domain of user applications, so they are not trusted with system state. SKIP functions
run in ring 2, and the libraries run with user applications in ring 3.

SKIP functions in ring 2 are also invoked via gates, similarly to the kernel and trusted software.
For example, calls to modify the file system state, such as renaming a file, are invoked from a user
application using the SKIP library which invokes a SKIP gate before being processed in ring 2. Thus,
file system operations are protected from user applications.

SKIP provides a library for user applications to access files, modify file contents, and manage
the file hierarchy. The actual file system operations, and its state, are maintained by the SKIP functions
in ring 2, in the manner described above. All file operations are authorized based on the requestor’s
sensitivity level and ring number. This results in a file system hierarchy where the sensitivity level is
nondecreasing from the root.

84 CHAPTER6. SECURITY KERNELS

The SKIP library also enables applications to perform various kinds of I/O. In effect, the
device drivers are provided in the SKIP library. As described above, the SPM provides a protection
mechanism that mediates application access to devices and device access to memory segments.
To enable concurrency control across multiple applications, the SKIP function provides an event
mechanism in ring 2. The event mechanism processes interrupts, maintains a queue of requests, and
provides event notification. Handlers may be defined by user applications, so they are run in the
library.

6.2.5 SCOMP APPLICATIONS

The Scomp hardware and software is general purpose, but it defines a completely new application
interface, so new application software needs to be constructed. Actually, the original idea was to run
a UNIX emulator on Scomp, so UNIX applications could be run, but emulation was found to be
too slow and too insecure as described above. There was also a plan to map UNIX system calls to
the SKIP interface. The results of this effort do not appear to have been documented.

For example, the Scomp system was the basis for a mai/ guard [71]. Multilevel security ensures
that secrets are protected from leakage, but in a military environment orders, often based on the
analysis of secret information, must be conveyed to less cleared subordinates. In order to ensure that
orders are delivered without leaking secrets, assured mail guards are run on the Scomp environment.
The mail guards evaluate the content of the orders using specialized filters before forwarding them.
Scomp is an ideal platform as it is assured to enforce the multilevel security requirements and execute
the mail guard without allowing malicious software to take control of its execution.

Other general purpose applications used in an multilevel secure environment may also benefit
from Scomp, so Honeywell developed other applications as well. For example, Honeywell imple-
mented the Secure Office Management System for Scomp [100]. The software consists of a word
processor, email, spreadsheet, database, and printing support. Such software provides a variety of
features with each function, and is multilevel-aware to help the user navigate issues with informa-
tion secrecy management and release. The challenge is that other vendors developed office software
for ordinary operating systems with greater features, and these became the de facto standard for
office processing. As a result, the government employees adopted this software and the insecure
environments in which they run.

6.2.6 SCOMP EVALUATION
1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated correctly?

Scomp performs all mediation in hardware, so complete mediation is always performed on the
correct system resource.

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

6.2. SECURE COMMUNICATIONS PROCESSOR 85

All system resources are segments, memory and I/O, and all instructions access segments, so
the hardware-based mediation of Scomp mediates all security-sensitive accesses.

The Scomp file system in ring 2 controls access to files, so higher-level, file policies may be
written. However, initial access to file data depends on access to I/O. The file system must be
trusted to prevent unauthorized access to one process’ file data by another process.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

Hardware verification justifies complete mediation in Scomp.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

Scomp uses a protection rings to protect the security kernel from unauthorized modification.
The security kernel runs in ring 0, and only 38 gates permit access to the kernel from other
protection rings.

Scomp uses a more complex version of the Multics discretionary ring bracket integrity model
to express access to ring 0. Since it must be possible to update the kernel (e.g., by updating
the file system), there are some subjects (and their processes) that could modify the kernel,
including the protection system and reference monitor.

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

Scomp also uses protection rings and bracket model to protect the integrity of the rest of its
trusted computing base. The Scomp trusted computing base runs in rings 0, 1, and 2. No
untrusted code is supposed to run in these rings. It is possible for untrusted processes in ring 3
to invoke code in the trusted computing base. The number of interfaces and associated gates
that were implement to protect the trusted computing base is unclear.

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?
The Scomp system design and its implementation’s correspondence to that design were verified
with formal analysis tools.

7. Verifiable: Does the protection system enforce the system’s security goals?

Secrecy goals were enforced using a mandatory MLS policy for secrecy and discretionary
bracket policies for integrity. Unlike prior systems, and most subsequent systems, the design
of the system policies was also verified for correctness.

As aresult, Scomp has mostly convincing answers to each of the questions above. While there
are a few danger spots, such as the complexity of the interface to the trusted computing base, the

86 CHAPTER6. SECURITY KERNELS

possibility of modifications to the discretionary bracket policy, and the inherent incompleteness of
system verification, Scomp and other security kernels are about as close to secure operating systems
as possible. The challenges for security kernel systems are their performance, practical utility, and
maintenance complexity.

6.3 GEMINI SECURE OPERATING SYSTEM

Another security kernel system that emerged in the 1980s was Gemini Corporation’s Standard
Operating Systems (GEMSOS) 3 [290]. The Gemini company was founded in 1981 with the
aim of developing a family of high-assurance systems for multilevel secure environments. Gemini
aimed to build its security kernel (GEMSOS) from scratch, but unlike Honeywell’s Scomp system,
implement it to run on the available commercial hardware, the Intel x86 architecture. The GEMSOS
kernel and some systems based on the kernel were assured at TCSEC A1 level [109, 306], as Scomp
was. Importantly, GEMSOS is still an active product, supported by the Aesec Corporation [5].

As the GEMSOS architecture has significant similarities to Scomp, we provide a higher-level
description of its design, highlighting the similarities and key differences.

Architecture The GEMSOS system architecture is shown in Figure 6.3. Like Scomp, GEMSOS
consists of a security kernel and trusted software, but GEMSOS provides 8 protection rings, as does
Multics. Since the x86 hardware only supports 4 rings, the security kernel runs in ring 0 and the
trusted software in ring 1. The overall approach to security is derived from Multics as well, so secrecy
protection is based on multilevel security labels and integrity is implemented by ring brackets.

GEMSOS does not define a kernel interface package, as Scomp does, but it does provide a
library to make invoking the kernel gates easier, like the SKIP library. GEMSOS user-level processes
(i.e., nonkernel code) access the security kernel using a Kernel Gate Library (KGL). This code runs
outside the kernel, but because it may be used in user-level software that is part of trusted computing
base, the KGL also is trusted code. This differs from the SKIP library which is not used in trusted
software.

Security Kernel 'The GEMSOS security kernel design consists of a layered set of kernel functionality,
shown in Figure 6.4. This design was influenced by a number of ideas, including the layering approach
of Reed [253] and the information hiding approach of Parnas [241]. The result is that each layer is
dependent only on the layers below them, and the state of each layer is only accessible via well-defined
interfaces.

The GEMSOS security kernel is constructed from a base of generic functions to provide
typical kernel services including memory, I/O, and process management, in addition to reference
monitoring. The lowest four layers provide generic functions for accessing the hardware, switching
execution contexts, and interrupt handling among others. The Kernel Device Layer then provides

3GEMSOS may alternatively be called GSOS by some.

6.3. GEMINI SECURE OPERATING SYSTEM 87

Processor Ring # GEMSOS Ring #
Ring 3 Ring 7
Applications
Ring 1 Ring 2

System-Specific Trusted Code
Ring 1

Ring 0 Kernel Gate Library

GEMSOS Security Kernel Ring 0

Hardware (e.g., Intel x86)

Figure 6.3: GEMSOS consists of a security kernel, gate library, and a layer of trusted software that
is dependent on the deployed system. GEMSOS uses a software-based ring mechanism to simulate 8
protection rings.

other kernel layers with access to kernel-internal drivers. The Non-discretionary Access Control
Layer implements the system reference monitor which enforces policies written in the Multics mul-
tilevel security model, see Chapter 3. The Secondary Storage Manager Layer provides the physical
file system for GEMSOS user processes. Next comes the Internal Device Manager which provides
the interface to device drivers. The Memory Manager Layer builds memory segments for kernel and
user processes. The Upper Traffic Controller Layer provides support for multiprocessing using the
concept of virtual processors. The top four layers, the Segment Manager Layer, the Upper Device
Manager Layer, the Process Manager, and the Gate Layer all manage per-process resources: memory,
I/0 concurrency, processes, and system invocation, respectively.

The GEMSOS kernel architecture provides many of the services of ordinary kernels. But,
the use of commercial hardware presented challenges to the designers. Because the x86 processor
lacks the memory and device mediation of Scomp’s Security Protection Module (SPM), device

88 CHAPTER 6. SECURITY KERNELS

Applications

Gate Layer 0
Process Manager (PM) Process
Upper Device Manager (UDM) Local
Segment Manager (SM) J
Upper Traffic Controller (UTC) 0
Memory Manager (MM) |

Inner Device Manager (IDM) |
Secondary Storage Manager (SSM) |
Non-Discretionary Security Manager (NDSM) | Kernel
Kernel Device Layer (KDL) Global
Inner Traffic Controller (ITC) |
Core Manager (CM) |
Intersegment Linkage Layer (SG) |
System Library (SL))

Hardware

Figure 6.4: GEMSOS Security Kernel Layers

drivers must be run in the GEMSOS kernel (e.g., in the Kernel Device Layer and Internal Device
Manager). However, Al-level assurance requires verification of the correctness of all kernel (i.e.,
trusted computing base) code. Thus, as new devices and their drivers are introduced, this presents a
management problem for the kernel. The availability of I/O MMUs [141, 8] would also enable the
possibility of drivers outside the kernel.

The other major design similarity between GEMSOS and ordinary operating systems that
differs from the Scomp is the presence of the file system in the kernel. In Scomp, the file system is
implemented as part of the SKIP functional layer in ring 2. Recall that Scomp also included ring
2 software in the trusted computing base of the system. Later, researchers explored the design and
implications of an untrusted file system on GEMSOS [146]. The GARNETS file system ran in a
virtual machine outside the GEMSOS kernel, which results in an architecture similar to the Scomp
approach. However, in the GARNET approach. the level of trust in the GARNET file system could
be tangibly less than that of the kernel (i.e., it is not in the system TCB). The GARNET design
required several workarounds to achieve the necessary functionality when this trust was removed,
and may still require some trusted programs, albeit less trusted code than an entire file system.

GEMSOS defines 29 gates to access the security kernel, which is similar to the 38 gates
provided by Scomp. The function offered by the gates are similar, although Scomp additionally
provides function via the SKIP gates.

6.4. SUMMARY 89

Trusted Software GEMSOS also provides a set of trusted software running outside the security
kernel. The functions of the GEMSOS trusted software are similar to those provided by Scomp
trusted software. For example, there are trusted software services for system administration.

Applications GEMSOS differs from Scomp in the number and variety of applications in which it
was deployed. GEMSOS was commonly applied as a platform for securely connecting networked
high security systems and isolating them from low security systems in the same network [242]. Also,
GEMSOS was applied as a guard for an office software suite.

The most significant applications of GEMSOS were for network control. First, GEMSOS
was the basis for the multilevel secure system called BLACKER [330]. BLACKER provided an
Al-assured component for key distribution and secure communication to protect high secrecy data
in transit between high secrecy networks. BLACKER consists of a set of encryption devices that
enable the isolation of a high secrecy network from the rest of the Internet. Originally, different
processors were used to handle the ciphertext (the d/ack side) and the plaintext (the red side). Of
course, it is important that ciphertext not leak the contents of plaintext, but if the ciphertext is
created on a system with a Trojan horse, this cannot be guaranteed.

Second, GEMSOS was later applied to the general notion of a Trusted Network Processor
(TNP) [306]. A'TNP hosts one or more applications that require multilevel security enforcement.
The applications themselves run on virtual processors in a multiprocessor system (potentially), but
they are ignorant of multilevel security. The labeling of virtual processors and data and the enforce-
ment of multilevel security are performed by the TNP component that mediates all communication
on the multiprocessor bus.

A POSIX interface was developed for the GEMSOS system as well, although historically
GEMSOS was applied to dedicated or embedded applications.

6.4 SUMMARY

The secure operating systems that followed the Multics system focused on the key limitations of
Multics: performance and verifiability. The idea of a security kernel, a small kernel with minimal
code in its trusted computing base, addressed both of these problems. First, the design of security
kernel was customized to address performance bottlenecks, even by adding security function in
hardware, such as Scomp’s Security Protection Module. Second, the small size of the security kernels
also motivated the development of system assurance methodologies to verify that these systems
correctly implemented a secure operating system (see Definition 2.5). Multics was too large and
complex to be verified, but both Scomp and GEMSOS were of manageable complexity such that
the verification tools of the day, plus some manual effort, were sufficient to justify the correctness
of these implementations. Such efforts led to the development of the assurance methodologies that
we use today, see Chapter 12.

90 CHAPTER 6. SECURITY KERNELS

Security kernels are general purpose systems. The design of Scomp provides similar system
function to UNIX systems of the day, and GEMSOS is a full kernel. Nonetheless, security kernels
became niche systems. The performance, flexibility, and applications in UNIX systems and, later,
Windows systems limited the market of security kernels to specialized, high security applications,
such as guards. Further, the need to balance assurance and function became difficult for these security
kernels. Maintaining the assurance of the kernel given the vast number of drivers that are developed,
including some which are quite buggy, is very difficult. Scomp did not depend on drivers in the
kernel, but it did depend on hardware features that were not available on common processors.

The need identified by security kernels has continued to exist. Scomp was succeeded by
the XTS-300 and XTS-400 systems, now distributed by BAE [22]. GEMSOS is still available
today from Aesec [5]. There have been other security kernel systems, including Boeing’s secure
LAN [298], Secure Computing Corp.’s LOCK system [293], and KSOS [198]. Also, the separation
kernel systems (see Chapter 11) aim for a minimal, assured trusted computing base for deploying
applications, and this architecture is also used frequently. As a result, it appears that the development
of'a minimal platform necessary to deploy the desired software is still the preferred option for security
practitioners, although as we will see in next chapters, secure system alternatives that already support
the desired applications becoming more popular and more secure.

91

CHAPTER 7

Securing Commercial Operating
Systems

Since the discovery of the reference monitor concept during the development of Multics, there
have been many projects to retrofit existing commercial operating systems with a true reference
monitor implementation. Successful, commercial operating systems can have a large customer base
and a variety of popular applications. As a result, those customers with strong secrecy and integrity
requirements (e.g., US Government) often encourage the construction of secure versions of existing
commercial operating systems. Many such systems have been retrofitted over the years.

In this chapter, we explore some of the commercial systems that have been retrofitted with
reference monitors. The aim is not for completeness, as there are far too many systems, but we want
to capture the distinct movements in creating a secure operating system from an existing commercial
system.

Converting an existing code base to one that implements a reference monitor is a challenging
task. In order to be a secure operating system, the resulting code base must achieve the three reference
monitor guarantees, but this is difficult because much of the code was not developed with these
guarantees in mind. This contrasts markedly with the security kernel approach in Chapter 6 where
the system design considers mediation, tamperproofing, and verification from the outset.

After outlining the tasks involved in retrofitting a commercial operating system with a ref-
erence monitor, we examine a variety of different retrofitted systems. We group these systems by a
trend motivating their construction. We examine the resultant system architectures in detail for two
systems: Solaris Trusted Extensions in Chapter 8 and the Linux operating system in Chapter 9.

7.1 RETROFITTING SECURITY INTO A COMMERCIAL OS

To retrofit a commercial operating system into a secure operating system, the resultant operating
system must be modified to implement a secure operating system that implements the reference
monitor concept, see Definitions 2.5 and 2.6. The reference monitor concept requires guarantees in
complete mediation, tamperproofing, and verifiability. There are challenges in each of these areas.
Complete mediation requires that all the security-sensitive operations in the operating system
be identified, so they can be authorized. Identifying security-sensitive operations in a complex,
production system is a nontrivial process. Such systems have a large number of security-sensitive
operations covering a variety of object types, and many are not clearly identified. As we will see,
a significant number of security-sensitive operations are embedded deep inside the kernel code.
For example, in order to authorize an open system calls, several authorizations may be necessary for

92 CHAPTER 7. SECURING COMMERCIAL OPERATING SYSTEMS

directories, links, and finally the target file (i.e., inode) itself. In addition to files, there are many such
objects in modern operating systems, including various types of sockets, shared memory, semaphores,
interprocess communication, etc. The identification of covert channels (see Chapter 5) is even more
complex, so it is typically not part of retrofitting process for commercial operating systems. As a
result, complete mediation of all channels is not ensured in the retrofitted operating systems we
detail.

Tamperproofing the reference monitor would seem to be the easiest task in retrofitting an
existing system, but this also has proven to be difficult. The obvious approach is to include the
reference monitor itself in the kernel, so that it can enjoy the same tamper-protection that the kernel
has (e.g., runs in ring 0).

There are two issues that make guaranteeing tamper-protection difficult. First, commercial
operating systems often provide a variety of ways to update the kernel. Consider that UNIX kernels
have a device file that can be used to access physical memory directly /dev/kmem. Thus, processes
running outside of the kernel may be able to tamper with the kernel memory, even though they run
in a less-privileged ring. Modern kernels include a variety of other interfaces to read and write kernel
memory, such as /proc, Sysfs file systems, and netlink sockets. Of course, such interfaces are
only accessible to root processes, but there are many processes in a UNIX system that run as root.
Should any one get compromised, then the kernel may be tampered. In effect, every root process
must be part of a UNIX system’s trusted computing base to ensure tamper-protection.

But the biggest challenge for retrofitting an operating system is providing verification that
the resultant reference monitor implementation enforces the required security goals. We must verify
that mediation is implemented correctly, that the policy enforces the expected security goal, that
the reference monitor implementation is correct, and that the rest of the trusted computing base
will behave correctly. Verifying that the mediation is done correctly aims to address the problems
discussed above. Typically, the mediation interface is designed manually. While tools have been
developed that find bugs in mediation interfaces [149, 351], proving the correctness of a reference
monitor interface in an operating system is intractable in general because they are written in nontype
safe languages, such as C and various assembly languages.

Policy verification can also be complex as there are a large number of distinct authorization
queries in a commercial operating system, and there are a large number of distinct processes. Some
retrofitted commercial operating systems use a multilevel security (MLS) model, such as Bell-
LaPadula [23], but many use access matrix mandatory access control (MAC) models, such as Type
Enforcement [33]. The latter models are more flexible, but they also result in more complex policies.
A Bell-LaPadula policy is fixed size, but an access matrix policy tends to grow with the number of
distinct system programs. Such models present a difficult challenge in verifying that each system is
enforcing the desired security goals.

Finally, the implementation of a commercial operating system and the remaining trusted
computing base is too complex to verify whether the overall system protects the reference monitor.
Commercial operating systems are large, there are often several developers of the trusted computing

7.2. HISTORY OF RETROFITTING COMMERCIAL OS’S 93

base software, and the approaches used to build the software are not documented. The best that
we can hope for is that some model of the software can be constructed after the fact. As described
in Chapter 6, the verification of Scomp’s correctness required an evaluation that the design model
enforced system security goals and that the source correctly implemented the design. Many believe
that it is not possible to build a sufficiently precise design of a commercial system and a mapping
between this design and the system’s source code necessary to enable such verification. Clearly,
current technologies would not support such a verification.

7.2 HISTORY OF RETROFITTING COMMERCIAL OS’S

In this section, we examine the evolution of retrofitting security into commercial operating systems.
We organize this section by identifiable eras in the construction of secure operating systems. As the
lessons from the Multics project were being disseminated, many companies examined ways to retrofit
Multics-style security into their existing commercial operating systems during the commercial era.
The invention of the microkernel systems led to several attempts to retrofit security in the smaller,
microkernel architectures, which resembled security kernels (see Chapter 6), during the microkernel
era. Gradually, the focus returned to UNIX systems, which had become the de facto server operating
system (although there were many distinct UNIX systems maintained by competing entities by
then). Some of the novel ideas of the commercial and microkernel era were transferred to UNIX-
style systems in this most recent era, the UNLX era.

Each of the eras focused on particular themes. The commercial era work focused on either
emulation of commercial systems on security kernels or retrofitting by adding orthogonal features to
existing code bases. The result of this era was systems that enforce multilevel secrecy policies in UNIX.
The microkernel era focused on adding security via independent server processes, but as the work
proceeded, more invasive modifications, lower in the software stack were deemed necessary. Also,
innovative security models emerged that aimed to address both secrecy and integrity comprehensively.
The UNIX era composed the mature solutions of the first two eras with a renewed focus on system
integrity. Both Solaris Trusted Extensions (see Chapter 8) which resulted from the commercial era
and the SELinux (see Chapter 9) which resulted from the UNIX era have adopted many similar
solutions, although there are significant differences and some challenges remain open to future
research.

7.3 COMMERCIAL ERA

In the late 1970s and early 1980s, it became clear that Multics provided some fundamental security
features, see Chapter 3, but it was too large and slow to be effective. A variety of competing vendors
saw improvements in security as a potential advantage for their systems. A goal became to capture
Multics security features in their commercial systems. The chief question was how to marry the
security enforcement of Multics with the application interface of these commercial system.

94 CHAPTER 7. SECURING COMMERCIAL OPERATING SYSTEMS

Emulated Systems: Data Secure UNIX and KSOS Some projects focused on the construction of
a security kernel, see Chapter 6, that ran an emulator for the UNIX API. UCLA Data Secure
UNIX [248] and KSOS [198, 97], fall into this category. In both cases, the performance of the
emulated systems was poor, so later security kernels, such as Scomp, dropped the idea of an emulator.

These systems did not really integrate security into the existing operating system, but rather
tried to slide a secure environment under the existing system. However, in addition to problems
in performance, insecure features of the UNIX interface, such as permitting the passing of file
descriptors on process creation regardless of the relationship between the processes, also presented
security problems that could cause incompatibilities with the security kernel.

KVM/370 The KVM/370 system adds a layer between the virtual machine monitor (VMM) and
individual virtual machine (VM) to mediate inter-VM communication. The design of this new layer
is a retrofit of the existing VIM/370 code base with multilevel security features. The retrofit resulted
in performance overhead of about 25% of a typical VIM/370 virtual machine. This was partly due to
the additional layer between the virtual machines and the VMM and partly due to required reuse
of VM/370 code in the new KVM/370 system, which introduced extra effort in indirection. Virtual
machine-based secure operating environments are discussed in Chapter 11.

VAX/VMS DEC and Sandia Labs retrofitted VAX/VMS with multilevel security enforce-
ment [180]. In addition, improvements in auditing were developed and a number of security vulner-
abilities were fixed. Because of the retrofit of the existing code base, the VAX/VMS system aimed
only for modest assurance levels, B1 or B2 in the Orange Book [304]. This work was a prototype
and performance impact was not discussed.

Secure Xenix Somewhat later than the work above, IBM retrofitted Microsoft’s Xenix with access
control and auditing features [111]. This work was influenced the UNIX retrofit of Kramer [173], but
aimed to provide a comprehensive and effective implementation of Multics security features [280]
(see Chapter 3) in Xenix. Two key issues among several addressed by the Secure Xenix work were
compatibility and trusted path. First, the Secure Xenix system included both the retrofitting of a
variety of UNIX services with security-aware function, so that UNIX applications could be run with-
out modification. Further, compatibility mechanisms, such as hidden subdirectories, were invented
to enable multiple processes at different security levels to “shared” directories without introducing
information leakage. This mechanism is the basic idea behind polyinstantiated file systems discussed
in Section 8.2 and used in several systems now. Second, Secure Xenix also introduced the notion
of a trusted path. A trusted path is a mechanism to communicate directly with the system’s trusted
computing base. A trusted path is often implemented via a “secure attention sequence” that can only
be caught by the trusted computing base (e.g., Control-Alt-Delete). Thus, the user can be certain

that she is communicating with trusted code. Secure Xenix was successfully evaluated at the US

7.4. MICROKERNEL ERA 95

government B2 rating based on the Orange Book [304]. Secure Xenix was later renamed Trusted
Xenix, when its development was shifted to Trusted Information Systems.

By 1990, a variety of UNIX variants had been extended with security mechanisms, particularly
those aiming at MLS enforcement [339]. One of these systems, SunOS MLS was introduced in
1989, but it ultimately established itself as the market leader in MLS systems. It has continued to
evolve over the last twenty years, so we present an overview of the current version, called Trusted
Solaris Extensions, in Chapter 8.

74 MICROKERNEL ERA

In the 1980s, microkernel systems emerged. Microkernel systems were similar to security kernels in
that they aimed for minimal functionality in the kernel, but microkernel systems focused on providing
system abstractions for building complete systems more easily and more efficiently, rather than more
securely. The hope was that microkernel systems would be more effective at running UNIX systems
(i-e., perform better), while preserving the economy of size and potential for verification offered by
the security kernels.

The emergence on the Mach microkernel [348, 116] in the 1980s was the source of interest
in microkernel systems. Mach aimed to be a minimal kernel while provided abstractions to enable
complete operating system construction, including mechanisms for message passing between com-
ponents and multi-threaded process support. However, fundamental operating systems services, such
as memory managers, file systems, and network servers, are not implemented in the microkernel, so
user-level servers must be designed to implement such functions. Thus, the system’s trusted comput-
ing base consists of the microkernel and those user-levels servers that must be trusted. While these
microkernel architectures appear similar to the security kernel architectures of Chapter 6, typically
microkernel systems were built to improve nonsecurity dimensions of operating systems, such as
ease of development, flexibility, and even performance.

Several projects that used Mach as the base for a secure operating system were inspired by
that architecture. These included Trusted Mach (TMach) [36, 35, 196], Distributed Trusted Mach
(DTMach) [282, 96], the Distributed Trusted Operating System (DTOS) [313, 213], and the
Flask system [191, 295]. TMach was built by Trusted Information Systems (TIS) and implemented
multilevel security (MLS) servers for files, memory, etc. that would provide function for single-level
operating system personalities, such as UNIX or Windows. Thus, TMach provides trusted services
for MLS computing where each instance of a traditional operating system runs as a single-level
system. DTMach was built by Secure Computing Corporation (SCC) and the National Security
Agency (NSA). DTMach supports a hybrid access control model that uses both MLS labels for
secrecy control and Type Enforcement (TE) [33] labels for integrity. TE is an access matrix-based,
mandatory access control policy with a fixed set of subject and object labels, called #ypes, and the
policy defines which subject types may perform which operations on which object types. TE was
first applied in the LOCK system [293]. When a new file or process is defined, it is labeled from
the type set and inherits the policy defined by the TE matrix.

96 CHAPTER 7. SECURING COMMERCIAL OPERATING SYSTEMS

The DTMach architecture is similar to TMach, but it also includes additional servers for
networking DTMach systems and providing general security policy server support. DTOS was
the SCC/NSA/University of Utah followup to the DTMach system. The DTMach project found
security limitations in the Mach microkernel mechanisms that the DTOS project aimed to fix. The
Mach architecture was found to have significant performance issues, so the DTOS architecture was
migrated to another microkernel system for the Flask project. We explore some of the issues in

DTMach, DTOS, and Flask projects below.

DTMach DTMach extended Mach with a separate security server, a reference monitor outside
the kernel that responds to authorization queries. As file, network, and interprocess communication
(IPC) are invoked by sending messages to Mach porzs, DTMach authorization queries are invoked
on port access. For example, when a process opens a file, it sends a message to a port of the file
server hosting that file. The security server is invoked to ensure that the process has the necessary
permissions to access the file.

The DTMach security server represents permissions in two forms, MLS permissions and TE
permissions. MLS permissions enforce secrecy using the traditional Bell-LaPadula model [23]. TE
permissions were used to protect the integrity of the system. TE was used in DTMach to define
limited mandatory domains for users and particular system services. TE policies in D'TMach limit
code installation and modification to administrators only, limit the code that can be executed by
system subjects, prevent servers from having unnecessary rights to system objects, ensure that only
authorized downgraders could relabel certain data, etc.

However, Mach ports suffered from some limitations that prevented correct enforcement of
TE policies. For example, a send right on a Mach port implies that a process with that right can
send arbitrary messages to the port, but we may want to limit the set of messages that untrusted
processes can send to ports served by trusted processes. Consider when an untrusted process asks
for a file to be mapped into its address space. In this case, the process must have a send permission
to the memory pager to ask for the file to be mapped. However, this right permits the untrusted
process to send any message to the pager, increasing the complexity of pager. DTMach defines more
nuanced send rights to only allow file mapping requests. There are other specific cases where the
meaning of a send permission to a port must be limited, and these are all handled by extending the
port authorization mechanism.

DTOS The changes to Mach and its server to address port control resulted in several ad hoc
changes to the Mach microkernel. In the DTOS project, the aim was to construct a true reference
monitor in the Mach microkernel [283, 213]. To address the problems caused by send port per-
missions above, DTOS defined a richer set of operations for operating on ports. The DTOS Mach
microkernel managed the labeling of subjects and kernel objects and provided access control over
each kernel operation by querying the security server itself. This resulted in complete mediation of
kernel operations with the richness necessary to limit access to trusted servers in a tamperproof Mach

7.5. UNIXERA 97

microkernel. The DTOS project also focuses on verifiability through assurance of the microkernel
and its trusted computing base.

Fluke/Flask So-called second generation microkernels made significant improvements in the IPC
performance [184, 185, 83] making Mach obsolete, so the DTOS architecture was ported to a
second generation microkernel called Fluke from the University of Utah [98]. The resulting security
architecture, called Flask, retained many of the elements of the DTOS architecture, in particular
the microkernel reference monitor, trusted servers (called object managers), and a separate security
server [295]. At this time, the focus shifted from MLS to the TE mechanism, as the latter is more
general and integrity protection became the focus. As with all the second generation microkernels,
Fluke did not attract a large user community, and another UNIX-based system was emerging in
popularity, Linux, see Chapter 9.

7.5 UNIXERA

By the early 1990s, a variety of different approaches to retrofitting UNIX systems has been ex-
plored [339]. In the process of constructing these systems, a variety of technical challenges were
discovered and solutions were proposed. This ultimately resulted in successful deployment of UNIX
systems that supported IMLS policies. However, the research community continued to explore com-
prehensive UNIX retrofitting that would address both integrity and security in concert. While the
UNIX MLS systems did not ignore integrity, integrity was addressed more implicitly, so it was left
to the administrators to ensure that the inputs to their high secrecy systems were also high integrity.
We examine two systems in detail here, IX and DTE, which retrofit UNIX with integrity and secrecy
mechanisms.

751 1IX

AT&T Research built an experimental UNIX prototype that enforces multilevel (MLS) secrecy
and integrity, called IX [200]. IX provides a reference monitor over file access that implements a
mandatory access control policy that provides secrecy and integrity protections. Care is also taken in
the definition of the trusted computing base to prevent tampering. Verification of security guarantees
is not a focus in IX. This is partly due to the complexity of verifying correctness on an existing kernel,
and partly due to the desire for more flexible labeling.

The IX mandatory access control policy enforces information flow secrecy. Processes have
labels in a secrecy lattice that ensure that they may only read data at their secrecy level or lower.
Unlike traditional MLS systems, such as Multics [23,280], IX uses dynamic labeling to provide more
flexible information flow control, however. The label of a file may change if it receives information
from a process at a higher secrecy level in the lattice. For example, a file may start with a low secrecy
label, but its label is changed to high secrecy when a high secrecy process updates it.

98 CHAPTER 7. SECURING COMMERCIAL OPERATING SYSTEMS

IX also includes a transition state that enables relabeling of processes and objects. Process
labels change based on the secrecy labels of the files that they have read. However, a cei/ing is defined
on process labels to limit the level that a process may reach. Ceilings may also be associated with file
systems to limit the secrecy of data written to that file system.

IX also supports a separate integrity lattice with dynamic labels as well. IX uses the LO-
MAC [27, 101] semantics for integrity labels. The label of an entity (process or file) is equal to the
lowest lattice label of an input to that entity. IX uses label foors to limit the degradation of integrity
that is possible for particular processes or files. A process may not read a file whose integrity is lower
than its floor which ensures that the integrity of a process is at least at the label of its floor.

The use of dynamic labeling requires authorization on each data transfer. For example, if a
file is opened for writing when the process is at high integrity, it may no longer be written after the
process’s integrity has decreased. Thus, authorization must be performed on all reads and writes,
not just at the time the file is opened. Such semantics precludes the use of memory-mapped files,
because file accesses are implemented by memory operations, rather than system calls. The risk is
that a process could map a high integrity file into its address space, load potentially malicious code,
and write to the file via the mapped memory without mediation by the reference monitor. Thus,
memory-mapped files must be prohibited in IX.

IX provides mechanisms for establishing trusted paths (called private paths in IX) between
trusted processes. IX defines a pex, a process exclusive access to a file or pipe, that prevents interference
from other processes. Further, a pex provides labels of the processes on each end of the pex, such
that an assured pipeline [33] of processes can be constructed. Figure 7.1 demonstrates an assured
pipeline. Process 1 is the only one that can read the input data (labeled 0% and generate the output
data (labeled Zs7). Process 2 then reads the 7sz data and then outputs the next data 2n4d that is used
by Process 3. Since an assured pipeline can be used to ensure that a computation spanning multiple
processes is high integrity, each of its stages must be performed only by trusted code.

. Process 1 | . Process2 | . Process 3 .
Label: 0th ——»» Label: 1st Label: 1st —>| Label: 2nd Label: 2nd —»>| Label: 3rd Label: 3rd —p
1st: Read Oth and Write 1st 2nd: Read 1st and Write 2nd 3rd: Read 2nd and Write 3rd

Figure 7.1: An assured pipeline chains together processes to perform a secure computation where each
process can only communicate with its predecessor and successor. Process 1 is the only one that can read
the input data labeled 0z, and outputs data of label 757 that can only be read by Process 2.

7.5.2 DOMAINAND TYPE ENFORCEMENT
Trusted Information Systems (TIS) retrofitted UNIX with a reference monitor that implements
an extension of the Type Enforcement (TE) [33] policy, called Domain and Type Enforcement

7.5. UNIXERA 99

(DTE) [15, 16]. UNIX has many trusted (i.e., root) processes that had been found to be vulnerable
(and often still continue to be vulnerable) to malicious network inputs. The DTE approach aims to
confine UNIX processes to protect the trusted computing base from other root processes.

Strictly speaking, DTE UNIX runs as a server on a TMach system [35, 15]. However, we
consider DTE to be a retrofit of UNIX because the reference monitor is added to the UNIX server
(OSF/1), not to TMach.

DTE Policy Model DTE extends the TE model by distinguishing subject types from object types
and adding transition states. In classical TE [33], there is only one set of types covering all subjects
and objects. In a DTE policy, types are assigned to objects, and domains are assigned to subjects (i.e.,
processes). A domain is a tuple consisting of three parts: (1) access rights to object types; (2) access
rights to subjects in other domains (e.g., signals); and (3) an entry point program, a file that when
executed triggers the domain. DTE domains describe how a process accesses files, signals processes
in other domains, and creates processes in another domain.

First, DTE UNIX defines limited protection domains for root processes [323]. Instead of
complete access, a least privilege policy is defined for such processes. Thus, should a network-facing
daemon be compromised, the extent of the damage that the attacker could cause may still be limited.
For example, it may not be possible for a compromised root process to install a rootkit under the
confinement of the TE policy. Also, the definition of domain transitions (see below) limits which
domains may be invoked by any process, also limiting possible malicious actions should a process be
compromised.

Second, signals are a mechanisms for the operating system or other processes to notify a
process. A signal interrupts the target process and forces it to handle the signal immediately. Signals
may be used for a variety of purposes, such as terminating or resuming a process, but the process’s
signal handler defines the effect. If an untrusted process can submit a signal to other processes, then
it can cause unauthorized execution resulting in termination or incorrect behavior.

The third element in domain specification defines the transition state. For each domain, DTE
enables us to control transitions using the third element of a domain specification. In DTE, we limit
domain transitions to the execution of a specific file corresponding to that domain and limit the
domains that can cause that transition. In UNIX, the conditions under which a process starts also
depends on environment variables, input arguments, file descriptors not set to close-on-exec, etc.,
so controlling the file used for a domain transition is only a start. Compare this to a ring transition
in Multics which also uses gatekeepers to verify arguments, see Chapter 3.

Labeled Networking A key innovation that appeared around this time was /abeled networking. The
idea is that each machine labels its network packets so that the receiver may authorize delivery to
its processes. For example, two machines may have both secret and confidential processes.
When a secret process sends a packet, the sending operating system adds the label to the packet
header. When the packet is received, the receiving operating system extracts the packet’s label, and

100 CHAPTER 7. SECURING COMMERCIAL OPERATING SYSTEMS

authorizes delivery to a receiver’s socket based on its label. Thus, if the secret packet is targeted
for a socket created by a confidential process, the receiving system can deny authorization. Thus,
authorization can span processes on multiple machines.

Labeled networking was enabled by the addition of IP security options to the IP header and
protocol [153], later revised in IETF RFC 1108 [165]. IP security options enabled transmission of
the sensitivity level of the packet. Implementations that used the IP security options header were
developed. Ones based on RFC 1108 directly are referred to as revised IP security options (RIPSO)
system. Since the information is simply stored in the IP header, external mechanisms were still
needed to protect the header in transit over an untrusted network (e.g., IPsec [168, 166, 167]).

A later revision to the approach, called the commercial IP security option (CIPSO), was
proposed and implementations were built to support it, although it was never standardized (there
is a draft [53]). CIPSO has generally superseded RIPSO. It consists of a domain of interpretation,
defining the meaning of the labels, and a specification for labels (tags) that can include levels and cate-
gories. Both secrecy and integrity levels are supported. Implementations often support both RIPSO
and CIPSO. Solaris Trusted Extensions (see Chapter 8) supports RIPSO, CIPSO, and its own
variant called Trusted Systems Information Exchange for Restricted Environments (T'SIX) [301].

DTE also includes a form of labeled networking [15]. In this case, DTE includes the labels
of the data being written (type) and the process doing the writing (domain) inside the packet. IP
security options are also used to encapsulate the DTE labels. The labeling of both process and data
domains means that the system must be able to reliably label the data being sent. For example, NFS
servers were modified to use DTE networking, and they are responsible for labeling the file data
that they deliver to clients. The range of labels that may be specified by a particular NFS server may
be limited by DTE, so there is not a need for fully trusted servers.

7.5.3 RECENT UNIX SYSTEMS

A variety of UNIX systems now include a significant set of security features. We focus on two such
UNIX systems in this book, Solaris Trusted Extensions in Chapter 8 and SELinux in Chapter 9,
but there are several others of note. In particular, security has been a major focus of several of the
BSD variants. The BSD systems derived from the Berkeley Software Distribution, a derivative of
UNIX developed at the University of California, Berkeley [201]. We briefly examine them here, but
recommend a detailed examination of their security features, as well.

Within the FreeBSD [103] community, the Trusted BSD project [327, 328, 312] aims to
implement trusted operating system extensions for FreeBSD. TrustedBSD includes services for
mandatory access control, auditing, and authentication, necessary to implement a mandatory pro-
tection system (see Definition 2.4 in Chapter 2). TrustedBSD includes a mandatory access control
framework that implements a reference monitor interface, analogous to the Linux Security Modules
framework [342] for Linux (see Chapter 9). The TrustedBSD framework enables the development
of reference monitor modules that can enforce mandatory access control policies. One such module
is SEBSD, a version of the SELinux module designed for BSD. Another FreeBSD security project

7.6. SUMMARY 101

is FreeBSD Jails [156], which implement a lightweight virtualization similar to Solaris Containers
(see Chapter 8) where processes running in a jail are isolated from processes outside that jail.

The security focus for OpenBSD [235] is on correct coding and configuration of systems to
minimize its attack surface. OpenBSD does not enforce mandatory access control, but instead focuses
on the correctness of its trusted programs and limiting the amount of code in trusted programs.
Rigorous code reviews are required for all trusted programs to reduce the possibility of vulnerabilities.
Privilege separation is often employed to re-engineer trusted programs to remove code that does not
require root privileges to execute, such as for OpenSSH [251]. This approach reduces the trusted
computing base of the system, by ensuring that less code has the privileges necessary to compromise
the system. In addition to code review and privilege separation, other system hardening techniques,
such as buffer overflow protection and least privilege configurations, are employed to prevent system
compromise. As a mandatory protection system requires that a tamperproof trusted computing base,
such attention to the trusted computing base programs is necessary for a secure system in general.
Other systems can, and have, leveraged the re-engineered programs developed for OpenBSD.

NetBSD [224] contains many of the security features of modern UNIX systems to prevent
buffer overflows, but it additionally provides in-kernel authentication and verification of file execu-
tion. In UNIX, user authentication is traditionally performed by trusted programs running outside
the kernel. These programs are vulnerable to compromised root programs (e.g., network facing dae-
mons), so the system’s security may depend on programs that cannot be protected from tampering.
As NetBSD’s Kauth framework is deployed inside the kernel, it is not susceptible to compromised
user-space processes, so trust in authentication is improved. NetBSD also defines a Veriexec mech-
anism which can be used to verify the integrity of a file prior to its use. Veriexec ensures that only
files whose contents correspond to an authorized hash may be accessed. It defines different modes of
permissible access for a file: (1) DIRECT for executables; (2) INDIRECT for interpreters run indirectly
(e.g., via #!/bin/sh); and (3) FILE for data files that may not be executed. The NetBSD kernel
checks the integrity (i.e., hash) of the file before its is accessed in the specified manner to detect
unauthorized modification.

7.6 SUMMARY

Adding security features to an existing operating system, with its existing customer base and appli-
cations, has been a popular approach for building secure systems. Unfortunately, retrofitting security
into existing, insecure systems leads to a variety of issues. Many programs are designed and con-
figured such that they will not work in the more restrictive environment of a secure system. The
operating systems themselves have complex interfaces that may be difficult to mediate.

In this chapter, we surveyed a variety of systems where security is retrofitted. We describe
the security features that are added to these systems, the challenges in ensuring that the reference
monitor concept is achieved, and the decisions that were taken to address these challenges. In general,
these efforts show that it is practical to add a reference monitor interface to an existing system, but
that it difficult to ensure the reference monitor guarantees are actually achieved. The complexity

102 CHAPTER 7. SECURING COMMERCIAL OPERATING SYSTEMS

and dynamics of these commercial systems prevent security professionals from developing models
necessary to verifying mediation, tamperproofing, or correctness. We examine these challenges in
detail for Solaris Trusted Extensions in Chapter 8 and for Linux in Chapter 9.

103

CHAPTER 8

Case Study: Solaris Trusted
Extensions
Glenn Faden and Christoph Schuba, Sun Microsystems, Inc.

Solaris (TM) Trusted Extensions is a feature of the Sun Microsystems’s Solaris operating system
that enforces multilevel security (IMLS) policies [23]. It is the latest in a series of MLS workstation
and server operating systems that have been under development at Sun since 1988. The first version,
SunOS MLS 1.0, which appeared in 1990, was based on the SunView window system. It was
designed to meet the TCSEC B1 level [304], see Chapter 12. However, it was replaced in 1992 by
SunOS CMW, which was designed to meet the Compartmented Mode Workstation Requirements,
CMWREQS [25, 340]. SunOS CMW was based on OpenWindows and X11/NeWS. It supported
both sensitivity labels for Mandatory Access Control, and floating information labels for human
consumption. It was first certified using the ITSEC Scheme at the E3/FB1 level in 1992.

Trusted Solaris 2.5 through Trusted Solaris 8 were based on the Common Desktop Environ-
ment (CDE) and X11 [227]. Trusted Solaris 2.5.1 was also certified using the ITSEC scheme at the
E3/FB1 level in 1996. Trusted Solaris 8 was evaluated using the Common Criteria scheme in 2000,
with an assurance level of EAL4+. It was certified to meet the Controlled Access (CAPP) [230],
Role-Based Access (RBACPP) [256], and Label Security Protection (LSPP) [231] Profiles. The
RBAC features of Trusted Solaris were incorporated into the standard Solaris OS at that time. As-
surance is detailed in Chapter 12, but in general, the assurance validates the correct low-level design
for enforcing MLS requirements. Based on this assurance, Trusted Solaris has a dominant share in
the U.S. Department of Defense and intelligence communities.

In 2001 Sun began work to unify its two Solaris versions, which was completed in 2006, with
the release of Solaris 10, update 3, which included the Trusted Extensions [1]. Also at that time,
Sun contributed the source code for the kernel and window system to the OpenSolaris community.
In addition to removing the need for separate kernels, the integration also made it possible to
support MLS on x86, x64, and SPARC platforms. Trusted Extensions includes an MLS version of
the GNOME desktop. The combined Solaris system with Trusted Extensions received Common
Criteria certification at the EAL4+ assurance level in June 2008, using the same three protection

profiles.

The authors of this chapter would like to thank their colleagues in the Sun Solaris Security Organization, especially Casper Dik,
Gary Winiger, Darren Moffat, and Glenn Brunette, for their contributions and reviews.

104 CHAPTERS8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

This new approach enables the Solaris operating system to support both traditional Dis-
cretionary Access Control (DAC) policies based on ownership, as well as label-based, Multilevel
Security (MLS) policies. The MLS label-based policies for file systems and networks have been
implemented throughout the standard Solaris 10 kernel, its services and utilities. Unless the Trusted
Extensions layer is enabled, all labels are equal, so the kernel does not have any MLS requirements
to enforce.

The Trusted Extensions systems provide a reference monitor implementation for Solaris that
enforces an MLS policy. The reference monitor extends the Solaris (and traditional UNIX) enforce-
ment by providing complete mediation and extending file enforcement to network, printing, and
devices. Further, Trusted Extensions provides extensive support for labeling objects in the first place.
Trusted Extensions does not need to enable transition of process or resource labels, a mechanism
commonly used in Domain Type Enforcement (DTE). Tamperproofing is improved by reducing
the rights on root processes, using limited domains similar to those in DTE. Finally, verification
of correctness is limited, as for all retrofitted UNIX systems, by the amount of code reused from
insecure systems. However, the focus of the security policy is primarily on secrecy, so the correctness
of the secrecy policy can be verified, but understanding the integrity of the system data is an ad hoc
process.

The trusted computing base of Trusted Extensions included the kernel and a variety of admin-
istrative applications. Importantly, a variety of administrative applications also have to be modified
to be MLS-aware, so that they can assist the operating system in the enforcement of MLS require-
ments. For example, authentication services must be capable of determining MLS labels for users
as they login.

8.1 TRUSTED EXTENSIONS ACCESS CONTROL

The Trusted Extensions access control model supports secrecy protection via MLS, process confine-
ment in a manner similar to DTE, and ad hoc privileges to work around limitations of the first two
policies. First, both sensitivity levels and categories are used to describe the possible information
flows in a system. Second, Trusted Extensions adds roles for limiting the rights of processes that
traditionally ran as root, like domains in DTE. As a result, root is only used at installation time, so
no processes run with full privilege. Third, discrete rights exceptional to the above two policies may
be granted to an application using Solaris privileges. There are at least 68 different kinds of discrete
privileges that may be granted.

The default mandatory policy of Trusted Extensions is a mandatory, multilevel security (MLS)
policy that is equivalent to that of the Bell-LaPadula Model [23] of the Lattice, the Simple Security
Property, and the x-Property (Star Property), with restricted write up. The default mandatory policy
is also equivalent to the Goguen and Mesegeur model [113] of Non-Interference.

Labels consist of hierarchical components called classifications (or levels) and a nonhierarchi-
cal components called compartments (or categories). The mapping of names to classifications and
compartments is specified in a database which is private to the Trusted Path. The internal structure

8.2. SOLARIS COMPATIBILITY 105

of labels is deliberately opaque to users and applications and might change in a future release. At
least 256 classifications and 256 compartment bits are supported.

When two labels are compared, the first label can be greater than, less than, equal to, or disjoint
from the second label. Classifications are compared as integers, and compartments are compared as
bit masks. Labels are disjoint when each contains at least one compartment bit which is not present
in the other.

A label range can be specified by an upper bound (called a clearance), and a lower bound.
Administrative roles can use the Trusted Path to assign label ranges to users, network attributes,
workstations, and devices.

For this MLLS policy, two labels are always defined: admin_low and admin_high. The site’s
security administrator defines all other labels. The label admin_low is associated with all normal
user readable (viewable) Trusted Extensions objects while the label admin_high is associated with
all other Trusted Extensions objects. Only administrative users have MLS read (view) access to
admin_high objects and only administrative users have MLS write (modify) access to admin_low
objects or admin_high objects.

Users interact with labels as strings. Graphical user interfaces and command line interfaces
present these strings. Human-readable labels are classified at the label that they represent. Thus, the
string for a label A is only readable (viewable, translatable to or from human readable to an opaque
label data type) by a subject whose label allows read (view) access to that label.

In order to store labels in publicly accessible (i.e., admin_low) name service databases, an
unclassified internal text form is used. This textual form is not intended to be used in any interfaces
other than those that are provided with the Trusted Extensions software release that created this
textual form of the label.

When the label-based MLS policies are enabled, all data flows are restricted based on a
comparison of the labels associated with the subjects requesting access and the objects containing
the data. Like other multilevel operating systems, Trusted Extensions meets the requirements of the
Common Criteria’s Labeled Security Protection Profile (LSPP) [231] and the Role-Based Access
Protection Profile (RBAC) [256]. The Trusted Extensions implementation focuses on maintaining
compatibility with existing UNIX systems, maintaining the high performance of UNIX systems,
and simplifying administrative tasks.

8.2 SOLARIS COMPATIBILITY

Compatibility with thousands of Solaris applications is achieved by building on existing Solaris
features and using existing industry standards. No new protocols are required nor new file system
attributes. Applications do not need to be modified nor profiled to bring them into conformance with
the MLS policy. Instead, the entire application environment is virtualized for each label through
the use of Solaris Containers (zones) [175], Solaris primary OS-level virtualization technology.
The Solaris Containers facility provides an isolated environment for running applications. Processes
running in a zone are prevented from monitoring or interfering with other activity in the system.

106 CHAPTER 8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

Access to other processes, network interfaces, file systems, devices, and inter-process communication
facilities are restricted to prevent interaction between processes in different zones. At the same time,
each zone has access to its own network stack and name space, enabling per-zone network security
enforcement, such as firewalling or IPsec.

The approach to map labels with zones is referred to as polyinstantiation because there can be
an instance of each resource and service available at each label. However, there is also a unification
principle known as a single system image which is applied to the entire operating environment.
All the zones are centrally administered from a special, protected global zone which manages the
Trusted Computing Base (TCB) known as the Trusted Path. The zones share a single LDAP
directory in which network-wide policy is defined, as well as a single name service cache daemon for
synchronizing local databases. All labeling policy and account management is done from within the
Trusted Path. MLS policy enforcement is automatic in labeled zones and applies to all their processes,
even those running as root. Access to the Global Zone (and hence Trusted Path applications) is
restricted to administrative roles.

8.3 TRUSTED EXTENSIONS MEDIATION

Trusted Extensions mediates access at the level of zones which results in a higher level of enforce-
ment and fewer MLS access checks than a typical MLS operating system. For example, instead of
maintaining labels on fine-grained objects like files and directories, Trusted Extensions associates
labels with Solaris Containers (zones), and network endpoints. Each zone is assigned a unique sen-
sitivity label and can be customized with its own set of file systems and network resources. Each
mounted file system is automatically labeled by the kernel when it is mounted. The file system label
is derived from the label of the zone or host which is sharing it. All files and directories within the
mounted file system have the same label as their mount point. Because no explicit extensions to the
file or file system structure are required, essentially any file system that works on Solaris 10 will work
when Trusted Extensions label enforcement is enabled. This includes Sun issued file systems such
as UFS, ZFS, SAM-FS and QFS as well as third-party file systems.

Processes are uniquely labeled according to the zone in which they are executing. All processes
within a zone (and their descendants) must have the same label, and are completely isolated from
processes in other zones. Unlike other virtualization technologies, there is no performance penalty
for executing within a zoned environment as there is no emulation required for a Container. That is,
system calls in all zones are handled by the Solaris kernel directly. Labeled zones can be instantiated
quickly by cloning a copy of a default zone. Disk usage is minimized by sharing immutable instances
of most system files and by utilizing copy-on-write technology for the rest.

A zone’s local file systems are only writable at the zone’s label, but can be shared with labeled
zones via loopback or NFS mounts. Loopback mounts are used between zones running on the
same host, and multilevel NFS is used for access between hosts. MLLS protections are enforced on
the mounts, and some integrity protections are also provided. For example, file systems that are
shared by all zones on a system are always mounted read-only. Such file systems are assigned the

8.3. TRUSTED EXTENSIONS MEDIATION 107

lowest administrative label, admin_low. Similarly, file systems imported from lower-level zones are
assigned the label of that lower-level zone with which they are shared.

File sharing between sets of Trusted Extensions systems using NFS can be symmetric. Cor-
responding zones on each system with matching labels can have read-write access to each other’s
shared file systems. Zones which dominate (i.e., have higher labels) than the owning zone can be
granted read-only access depending on per-zone policy settings.

Writing up to higher-level regular files is not possible because such files are never visible within
a labeled zone. However, writing up is possible using named pipes which are loopback mounted into
higher-level zones. This unidirectional conduit is useful for implementing one-way guards and for

tamper-proof logging.

Example 8.1. Figure 8.1 shows an example of the labels assigned to the mount points in a zone
called needtoknow, whose label is CONFIDENTIAL : NEED TO KNOW.Itdominates two user zones,
internal and public. Zone needtoknow has read-write access to file systems mounted in its own
zone, but read-only access to the dominated, user zones.

| Mount Point | Access Sensitivity Label |
/ Read/Write | CONFIDENTIAL : NEED TO KNOW
/kernel Read Only | ADMIN_LOW
/lib Read Only | ADMIN_LOW
/opt Read Only | ADMIN_LOW
/platform Read Only | ADMIN_LOW
/sbin Read Only | ADMIN_LOW
/usr Read Only | ADMIN_LOW
/var/tsol/doors Read Only | ADMIN_LOW
/tmp Read/Write | CONFIDENTIAL : NEED TO KNOW
/var/run Read/Write | CONFIDENTIAL : NEED TO KNOW
/home/jdoe Read/Write | CONFIDENTIAL : NEED TO KNOW
/zone/public/export/home/jdoe Read Only | PUBLIC
/zone/internal/export/home/jdoe || Read Only | CONFIDENTIAL :

INTERNAL USE ONLY

Figure 8.1: Labeled mount attributes for Trusted Extensions file systems in Example 8.1.

To prevent configuration errors and to simplify system administration, there are no interfaces
for specifying the labels of mount points. Instead, the kernel determines the labels of all mount
points based on host and zone labels, and ensures that the MLS policy is correctly implemented.

By default, each labeled zone is completely isolated from all other labeled zones because their
labels are required to be unique. No process in a zone can view or signal processes running in other

108 CHAPTER 8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

zones. There are no privileges available for any process in a labeled zone to write to lower-level files.
However, such policies as reading from files in lower-level zones, exporting directories to higher-
level zones, and moving files into higher level zones can be enabled by specifying the privileges
available to each zone when it is booted 1. Privileges available to a zone can, in turn, be assigned to
processes in the zone. However, a zone’s privilege limit is an upper bound that applies to all processes
(even root-owned) that are run in the zone. All policies that affect multiple zones, such as sharing
of directories, are administered via the Trusted Path.

If multiple users are running processes at the same IMLS label, these processes run in the same
zone and are controlled using traditional DAC policies within the zone. Of course, the communi-
cations that these processes can make are controlled by the MLS policies on the zone as described
above.

8.4 PROCESS RIGHTS MANAGEMENT (PRIVILEGES)

The Solaris operating system implements a set of privileges that provide fine-grained control over
the actions of processes. Traditionally, Unix-based systems have relied on the concept of a specially-
identified, super-user, called root. This concept of a Unix super-user has been replaced in a backward
compatible manner with the ability to grant one or more specific privileges that enable processes to
perform otherwise restricted operations.

The privilege-based security model is equally applicable to processes running under user id 0
(root) or under any other user id. For root-owned processes, the ability to access and modify critical
system resources is restricted by removing privileges from these processes. For user-owned processes
privileges are added to explicitly allow them to access such critical resources. The implications for
such privilege-aware processes are both, that root processes can run more safely because their
powers are limited, and that many processes that formerly required to be root processes can now
be executed by regular users by simply giving them the additionally required privileges. Experience
with modifying a large set of Solaris programs to be privilege-aware revealed an interesting fact.
Most programs that formerly required to be executed as user root require only very few additional
privileges and in many cases require them only once before they can be relinquished.

The change to a primarily privilege-based security model in the Solaris operating system gives
developers an opportunity to restrict processes to those privileged operations actually needed instead
of having to choose between all (super-user) or no privileges (non-zero UIDs). Additionally, a set
of previously unrestricted operations now require a privilege; these privileges are dubbed the "basic"
privileges. These are privileges that used to be always available to unprivileged processes. By default,
processes still have the basic privileges.

IThe policy for reading down is configurable because it is not always appropriate. For example, it could result in processes at a higher
level executing lower-level applications which manipulate the higher-level data. One way to mitigate that risk is to configure the
zone without the privilege to do read down mounts. An additional way is to specify the noexec mount option for lower-level
mounts.

8.4. PROCESS RIGHTS MANAGEMENT (PRIVILEGES) 109

The single, all-powerful UID 0 assigned to a root process has been replaced with at least 68
discrete privileges that can be individually assigned to processes using the Service Management Fa-
cility (SMF), Role-based Access Control (RBAC), or a command-line program, such as ppriv(1).

Taken together, all defined privileges with the exception of the "basic" privileges compose
the set of privileges that are traditionally associated with the root user. The "basic" privileges are
"privileges" unprivileged processes were accustomed to having.

The privilege implementation in Solaris extends the process credential with four privilege sets:

* I, the inheritable set: The privileges inherited on exec.
* P, the permitted set: The maximum set of privileges for the process.
* E, the effective set: The privileges currently in effect.

* L, the limit set: The upper bound of the privileges a process and its offspring can obtain.
Changes to L take effect on the next exec.

As shown in Figure 8.2, the sets I, P and E are typically identical to the basic set of privileges
for unprivileged processes. The limit set is typically the full set of privileges.

(

Effective

Inheritable

Figure 8.2: The relationship among Solaris privilege sets.

8.4.1 PRIVILEGE BRACKETING AND RELINQUISHING
The implementation of Solaris privileges empowers application developers to control how privileges
are used within their programs. Using a technique called privilege bracketing, developers can write

110 CHAPTERS8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

their programs such that they are only running with privileges when they are needed. Even more
importantly, programs can not only enable or disable their privileges, but they can also drop any
privileges granted to them (assuming they will not be needed) and even relinquish them (so they can
no longer be used) when there is no longer a need for the privilege. Just as importantly, programs
can also restrict which of their privileges can be passed along to their children (e.g., programs that
they execute). In the Solaris operating environment many setuid programs (e.g., ping, traceroute,
rmformat) and system services (e.g., nfsd, ftpd, mountd) use these techniques.

Each process has a Privilege Awareness State (PAS) that can take the value PA (privilege-
aware) and NPA (not privilege-aware). PAS is a transitional mechanism that allows a choice between
full compatibility with the old superuser model and completely ignoring the effective UID. To facili-
tate the discussion, we introduce the notion of "observed effective set" (0 E) and "observed permitted
set" (o P) and the implementation sets i E and i P.

A process becomes privilege-aware either by manipulating the effective, permitted, or limit
privilege sets through the setppriv or setpflags system calls. In all cases, 0 E and o P are invariant
in the process of becoming privilege-aware. In the process of becoming privilege-aware, the following
assignments take place:

iE =oF (8.1)
iP=oP (8.2)

When a process is privilege-aware, oE and oP are invariant under UID changes. When a
process is not privilege-aware, 0 E and o P are observed as follows:

0F = ((euid ==0) ? L : iE) (8.3)
oP = ((euid == O||ruid == 0||suid == 0)) ? L : i P) (8.4)

When a non-privilege-aware process has an eftective UID of 0, it can exercise the privileges
contained in its limit set, the upper bound of its privileges. If a non-privilege-aware process has any
of the UIDs 0, it will appear to be capable of potentially exercising all privileges in L.

It is possible for a process to return to the non-privilege aware state, which the kernel will
always attempt on exec. This operation is permitted only if the following conditions are met:

* If any of the UIDs is equal to 0, P must be equal to L.
* If the effective UID is equal to 0, E must be equal to L.

When a process gives up privilege awareness, the following assignments take place:

if(euid == 0) iE = L&I (8.5)
if(anyuid ==0) iP = L&l (8.6)

8.4. PROCESS RIGHTS MANAGEMENT (PRIVILEGES) 111

The processes that do not have a UID of 0 will be assigned the inheritable set of privileges from
its parent, as restricted by the limit set. When executing, the privileges in the process’s (observed)
effective privilege set permit the process to perform restricted operations. A process can use any of
the privilege manipulation functions to add or remove privileges from the privilege sets. Privileges
can be removed always. Only privileges found in the permitted set can be added to the effective and
inheritable set. The limit set cannot grow. Note in Figure 8.2 that the inheritable set can be larger
than the permitted set. Thus, it is possible that a process’s children may have permissions additional
to the process’s permitted set.

When a process performs an exec, the kernel will first try to relinquish privilege awareness
before making the following privilege set modifications:

E =P =1I=L&I (8.7)
L is unchanged (8.9)

If a process has not manipulated its privileges, the privilege sets effectively remain the same,
as E, P and [are already identical.

The limit set is enforced at exec time.

To run a non-privilege-aware application in a backward-compatible manner, a privilege-aware
application should start the non-privilege-aware application with I = basic.

For most privileges, absence of the privilege simply results in a failure. In some instances, the
absence of a privilege can cause system calls to behave differently. In other instances, the removal of a
privilege can force a setuid application to seriously malfunction. Privileges of this type are considered
"unsafe". When a process is lacking any of the unsafe privileges from its limit set, the system will
not honor the setuid bit of setuid root applications.

8.4.2 CONTROLLING PRIVILEGE ESCALATION

In certain circumstances, a single privilege could lead to a process gaining one or more additional
privileges that were not explicitly granted to that process. To prevent such an escalation of privileges,
the security policy will require explicit permission for those additional privileges.

Common examples of escalation are those mechanisms that allow modification of system re-
sources through "raw" interfaces; for example, changing kernel data structures through /dev/kmem
or changing files through /dev/dsk/*. A special case of this is manipulating or creating objects
owned by UID O or trying to obtain UID O using the setuid system call. The special treatment of
UID 0 is needed because the UID O owns all system configuration files and ordinary file protection
mechanisms allow only processes with UID 0 to modify the system configuration. While with appro-
priate file modifications, a given process running with an effective UID of 0 could gain all privileges,
other protection mechanisms come into play.

When a process needs the permissions only available to root, it must be run with UID 0.
Ultimately, we would like to eliminate this requirement for an all-powerful root principal, so that

112 CHAPTERS8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

processes could be simply bestowed their appropriate privilege sets. However, better protection of the
file resources above is necessary to prevent a malicious process from circumventing such limitations.

Of course, administrators should use as few UID O processes as possible. This reduces the
size of the system’s trusted computing base, thus limiting the number of processes that must be
tamperproof. Where possible, a root process should be replaced with programs running under a
different UID but with exactly the privileges they need. For example, daemons that never need to
exec subprocesses should remove the privilege to execute processes from their permitted and limit
sets.

8.4.3 ASSIGNED PRIVILEGES AND SAFEGUARDS

While it is possible for privileges to be assigned to a user, they should really be assigned to programs.
An system administrator could give a user more powers than intended. The administrator should
consider whether additional safeguards are needed. For example, if the privilege to lock process mem-
ory is given to a user, the administrator should consider setting the project .max-locked-memory
resource control as well, to prevent that user from locking all memory.

8.5 ROLE-BASED ACCESS CONTROL (RBAC)

Role-based Access Control (RBAC) in Solaris is an alternative to the all-or-nothing security model
of traditional superuser-based systems. With RBAC [94], an administrator can assign privileged
functions to specific user accounts (or special accounts, called roles). RBAC is in keeping with the
security principle of least privilege by allowing organizations to selectively grant privileges to users
or roles based upon their unique needs and requirements. In general, organizations are strongly
encouraged to use Solaris RBAC to restrict access to privileged operations rather than granting
users complete access to the backwardly compatible root account.

Solaris RBAC was introduced in the Solaris 8 operating system, having come from Trusted
Solaris, and has been enhanced and expanded with each new release of Solaris. Solaris RBAC
functionality contains several discrete elements that can be used individually or together including
authorizations, privileges, rights profiles and role designations. Figure 8.3 illustrates the relationship
between these elements that are described in turn below.

8.5.1 RBACAUTHORIZATIONS
An authorization is a unique string that represents a user’s right to perform some operation or class of
operations. Authorization definitions are stored in a database called auth_attr. For programming
authorization checks, only the authorization name is significant.

Some typical values in an auth_attr database are shown below.

solaris.jobs.:::Cron and At Jobs::help=JobHeader.html
solaris.jobs.grant:::Delegate Cron & At \
Administration::help=JobsGrant.html

8.5. ROLE-BASED ACCESS CONTROL (RBAC) 113

Roles Users
Operator< johnDoe
Rights Profiles Authorizations
—+— Operator — solaris.admin.printer.read
Iig Fﬂgré’[igrbrggpggemenu — solaris.admin.printer.modify
— solaris.admin.printer.delete

Commands with Security Attributes
— /usr/shin/accept: euid=0
L /usr/ucb/Ipq: euid=Ip

Figure 8.3: Relationship between RBAC elements.

solaris.jobs.admin:::Manage All Jobs::help=AuthJobsAdmin.html
solaris.jobs.user:::Cron & At User::help=JobsUser.html

Authorization name strings ending with the grant suffix are special authorizations that give
a user the ability to delegate authorizations with the same prefix and functional area to other users.

An authorization is a permission that can be assigned to a role, be assigned to a user, or
be embedded in a rights profile for performing a class of actions that are otherwise prohibited by
security policy. Very often, authorizations are used in concert with privileged programs or services
for the purpose of access control. For example, access to crontab is denied:

* If /etc/cron.d/cron.allow exists and the user’s name is not in it.

e If /etc/cron.d/cron.allow does not exist and users name is in
/etc/cron.d/cron.deny.

* If neither file exists, only a user with the solaris. jobs.user authorization is allowed to
submit a job.

In this case, the solaris. jobs.user authorization can be used to grant access to the cron
facility (when other access control mechanisms are not present).

114 CHAPTER 8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS
8.5.2 RIGHTS PROFILES

A rights profile is a collection of overrides that can be assigned to a role or user. A rights profile can
consist of authorizations, individual commands, and other rights profiles. Each of the commands
stored in a rights profile can define security attributes that determine how the program will be run.
The following is the list of security attributes that can be assigned to commands in a rights profile:

* uid (euid): The euid and uid attributes contain a single user name or a numeric user ID.
Commands designated with euid run with the effective UID indicated, which is similar to
setting the setuid bit on an executable file. Commands designated with uid run with both
the real and effective UIDs.

* gid (egid): The egid and gid attributes contain a single group name or a numeric group ID.
Commands designated with egid run with the effective GID indicated, which is similar to
setting the setgid bit on a file. Commands designated with gid run with both the real and
effective GIDs.

* privs. The privs attribute contains a privilege set which will be added to the inheritable set
prior to running the command.

* limitprivs. The limitprivs attribute contains a privilege set which will be assigned to the
limit set prior to running the command.

8.5.3 USERSAND ROLES

A Solaris role is a special identity for running privileged applications that can be assumed by assigned
users only. A role is similar to a normal user in that it has its own UID, GID, home directory, shell
and password. A role differs from a normal user in two ways:

* A role cannot be used to (initially) log directly into a system either at the console or by any
remote access service. Users must first log into the system before assuming a role.

* A role can only be accessed by a user who has previously been authorized to assume that role.

Most often, roles are used for administrative accounts to restrict access to sensitive operations
as well as for service accounts (e.g., web server or application server UID). It is important to ensure
that actions taken by such accounts be attributable back to a specific user (who accessed the role). It
should also be noted that delayed jobs (e.g., cron or batch) are independent of role assumption.

8.5.4 CONVERTING THE SUPERUSERTO A ROLE

Taken together, authorizations, rights profiles and roles offer the ability to delegate access to admin-
istrative functions with a level of detail that can be customized based upon an organization’s policies
and requirements. One of the most commonly cited examples of RBAC is the conversion of the

root account to a role.

8.6. TRUSTED EXTENSIONS NETWORKING 115

By implementing this change, root no longer will be able to directly log into the system, and
root will only be able to be accessed by those possessing the correct credentials and explicit approval
to assume that role. It is critical therefore that at least one user account be assigned to the root role,
otherwise the role itself would no longer be able to be accessed. Note that the risk of administrators
being unable to log in and assume the root role to perform privileged operations can be reduced by
ensuring that their accounts have account lockout disabled, are stored in the local ("files") password
tables, and have home directories that are mounted locally rather than over NFS. Solaris can still be
configured such that booting the Solaris system into single user mode will enable administrators to
log into the system directly as root, thereby providing a worst-case mechanism to access a privileged
shell.

In addition, there are a number of other rights profiles provided in the Solaris OS by default
including:

* Primary Administrator. Provides all of the capabilities of "superuser” in one profile. This
profile grants rights that are equivalent to root.

* System Administrator. Provides a profile that can do most of the "superuser” tasks but fewer
connected with security administration. For example, this role can create accounts but it cannot
set or reset user passwords.

* Operator. Provides limited capabilities to manage files and offline media.

Such profiles define sets of rights associated with a particular job, as is a common use of
role-based access control.

8.6 TRUSTED EXTENSIONS NETWORKING

A key feature in Trusted Extensions is its labeled networking that enables distributed computation
to be controlled relative to the MLS policy. As in previous versions of Trusted Extensions software,
remote hosts can be single-level or multilevel. Single level hosts have an implicit label assigned to
them based on their network or IP address. Nonlabel aware systems, such as workstations running
Microsoft Windows (TM), are assigned a specific label for communications purposes. Multilevel
hosts are trusted to operate at a range of labels, and explicitly specify the label of every network packet
when communicating with other trusted systems. Packet labels are specified using the Commercial
IP Security Option (CIPSO) which encapsulates a sensitivity label as an IP option [53]. CIPSO is
specified in the FIPS 188 Standard and is supported by Trusted Solaris 8 and other labeled systems.

When specifying the labeling policy for network attributes, both label ranges and sets of
disjoint labels can be enumerated. This ability to precisely define the labeling policy is required
to support various multilevel configurations including guards, NFS servers, Sun Ray servers, name
servers, print servers, workstations, and high-assurance grid computing. An administrator can also
assign a label range to a router even if the router does not interpret labels. Although zones have
unique labels, specific multilevel services can be configured for each zone.

116 CHAPTER 8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

The network attributes database is maintained in an LDAP directory and shared by all trusted
systems comprising a network of multilevel systems. IPsec can be used to authenticate the source
IP addresses associated with incoming network packets. IPsec enforces integrity protection, and is
used to encrypt data on multilevel networks.

Zones can be configured to share a single IP address, or they can be assigned unique IP
addresses. Similarly, they can share the same physical network interface, or can be configured to use
separate network interfaces. Both shared and per-zone IP addresses can be used concurrently, with
different labeling policies for each IP address. Solaris Zones technology allows multiple zones to
share a single network interface through the use of virtual interfaces.

Sharing of IP addresses is possible in Trusted Extensions because each packet is labeled. When
apacketis received, the kernel uses the label of the packet to determine the appropriate zone to which
itis authorized to be delivered. Sharing a single IP address for all zones is convenient for workstations
and laptops, especially when DHCP is used. This simplifies deployment into infrastructures with
limited IP addresses.

8.7 TRUSTED EXTENSIONS MULTILEVEL SERVICES

By default Solaris 10 with Trusted Extensions enables the following multilevel services:

* X11 Window System with the Common Desktop Environment (CDE) or the Gnome-
Desktop.

* Printing using the Internet Protocol Printing or BSD Protocol Printing
* Network File System

* Sun Directory Server (LDAP server)

* Label Translation Service

* Name Service Cache Daemon

All other services are polyinstantiated in each zone. However, additional multilevel services
such as Web Servers and Secure Shell can be enabled administratively via the Trusted Path. We discuss
the multilevel window system and printing in detail below. We also discuss the use of multilevel
services across the network, using the labeled networking described in the previous section.

Users can log in via the Trusted Path and can be authorized to select their multilevel desktop
preference (CDE or Gnome-based). Once authenticated they are presented with an option to select
an explicit label or a range of labels within their clearance and the label range of their workstation or
Sun Ray desktop unit. The window system initiates a user session in the zone whose label corresponds
to the user’s default or minimum label.

The window system provides menus for interacting with the Trusted Path to change the label
of the current workspace or to create additional labeled workspaces. For each selected label, the

8.7. TRUSTED EXTENSIONS MULTILEVEL SERVICES 117

window system starts another user session in the corresponding zone. All of these user sessions run
concurrently and are subjects of the user’s identity that was established during the initial authen-
tication. Each window is visibly labeled according to the zone or host with which it is associated.
Although users can simultaneously interact with windows running in multiple zones, the applications
themselves remain isolated.

Attempts to cut and paste data, or drag and drop files between clients running in different zone
are mediated by the Trusted Path. Specific authorizations are required for upgrading or downgrading
selections and files, and are prohibited by default. Figure 8.4 shows a screen shot of an authorized
user interacting with the Trusted Path to upgrade a selection.

| Nrusted path 573685

 Uniitied L (modified) - gedit

JTIAL N TE

. §§§§mﬂdumcd d) - gedi

| Untitled 1* x }

This is
yilliPublic information

Q Untitled 1% xl
T am CONFIDENTIAL: INTERNAL USE ONLY

W . 3]“3[5 ‘A[%[@

ew Open Save Print Undo Redo Cut Copy Paste

| Untitled 1% % }
Selection Manager

his text is Confidential :Restricted

g qt
You are transferring a selection between
windows with different labels. This requires the
information in the selection to be downgraded

G % CNEEINT G
Type: UTF8_STRING Type: UTFB_STRING (37 bytes)
Owner: sh73685 Owner: sh73685

This text is Confidential :Restricted

Ln 3, Col L

Time remaining t complete: [E—

ﬁ [Selection Man| . Untiled L (mo| < Untitled L (mo| < Untited L (mo == T.'IIH % @ sec 9 @:@ Wed Feb 15, 3:26 PM

Figure 8.4: Multilevel Cut and Paste in Trusted JDS

Devices represent a security threat because they can be used to import and export data from the
system. In Trusted Extensions, removable media devices are administered through the Trusted Path

menu. The window system provides a Trusted Path interface for device allocation which provides

118 CHAPTER 8. CASE STUDY: SOLARIS TRUSTED EXTENSIONS

fine-grained access to specific devices based on user authorizations and label ranges. For example,
a user can be authorized to allocate the audio system (speaker and microphone) at a single level.
Hot pluggable devices such as USB flash memory drives are also managed by the Trusted Path user
interface. An authorized user can request to have such devices mounted into a zone whose label is
within the user’s label range and the device’s label range. As an extra security measure, the raw device
is not available within the labeled zone. This capability protects the integrity of the mounted file
system and prevents unauthorized access.

Each printer is assigned a label range from which it will accept requests. Multilevel printers
can accept jobs from labeled zones or remote hosts whose labels fall within their range. Each job
can be encapsulated between reliably matching banner and trailer pages which indicate the label and
handling caveats for the output. Each page can be automatically labeled with headers and footers
corresponding to the sensitivity of the data.

Using per-zone IP addresses is required when separate networks are in use, and might be
appropriate when multilevel services are being provided. To enable multilevel services, a database of
multilevel ports is maintained via the Trusted Path. A multilevel port is a special kind of reserved
port whose multilevel semantics are administratively controlled. For each IP address, a range and/or
set of explicit labels can be configured for use by multilevel services. A privileged server can bind
to a multilevel port using any IP addresses that are assigned to the server’s zone. The server can
receive requests at these labels and reply to any request. For multilevel TCP services, the reply is
automatically sent using the label of the request without requiring any special programming in the
server. For multilevel UDP services, the server must set a socket option to indicate the label of the
reply. In either case, the server can query the kernel to determine the label of each request and then
restrict the reply accordingly.

8.8 TRUSTED EXTENSIONS ADMINISTRATION

Trusted Extensions provides administrative roles that permit authorized users with the permissions
to configure the system’s security and an auditing subsystem for tracking processing.

By using the Trusted Path menu, authorized users can assume one or more of the administrative
roles which they have been assigned. For obtaining each role, a secondary authentication is required.
Once authenticated, the window system creates a new administrative workspace for the role and
starts another session. These administrative workspaces are protected from interference by untrusted
X11 clients and nonrole user logins. For roles who are cleared for all labels, their sessions are initiated
as Trusted Path processes. Each role has a limited set of Role Based Access Control (RBAC) rights
which restrict its access. Typically, two or more cooperating roles can be used to configure the system.
For example, a system administrator role creates accounts and zones, while a security administrator
assigns labels to them. Roles with sufficient rights can configure aspects of the MLS and DAC
policies that apply to one or more zones.

Trusted Extensions audit records are compatible with standard Solaris OS. They include the
labels of subjects and objects, and additional label-related events. The auditing system is configured

8.9. SUMMARY 119

via the Trusted Path and is transparent to users and roles running in labeled zones. The auditing
system is robust and cannot be tampered with by processes running in labeled zones. Even processes
with all privileges in a labeled zone cannot observe the audit trail nor tamper with any records.

8.9 SUMMARY

Solaris Trusted Extensions builds on the security features in Solaris 10 in an upward compatible
fashion. Administrators of Solaris 10 can enable Trusted Extensions by turning the labeling service
on with a single SMF command. Because it is now integrated with the Solaris OS, all of the latest
Solaris functionality is supported by Trusted Extensions, and all hardware platforms are supported.
Conversely, privileges and RBAC are fully supported in regular Solaris without the need to make
use of the MILS features of Trusted Extensions. The MLS policy is enforced at the zone boundaries,
rather than on individual processes or files, so access control is coarser-grained than traditional MLS
operating systems. Note that this approach is similar to that envisioned for virtual machine systems,
see Chapter 11. User applications running within zones require no customization for the Trusted
Extensions platform. Trusted Extensions provides multilevel services that provide general services
for applications at all levels without requiring application modifications.

120

121

CHAPTER 9

Case Study: Building a Secure
Operating System for Linux

The Linux operating system is a complete reimplementation of the POSIX interface initiated by
Linus Torvalds [187]. Linux gained popularity throughout the 1990s, resulting in the promotion
of Linux as a viable alternative to Windows, particularly for server systems (e.g., web servers). As
Linux achieved acceptance, variety of efforts began to address the security problems of traditional
UNIX systems (see Chapter 4). In this chapter, we describe the resulting approach for enforcing
mandatory access control, the Linux Security Modules (LSM) framework. The LSM framework
defines a reference monitor interface for Linux behind which a variety of reference monitor imple-
mentations are possible. We also examine one of the LSM reference monitors, Security-enhanced
Linux (SELinux), and evaluate how it uses the LSM framework to implement the reference monitor
guarantees of Chapter 2.

9.1 LINUXSECURITY MODULES

The Linux Security Modules (LSM) framework is a reference monitor system for the Linux ker-
nel [342]. The LSM framework consists of two parts, a reference monitor interface integrated into
the mainline Linux kernel (since version 2.6) and a reference monitor module, called an LSM, that
implements reference monitor function (i.e., authorization module and policy store, see Chapter 2
for the reference monitor concept definition) behind that interface. Several independent modules
have been developed for the LSM framework [228, 183,127, 229] to implement different forms of
reference monitor function (e.g., different policy modules). We examine the LSM reference monitor
interface in this section, and one of its LSMs, Security-Enhanced Linux (SELinux) [229] in the
subsequent section. There are other LSMs and a debate remains over which LSM approach is most
effective, but SELinux is certainly the most comprehensive of the LSMs.

9.1.1 LSMHISTORY
In the late 1990s, the Linux operating system gained the necessary support to make it a viable
alternative in the UNIX system market. Although there were a variety of UNIX variants, such as
AIX and HP/UNIX, and even other open source systems, such as the BSD variants, Linux became
the mindshare leader among UNIX systems. Large server vendors, such as IBM and HP, threw their
support behind Linux, and it soon became the main competitor to Microsoft Windows.

Also, in the late 1990s, a number of projects emerged that retrofit various security features into
the Linux kernel. Since Linux was open source, anyone could modify it to meet their requirements

122 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

(as long as they released their code back to the community, per the GNU Public License require-
ments [112]). A variety of prototype systems emerged, including Argus PitBull [13], LIDS [183],
AppArmor (originally called Subdomain) [228], RSBAC [240], GRSecurity [296], DTE (see Chap-
ter 7) for Linux [127], Medusa DS9 [204], OpenWall [236], HP’s Secure OS Software for Linux [80],
and a retrofit of the former Flask/DTOS/DTMach system (see Chapter 7), now called SELinux.
All these modified Linux systems varied in fundamental ways, but all aimed to provide a valuable
security function. AppArmor and PitBull were both sold as commercial products.

In 2001, momentum was growing for inclusion of a reference monitor in the Linux ker-
nel. Problems with worms, viruses, and denial-of-service attacks were reaching a significant level,
although mostly on the Windows platform. At the Linux kernel summit that year, the SELinux
prototype was presented, and the Linux community, including Linus Torvalds in particular, seemed
to accept the idea that a reference monitor was necessary. However, Linus faced two challenges. First,
he was not a security expert, so he could not easily decide among the approaches and felt it was not
appropriate for him to make such a decision. Second, the security community itself could not agree
on a single, “best” approach, so Linus could not depend on the security community to guide him
to a single approach. As a result, Linus argued for a design based on kernel modules where a single
interface could support all the necessary modules. This approach became the LSM framework.

A community formed around the idea of building a single reference monitor interface for
Linux (although not all the Linux security prototype researchers agreed [239, 297] 1), and this
community designed and implemented the LSM framework. The main task was to implement the
LSM reference monitor interface. The design of the LSM framework’s reference monitor interface
had the following goals [342]:

* The reference monitor interface must be truly generic, such that “using a different security
model is merely matter of loading a different kernel module”

* The reference monitor interfaces must be “conceptually simple, minimally invasive, and effi-
cient”

* Must support the POSIX.1e capabilities mechanism as an “optional security module”

The first two requirements motivated collecting the union of the authorization queries from
all previous Linux security, such that all modules could be supported, but restricting the number
of authorization queries as much as possible to prevent redundant authorizations that made add
complexity and impact performance. While the LSM interface was designed manually [342], source
code analysis tools were built to verify the completeness [351] and consistency [149] of the LSM
interface, finding six interface bugs that were resolved.

Performance analysis showed that the most of the LSM interface had no tangible performance
impact [342], but the CIPSO implementation (i.e., labeled networking, see Section 7.5.2) provided
IThe RSBAC comment dated April 2006 that LSM would be removed from the official kernel is no longer current. Linus Torvalds

reaffirmed his support for LSM in the 2006 Linux Kernel Summit, and LSM will remain part of the mainline Linux kernel for
the foreseeable future.

9.1. LINUX SECURITY MODULES 123

with the initial LSM interface was rejected. The performance overhead of keeping labels consistent
under packet fragmentation and defragmentation, even if no security policy was being enforced,
was too costly. Two other alternatives for labeled networking are now supported by the Linux
kernel. First, Labeled IPsec [148], based on the Flask labeled networking [50], negotiates labels for
IPsec network communications in addition to cryptographic parameters. An LSM controls network
communication by authorizing whether a process can use a particular IPsec communication channel.
Since the label of the IPsec channel is established at negotiation time, there is no need to include
the label in the packet. Second, Paul Moore built a new implementation of CIPSO for Linux, called
Netlabel [214]. Netlabel provides a less intrusive version of CIPSO which was accepted by the Linux
community.

The Linux Security Modules framework was officially added to the Linux kernel with the re-
lease of version 2.6. The SELinux module and a module for implementing POSIX capabilities [307]
were included with the release of LSM. Novell, the distributor of SuSE Linux, purchased the com-
pany that supported AppArmor, so SuSE and other Linux distributions support the AppArmor
LSM as well.

SELinux and AppArmor have become the major LSMs. While both provide tangible Linux
security improvements, converting Linux (or any UNIX system) to a system that can satisfy reference
monitor guarantees is a difficult task. However, with Linus reaffirming his support for the LSM
framework [188] in 2006 and a variety of Linux vendors support security behind LSMs, the LSM
framework can be considered a modest success.

9.1.2 LSMIMPLEMENTATION

The LSM framework implementation consists of three parts: (1) the reference monitor interface
definition; (2) the reference monitor interface placement; and (3) the reference monitor implemen-
tations themselves.

LSM Reference Monitor Interface Definition The LSM interface definition specifies the
ways that the Linux kernel can invoke the LSM reference monitor. Linux header file
include/linux/security.h lists a set of function pointers that invoke functions in the loaded
LSM. A single structure, called security_operations, contains all these LSM function pointers.
We refer to these function pointers collectively as the LSM hooks. Fundamentally, the LSM hooks
correspond to LSM authorization queries, but the LSM interface must also include LSM hooks for
other LSM tasks, such as labeling, transition, and maintenance of labels.
Two examples of LSM hooks are shown below.

static inline int security_inode_create (struct inode *dir,
struct dentry *dentry,
int mode)

if (unlikely (IS_PRIVATE (dir)))
return O;

124 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

return security_ops->inode_create (dir, dentry, mode);

}

static inline int security_file_fcntl (struct file *file, unsigned int cmd,
unsigned long arg)
{
return security_ops->file_fcntl (file, cmd, arg);

}

First, security_inode_create authorizes whether a process is permitted by the LSM to
create a new file, indicated by dentry, in a particular directory dir. The LSM hook is invoked
through the call to the function pointer defined by security_ops->inode_create. The LSM
loaded defines how the authorization is performed. Second, security_file_fcntl authorizes a
specified process’s ability to invoke fcntl on a specific file. Subsequent LSM hooks in the function
do_fcntl enable an LSM to limit certain uses of fcntl independently (e.g., setting the fowner
field that signals the associated process on file operations).

In all there are over 150 LSM hooks that enable authorizations (as above), and the other LSM
operations of labeling, transitioning labels, and maintenance of labels. While different LSM hooks
are intended to serve different purposes, they all have a similar format to the two listed above.

LSM Reference Monitor Interface Placement 'The main challenge in the design of the LSM frame-
work is the placement of the LSM hook. Most of the LSM hooks are associated with a specific
system call, so for these the LSM hook is placed at the entry to the system call. However, several
of the LSM hooks cannot be placed at the system call entry point (e.g., to prevent TOCTTOU
attacks, see Chapter 2). For example, as shown in Figure 9.1, the open system call converts a file
path to a file descriptor that enables access (i.e., read and/or write) to the associated file. Locating
the specific file described by the file path requires authorizing access to the directories that accessed
along the path, any file links in the path, and finally authorizing to the target file for the specific
operations requested. Since these components are extracted from the file path at various points in
the open processing, the LSM hook placement is nontrivial.

While there are some discretionary checks in place that guided the placement of the LSM
hooks for open, the process by which the LSM hooks were placed was largely ad hoc. For ones where
no previous discretionary authorization was performed, the implementors made a manual placement.
Some placements were found to be wrong, and some security-sensitive operations were found to be
lacking mediation, but these issues were resolved through source code analysis [351, 149].

An LSM hook is placed in the code using the inline function declarations (e.g.,
security_inode_create) which is expanded at compile-time to the LSM hooks as shown by
the code above. Inline functions for each LSM hook are used to improve the readability of the code.

LSM Reference Monitor Implementations Finally, LSMs must be built to perform the actual
authorizations. Actual LSMs include AppArmor [228], the Linux Intrusion Detection System

9.1. LINUX SECURITY MODULES 125

User Process

User Space
file path, operations
open System Call Kernel Space
Lookup inode Process file path down to inode

(through directories and links)

v

DAC checks

Is user process
LSM hook —> allowed to perform
operations on inode?

Access inode

LSM

Figure 9.1: LSM Hook Architecture

(LIDS) [183], SELinux [229], and POSIX capabilities [307]. Each of LSMs provide a different
approach to mandatory access control, excepting POSIX capabilities which was an existing discre-
tionary mechanism in Linux. POSIX capabilities were converted to a module to enable independent
development from the mainline kernel and because some LSMs aimed to implement the capability
controls in a different manner [342].

126 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

Although Gasser and Schell identified that different security kernel policies require different
reference monitor interfaces (i.e., different LSM hook placements) [10] (in the context of security
kernels, see Chapter 6), the LSM uses the same placements for all LSMs. In practice, the choice of
LSM hook placements was a union of the reference monitors being ported to the framework. The
LSM implementation does not require that each LSM provide implementations for every hook, so
the union approach does not demand extra work for LSM developers. Nonetheless, the set of LSM
hooks has largely stabilized.

An example of the type of policy implemented by an LSM is the confinement policy of
AppArmor [228]. AppArmor is a mandatory access control (MAC) system where the threat model
is focused on the Internet. If we assume that systems are configured correctly, then the Internet is
the only way that malicious input can reach the system. One threat is that network-facing daemons
(e.g., inetd) are susceptible to malicious inputs (e.g., buffer overflows, format string vulnerabilities,
etc.). AppArmor uses confinement policies for such network-facing daemons, that have traditionally
been run with full privilege (e.g., root), to prevent compromised daemons from compromising the
entire system.

9.2 SECURITY-ENHANCED LINUX

Security-Enhanced Linux (SELinux) is a system for enforcing mandatory access control that is based
on the LSM framework [195, 229]. As shown in Figure 9.2, SELinux consists of a Linux Security
Module and a set of trusted services for administration and secure system execution. In this section,
we detail the SELinux reference monitor (Sections 9.2.1-9.2.4), then we discuss trusted services
for administration (Section 9.2.5) and general trusted services (Section 9.2.6). We conclude this
section with an evaluation of the SELinux system against a secure operating system specification in
Definition 2.5.

The SELinux reference monitor consists of an authorization module and policy store. The
SELinux authorization module builds authorization queries for a mandatory protection system
(see Definition 2.4) in the SELinux policy store. SELinux uses fine-grained and flexible models
for its protection state, labeling state, and transition state that cover all Linux system resources
that are considered security-sensitive. Thus, the SELinux mandatory protection system enables
comprehensive control of all processes, so policy writers can exactly define the required accesses.
However, the low-level nature of the policy models results in complex policies that are difficult to
relate to secrecy and integrity goals (e.g., information flow goals of Chapter 5). Nonetheless, the
SELinux approach accurately demonstrates the challenges we face in ensuring that a commercial
system enforces intended security goals.

9.2.1 SELINUX REFERENCE MONITOR

The SELinux reference monitor consists of two distinct processing steps. First, the SELinux reference
monitor converts the input values from the LSM hooks into one or more authorization queries.
These LSM hooks include references to Linux objects (e.g., file and socket object references), and

9.2. SECURITY-ENHANCED LINUX 127

Trusted System Trusted Admin

User Processes . .
Services Services

System Call User Space

Kernel Space

v , \
LSM hook LSM hook LSM hook e

Protection

A State

~— N

e —

Labeling
State

V ~ N

S——

Build Authgnzaﬂon Process Authorlzatlon] > Transition
Queries Queries State

-

SELinux Authorization Module SELinux Policy Store - 4
SELinux Protection System

Figure 9.2: SELinux System Architecture

in some cases, argument flags, but the SELinux reference monitor must convert these into SELinux
authorization queries (see below). Second, the core of the SELinux reference monitor processes these
authorization queries against the SELinux protection system (i.e., the protection state, labeling state,
and transition state). The SELinux protection system representation is highly optimized to support
fine-grained authorization queries efficiently.

Consider the example below, the SELinux implementation behind the LSM hook that au-
thorizes a file open system call.

static int selinux_inode_permission(struct inode *inode, int mask,
struct nameidata *nd)
{
if (!mask) {
/* No permission to check. Existence test. */
return O;

128 CHAPTER9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

return inode_has_perm(current, inode,
file_mask_to_av(inode->i_mode, mask), NULL);

Recall that when open system call is invoked, the target file is specified by a UNIX pathname
and the requested operations are specified using a bit vector £1ags 2. The kernel’s implementation
of open resolves the pathname down to the actual inode that refers to the target file, and then
it invokes the LSM hook to authorize whether the requesting process can perform the requested
operations on the resultant inode.

The function selinux_inode_permission above has three arguments, the inode for the
file, the mask that indicates the file operations, and namedata related to the file path (not used in
this authorization).

The SELinux implementation identifies the specific Linux objects corresponding to the sub-
ject, object, and operations for the authorization query. First, the subject of an open system call is the
process that submitted the system call. In Linux, the process that invoked a system call is identified
by the global variable current. As a result, this need not be an input from the LSM hook. Second,
the object of an open call is the target inode. A reference to the inode is included in the LSM
hook. Third, the operations requested by an open system call (e.g., read, write, and append) are
determined from the flags input is sent to selinux_inode_permission function via the mask
variable. The namedata is not used by the SELinux LSM, but may be used by other LSMs.

The subject (current), object (inode), and operations (results of the file_mask_to_av)
are submitted to the function inode_has_perm, which generates the actual SELinux authorization
query as shown below.

static int inode_has_perm(struct task_struct *tsk,
struct inode *inode,
u32 perms,
struct avc_audit_data *adp)

struct task_security_struct *tsec;
struct inode_security_struct *isec;
struct avc_audit_data ad;

tsec = tsk->security;
isec = inode->i_security;

if (ladp) {
adp = &ad;
AVC_AUDIT_DATA_INIT(&ad, FS);
ad.u.fs.inode = inode;

2The open system call has a third argument mode, but that is not pertinent to this example. Its implications are authorized
elsewhere.

9.2. SECURITY-ENHANCED LINUX 129

return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);

Rather than submitting the objects directly in an authorization query, SELinux assigns labels
to subjects and objects, called conzexts in SELinux. As we describe in the next section, subject contexts
define a set of permissions (objects and operations) available to processes running with that context.
An object context groups a set of objects that have the same security requirements. As required for a
mandatory protection system, the set of contexts must be fixed, so the protection state is immutable.
Likewise, the labeling and transition states in an SELinux system are immutable as well.

In SELinux, the kernel stores a context with each process and system resource that may
appear in an LSM hook. For processes, its data type task_struct includes the field security
in which the subject context of the process is stored. For the inode data type, a field i_security
stores its object context. The function inode_has_perm extracts the subject and object contexts
for these input arguments (i.e., tsk and inode in inode_has_perm) and generates the SELinux
authorization query, defined by the function avc_has_perm. This function takes four arguments:
(1) the subject context; (2) the object context; (3) the SELinux classification for the object’s data
type; and (4) the operations requested in the query. The SELinux policy store executes this query,
determining whether the subject context can perform the requested operations on an object with the
specified object context and SELinux classification for its data type. Such classifications correspond
to system data types, such as file and socket, as well as more specific subtypes of these.

SELinux defines authorization queries for nearly all of the LSM hooks. For most of these LSM
hooks, a single authorization query is generated, but in some cases, multiple authorization queries are
generated and evaluated. For example, in order to send a packet, the process must have access to send
using the specified port, network interface, and IP address (see selinux_sock_rcv_skb_compat
for an example). Each of these authorization queries must be authorized for the operation to be
permitted.

Authorization queries on protection state retrieve the SELinux policy entry that corresponds
to the subject context, object context and object data type. The policy entry contains the authorized
operations for this combination,and avc_has_perm determines whether all the requested operations
are permitted by the entry. If so, the operations are authorized and the SELinux implementation
returns 0. The Linux kernel is then allowed to execute the remainder of the system call (or at least

until the next LSM hook).

9.2.2 SELINUXPROTECTION STATE

The SELinux reference monitor enforces the SELinux protection state, labeling state, and transition
state. First, we discuss the SELinux protection state. SELinux contexts described above represent
the SELinux protection state. They are a rich representation of access control policy enabling the
definition of fine-grained policies. In this section, we define the concepts in an SELinux context and
describe how they express security requirements over Linux processes and system resources.

130 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

SELinux Contexts Figure 9.3 shows the concepts that define an SELinux context and their rela-
tionships. A user is the SELinux concept that comes closest to a UNIX user identity (UID). The

/ Subject Context A
Role 1 »| Subject Context B
Subject Context C

User

Subject Context D

Role 2

Subject Context E

/
\

Figure 9.3: SELinux Contexts: user limits the set of roles that can be assumed to Ro/e I or Role 2 (only
one role). Roles limit the set of subject types and the MLS range that a process can assume (and hence, the
permission available to the user). A context may have only one subject type, but a process can transition
among all the subject types associated with a role (if authorized).

user is the authenticated identity of a user in the system. This typically corresponds to UNIX user
identity in name, but does not convey any access rights to the user. In SELinux, user identity solely
defines a set of roles to which the user is permitted by the SELinux policy. When a user authenticates
(e.g., logs in), the user can choose one role from the set authorized by the SELinux policy.

An SELinux role is similar to the concept of a role in a role-based access control (RBAC)
model [94,268,272] in that it limits the set of permissions that the user may access. However, unlike
an RBAC role, the role is not assigned permissions directly. Rather, an SELinux role is associated
with a set of #ype labels, as in a Type Enforcement (TE) model [33], and these type labels are
assigned permissions. The role also optionally determines the MLS range that processes in that role

9.2. SECURITY-ENHANCED LINUX 131

may assume. When a user is authenticated, this determines the user’s role and all the processes that
the user runs must have a type label and MLS range that is authorized for the user’s role.

For example, a user authenticates to the identity alice under the user role user_r. This role
is permitted to run typical user processes under the type label user_t, but is also allowed to run
other processes with type labels that user_r is authorized for. The user role user_r permits the
user alice to use the passwd program to change her password, but since this program has different
permissions than a typical user program (e.g., it can modify /etc/shadow, the file containing the
hashed user passwords) it runs under a different type label, passwd_t. As a result, the user role
user_r is authorized to run processes under the user_t and passwd_t type labels.

Type labels are assigned to permissions using allow statements as shown below.

allow <subject_type> <object_type>:<object_class> <operation_set>
allow user_t passwd_exec_t:file execute
allow passwd_t shadow_t:file {read write}

An allow statement associates a subject type (e.g., user_t) with permissions described in
terms of an object type (e.g., passwd_exec_t, the label of the passwd executable file), the data
type of the object (e.g., the passwd executable is a file), and the set of operations on the object type
authorized by the allow statement (e.g., execute). Thus, the first allow statement permits any
process with the type label user_t to execute any file labeled with the passwd_exec_t type label.
The second allow statement permits any process running with the passwd_t type label to read
or write any file with the shadow_t type label. This limits access to /etc/shadow to only those
processes that run under the passwd_t type label, typically only processes running passwd.

The SELinux MLS labels represent a traditional lattice policy consisting of sensitivity levels
and category sets. The MLS labels are interpreted according to the Bell-LaPadula model [23] (see
Chapter 5) for read operations, but a more conservative interpretation is used to authorize write
operations. For a read operation, the subject’s sensitivity level must dominate (i.e., be greater than)
or be equal to the object’s sensitivity level, and the subject’s category sets must include all (i.e., be
a superset of) the object’s category sets (i.., the simple-security property). For a write operation, the
subject’s sensitivity level must be equal to the object’s sensitivity level, and the subjects category
sets must equal those of the object as well. This is more restrictive than the usual MLS write rule
based on the %-security property. The *-security property permits write-up, the ability for subjects
in lower sensitivity levels to write to objects in higher sensitivity levels. The x-property presumes
that the lower secrecy processes do not know anything about the high secrecy files (i.e., the subject’s
sensitivity level is dominated by the object’s), such as whether a higher secrecy file of a particular
name exists. However, Linux processes are not so unpredictable, so it may be possible for one Linux
process to guess the name of a file used by a higher secrecy process, thus impacting the integrity of
the system. As a result, write-up is not permitted in SELinux.

The SELinux reference monitor authorizes whether the subject’s type label and MLS label
both permit the requested operations to be performed on the request object based on its type label
and MLS label. The two labels are authorized independently as described above. For type labels, an

132 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

allow rule must be defined that permits the subject type to perform the requested operations on the
corresponding object type. In addition, the MLS labels of the subject and object must also permit
the requested operation. Both authorization tests must pass before the operation is authorized.

SELinux Policies 'The SELinux protection state enables comprehensive, fine-grained expression of
a system’s security requirements. First, each distinct object data type and operation in a Linux system
is distinguished in the SELinux protection state. The SELinux protection state covers all security-
sensitive system resource data types, including various types of files, various types of sockets, shared
memory, interprocess communications, semaphores, etc. There are over 20 different object data types
in all. In addition, SELinux provides a rich set of operations for each data type. In addition to the
traditional read, write, and execute operations on a file, the standard file data type in SELinux
has operations for create, ioctl, fcntl, extended attributes, etc. As a result, comprehensive and
fine-grained control of system resources is possible.

Second, each process and object with different security requirements requires a distinct security
context. If two processes cannot access exactly the same set of objects with exactly the same set of
objects, then two distinct subject type labels are necessary, one for each process. Then, the appropriate
allow statements for each can be defined. For example, distinct subject types for user_t and
passwd_t had to be defined because passwd can access the /etc/shadow whereas a typical user
process cannot. Further, if two objects cannot be accessed by exactly the same processes, then they
also require two distinct object type labels. Again, the shadow_t and passwd_exec_t object type
labels are necessary because these two files (/etc/shadow and the passwd executable) cannot be
accessed by all processes using the same operations. As a result, over 1000 type labels are defined in
the SELinux reference policy, the default SELinux protection state, and tens of thousands of allow
statements are necessary to express all the different relationships between subjects and objects in a
Linux system.

While the SELinux policy model results in complex protection state representations, the
protection state complexity is a result of the complexity of Linux systems. Linux consists of many
different programs, most with distinct access requirements and distinct security requirements, re-
sulting in a large number of type labels. The large number of type labels then requires a large number
of allow statements to express all the necessary access relationships. The SELinux reference policy
demonstrates what we are up against in trying to build secure Linux systems.

9.2.3 SELINUXLABELING STATE

Since the SELinux protection state is defined in terms of labels, as is typical of a mandatory access
policy, the protection state must be mapped to the actual system resources. We suspended some degree
of disbelief in the last section because, while we mentioned that certain files, such as /etc/shadow,
had certain labels, such as shadow_t, we did not specify how the files obtained these labels in the first
place. Further, processes are also assigned labels, such as the passwd process having the passwd_t
label, and the mapping of labels to processes must also be defined.

9.2. SECURITY-ENHANCED LINUX 133

These specifications are provided in what we call the /Zabeling state of the mandatory protection
system in Definition 2.4. The labeling state is an immutable policy that defines how newly created
processes and system resources are labeled. SELinux provides four ways in which an object’s label
can be defined.

First, an object may be labeled based on its location in the file system. Suppose the files
/etc/passwd and /etc/shadow are provided in a Linux package for the passwd program. In this
case, the file already exists in some form and needs to be labeled when it is installed. SELinux uses
Jile contexts to label existing files or files provided in packages. A file context specification maps a file
path expression to an object context. The file path expression is a regular expression that describes
a set of files whose file path matches that expression. Below, we list two file contexts specifications.

<file path expr> <context>
/etc/shadow. * system_u:object_r:shadow_t:s0
/etc/* . * system_u:object_r:etc_t:s0

For example, the second file context specification above defines the object context for files in the
/etc directory. /etc/shadow gets a special context while other files in /etc (e.g., /etc/passud)
get the default context 3.

Second, for dynamically created objects, their labels are inherited from their parent object.
For files, this is determined by the parent directory. For all files dynamically created in the /etc
directory, they inherit the label defined for the directory, etc_t.

Third, type_transition rules can be specified in the SELinux policy that override the
default object labeling. Below, we show a type_transition rule that relabels all files created by
processes with the passwd_t type that would be assigned the etc_t label by default to the passwd_t
label.

type_transition <creator_type> <default_type>:<class> <resultant_type>
type_transition passwd_t etc_t:file shadow_t

Note that the creating process context must be authorized to relabel these etc_t files to
passwd_t files *. If we use the passwd process to create /etc/shadow, where /etc has the etc_t
label, it would be assigned a shadow_t label instead based on this rule.

The SELinux labeling state enforces security goals through the administrator-specified file
contexts, default labeling, and authorized type_transition rules. The labeling state enables precise
control over labeling, but does not necessarily ensure a coherent security goal (i.e., information flow).
An external analysis is necessary to determine whether labeling state achieves the desired security,
as we discuss in the SELinux evaluation.

3Note that the user and role for all SELinux objects are system_u:object_r:.
#In order to relabel an object from type T1 to type T2, the subject must have allow rules that permit relabelfrom T1 and
relabelto T2.

134 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

9.2.4 SELINUXTRANSITION STATE
By default, a process is labeled with the label of its parent, as described above, but the SELinux
transition state enables process label transitions. If a user shell process runs with the user_t label,
then all the processes that are created from this shell are also run under the user_t label. While this
makes sense for many programs, such as editors, email client, and web browsers, some programs that
the user runs need different permissions. For example, the passwd program needs access that must
not be permitted for typical user programs, such as write access to /etc/passwd and read-write
access to /etc/shadow.

SELinux type_transition rules are also used to express such process label transitions. As
shown below the syntax is similar to the object labeling case, but the semantics are slightly different.

type_transition <current_type> <executable_file_type>:process <resultant_type>
type_transition user_t passwd_exec_t:process passwd_t

For process label transitions, a type_transition rule specifies that a process running
in a specific label (i.e., the current_type) executes a file with a specific label (i.e., the
executable_file_type), then the process is relabeled to the resultant_type.

As is the case for object labeling, process label transitions on execution must be authorized.
This requires three SELinux permissions: (1) the process must have execute access to the executable
file’s type; (2) the process must be authorized to transition when executing that file; and (3) the process
must be authorized to transition its label to the resultant_type. In the case above, the user shell
forks itself and executes the passwd file. At execution time, the type_transition rule is invoked.
The SELinux reference monitor retrieves such rules, and authorizes the conditions necessary to
invoke the rule. If the transition is authorized, then the process is run using the passwd_t label, and
it is able to access the /etc/passwd and /etc/shadow files as necessary.

Note that SELinux process label transitions are only permitted at process execution >, When
a process is executed, the old process image is replaced with a new image defined by the file being
executed, so the process context can be reassigned based on this image. Note that there may be some
carryover from the old process, such as the set of file descriptors that are left open on execute and
the processes environment variables, but the SELinux transition rules can limit the contexts under
which transitions are allowed. For example, if a program depends on being run with a high integrity
set of environment variables, then only transitions from high integrity contexts should be permitted.
In the case of passwd, it is run from untrusted user processes, so the passwd executable must be
trusted to protect itself from any low integrity inputs provided at execute time.

SELinux process transitions are more secure than traditional UNIX process transitions via
setuid in several ways. First, a setuid transition almost always results in a process running with
full system privileges (i.e., a setuid root process). In SELinux, the process transitions to a specific
label with limited permissions defined for its purpose. Second, UNIX permits any process to execute a
setuid program. As a result, all setuid programs are susceptible to malicious input from untrusted

5SELinux now has a command that permits process context transitions at any time, called setcon, but this command must be used
carefully to prevent a process from obtaining unauthorized permissions. In general, use of this command is not recommended.

9.2. SECURITY-ENHANCED LINUX 135

invocations. In SELinux, the contexts under which a process may be invoked can be limited. For
example, SELinux rules can be written to ensure that only trusted contexts can execute a program
and obtain all its rights.

SELinux transitions are comparable to Multics transitions, see Chapter 3. In Multics, ring
brackets limit which processes may cause a process label transition by executing more trusted code.
However, SELinux controls are finer-grained, as they can be defined at the level of an individual
program, rather than a protection ring. However, Multics defines a formal concept for ensuring
that a protection domain is protected from malicious inputs, the gatekeepers. SELinux has no such
concept, but depends on the program developer to ensure protection.

Finally, SELinux now provides mechanisms that enable a process to relabel itself or system
resources using the setcon and chsid commands, respectively. For system resources, the passwd
process can explicitly invoke chsid to relabel /etc/shadow to the shadow_t label. Any process
that is SELinux-aware can request a file relabeling, but the SELinux reference monitor authorizes
all these transitions. That is, a passwd_t must also be authorized to relabel passwd_t files to
shadow_t.

9.2.5 SELINUXADMINISTRATION

As SELinux uses a mandatory access control (MAC) policy, only system administrators may modify
its protection system’s states. As a result, these states are generally static. SELinux provides two
mechanisms for updating its protection system: (1) monolithic policy loading and (2) modular
policy loading. In either case, configuring SELinux policies is a task for experts, so only a small
number of policies have been developed.

Monolithic Policies The traditional SELinux protection system states are defined as a sin-
gle, comprehensive, binary representation generated from the policy statements (e.g., allow,
type_transition,etc.) described above. The SELinux policy compiler checkpolicy builds such
policy binaries. For a monolithic policy, the tens of thousands of SELinux policy statements are
compiled into a binary that is over 3 MBs in size.

The trusted program load_policy enables an administrator to load a new protection state
that entirely replaces the old protection state. Load_policy uses the Linux Sysfs file system to load
the binary into the Linux kernel where the SELinux reference monitor in the kernel can use it. All
authorization queries are checked against the policy binary.

Modular Policies As the SELinux policy is actually defined per Linux program and Linux pro-
grams themselves may be installed incrementally via packages, the SELinux policy administration
mechanisms have also been extended to support incremental modification. SELinux policy modules
define program-specific protection state contributions. A comprehensive SELinux policy binary is
constructed from these individual modules. A policy module consists of four parts: (1) its own type
labels and allow rules for these types; (2) its file context specification defining how its files are

136 CHAPTER9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

labeled; (3) its interfaces that enable other modules to access its type labels; and (4) this module’s
use of other module’s interfaces.

The definition of type labels, allow rules, and file contexts are no different than for the
monolithic policy, described in examples above, but the policy modules add the concept of mod-
ule interfaces [324]. Module interfaces, like public method interfaces in object-oriented programs,
provide entry points for other modules to access a module’s type labels. For example, an interface
definition specifies a set of allow rules that are permitted to the module invoking the interface. For
example, the kernel policy module defines an interface kernel_read_system_state (arg) where
the type label submitted as the argument arg is assigned to allow rules that permit read access to
system state. A policy module specifies both its own interfaces and the set of interfaces that it uses.
The function semodule is used to load new modules into the SELinux policy binary.

Policy Development Originally, two types of SELinux policies were developed: (1) a strict policy
and (2) a targeted policy. The strict policy aims to enforce least privilege over all Linux programs,
thus maximizing the protection possible while permitting reasonable functionality. The strict policy
presents two challenges to deployment. First, it may be more restrictive than the Linux programs
expect, leading to the failure of some programs to run properly. Second, the strict policy does not
enforce any formal secrecy or integrity goal, so the policy may still permit significant vulnerabilities.

The targeted policy principle was introduced by the AppArmor LSM [228], and it defines
least privilege policies for network-facing daemons to protect the system from untrusted network
input. Other programs run without restriction. This limits the task of configuring restrictive policies
to just the network-facing daemons, which simplifies policy expression and debugging. However,
the targeted policy does not protect the system from other low integrity inputs (e.g., malicious
emails, downloaded code, malware that is installed under a different label). As a result, the targeted
policy is more appropriate for server systems whose software is carefully managed, but which may
be susceptible to malicious network requests. In practice, SELinux distributions (e.g., RedHat) are
delivered with a zargeted SELinux policy.

Recently, a third SELinux policy, the reference policy, has been defined [309]. The reference
policy enables an administrator to build either the targeted or strict policy from a single set of policy
files. A configuration file enables administrators to describe their specifications for building policies.
The reference policy also includes MLS support by default.

9.2.6 SELINUXTRUSTED PROGRAMS

In addition to the administrator operations above to load policy (i.e., Load_policy and semodule),
there are many other user-level programs that are trusted to specify and/or enforce the SELinux
security requirements for the SELinux system to be secure. These programs include authentication
programs (e.g., sshd) necessary to establish an authenticated user’s subject context, system services
necessary to bootstrap the system (e.g., init), and server programs which are depended upon to
enforce the SELinux policy on their operations.

9.2. SECURITY-ENHANCED LINUX 137

Authentication programs have been modified to understand SELinux contexts. When a user
authenticates, these programs inform the SELinux reference monitor, so it can assign the proper
subject context for that user’s processes.

System bootstrap services are mainly trusted because they have broad permissions that may
enable them to compromise the integrity of the SELinux reference monitor and/or policy. These
services run with near full privilege and are trusted not to modify or circumvent policy. For example,
such processes use the traditional UNIX fork/exec when they start system services (e.g., vsftpd), so
that these obtain the proper set of access rights through process labeling (i.e., via type_transition
rules), as described above.

SELinux also includes some server programs that have been modified to enforce SELinux
policies. An example server is the SELinux X server [325]. The X server provides mechanisms that
could enable one client to obtain secret information or compromise the integrity of another. This
has long been known as a problem [85], and several implementations of access enforcement for
windowing systems have been developed over the years [90, 86, 42, 199, 289, 95]. The SELinux
community built a reference monitor interface for the X server, and defined a user-level policy server
that can respond to authorization queries [43, 308]. The policy server design is general in that it
can support authorization requests from multiple user-level processes, similarly to the Flask object
managers (see Chapter 7). The aim is that the user-level policy could be verified to ensure that such
trusted servers enforce a policy that is compliant with the SELinux system policy.

The SELinux MLS policy contains over 30 subject types that are trusted by the system. In
many cases, the subject types are associated one-to-one with programs, but some subject types, such
as init, have many scripts that are run under a single trusted type. The larger the amount of trusted
code, the more difficult it is to verify tamperproofing and verify correctness.

We note here that there are certain programs that SELinux does not trust. For example,
SELinux does not trust NFS [267] to return a file securely. As a result, SELinux associates annfs_t
type label for all these files, regardless of their label on the NFS server. The reason for this is that
the NFS server delivers files to its clients in the clear, so an attacker may reply with a false file upon
an NFS request. File systems with integrity-protected communication, such as kerberized Andrew
File System [225, 234], could potentially be trusted to deliver labeled files. A variety of distributed
files systems that provide secure access to files have been designed [28, 2, 197, 104, 255, 314]. A
detailed treatment of this subject is beyond the scope of this book.

9.2.7 SELINUX SECURITY EVALUATION

We now assess whether SELinux satisfies the secure operating system requirements of Chapter 2.
SELinux provides a framework in which these requirements can be satisfied (i.e., it is “secureable” like
Multics), but the complexity of UNIX-based systems makes it difficult to provide complete assurance
that these requirements have been met. Further, the practical requirements of UNIX systems (i.e.,
the function required) limits our ability to configure a system that would satisfy these requirements.
As a result, SELinux provides significant security improvements over traditional UNIX systems

138 CHAPTER 9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

(see Chapter 4), but it is difficult to quantify these improvements to the extent required of a secure
operating system.

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated without creating security problems, such as TOCTTOU?

The Linux Security Modules framework’s reference monitor interface is designed to authorize
access to the actual objects used by the kernel in security-sensitive operations to prevent

vulnerabilities, such as TOCTTOU.

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

The Linux Security Modules framework mediates operations identified by the LSM commu-
nity to lead to security-sensitive operations. The mediation provided is effectively a union of
all the Linux reference monitor prototype’s constructed.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

Since the LSM framework’s reference monitor interface was designed in an informal manner,
verification that it provides complete mediation is necessary. Source code analysis tools were
developed to verify that the security-sensitive kernel data structures were mediated [351] in a
consistent manner [149], and bugs in the LSM reference monitor interface were found and
fixed. However, these tools are an approximation of the complete mediation requirements,
and they are not applied on a regular basis. Nonetheless, no errors in the reference monitor
interface placement have been found since its introduction in Linux 2.6.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

The LSM reference monitors, such as SELinux, are run in the supervisor protection ring, so
they are as protected as the kernel. Although the LSM framework is a module interface, LSMs
are compiled into the kernel, so they can be active at boot time.

The Linux kernel can be accessed by system calls, special file systems, and device files, so access
to these mechanisms must ensure tamper-protection. While Linux system call processing does
not provide input filtering at the level of Multics gates, work has been done to verify kernel
input handling using source code analysis tools [154]. Further, Linux systems provide a variety
of other operations that enable access to kernel memory. For example, special file systems, such
as the /proc filesystem and sysfs filesystem, and device files enable access to kernel memory
through files. The SELinux protection state is configured to limit access to trusted processes
(i-e., those with trusted subject type labels).

9.3. SUMMARY 139

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

As described above, SELinux system tamper-protection also requires that its trusted user-level
programs be tamper-protected. An evaluation of SELinux policy showed that a set of trusted
processes which defined a tamper-protected, trusted computing base could be identified [150].
However, several of these trusted processes must be trusted to protect themselves from some
low integrity inputs, so satisfying a classical information flow integrity where no low integrity
inputs are received (e.g., Biba integrity protection [27]) appears impractical. Some trusted
SELinux services (e.g., sshd and vsftpd) were shown to enforce a weaker version of Clark-
Wilson integrity [54, 285].

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?

As is typical, verifying the correctness of security enforcement is the most difficult task to
achieve. Verifying correctness of the implementation of the Linux kernel and trusted programs
is a very complex task. For this large a code base, written mostly in nontype safe languages, by
a variety of developers, verification cannot be complete in practice. Linux has been assured at
the Common Criteria evaluation level EAL4 (see Chapter 12), which requires documentation
of the low-level design of the kernel. Converting this low-level design into a model in which
security properties can be verified would be a challenging task, and it may be impractical to
verify how the source code implements the design correctly.

7. Verifiable: Does the protection system enforce the system’s security goals?
P Y Y g

SELinux policies define a precise, mandatory specification of the allowed operations in the
system. As a result, it is possible to build an information flow representation from the SELinux
policies [150] (mentioned above), even one that includes the transition state. Also, the MLS
policy ensures information flow secrecy satisfies the simple-security and x-security properties.
However, the integrity analysis and MLS policy reveal a significant number of trusted subject
types (over 30 for integrity and over 30 for MLS, and only some overlap). Thus, the SELinux
approach enables the system to be “secureable,” but system developers will need to manage the
use of trusted code carefully to ensure the verified security goals are really met.

9.3 SUMMARY

The LSM/SELinux system implements a reference monitor in the Linux operating system. The
LSM community emerged from a variety of prototype efforts to add a reference monitor to Linux,
and developed a reference monitor interface that was acceptable to the security community (for the
most part) and to the mainstream Linux community. The SELinux and AppArmor LSMs have
been adopted by the major Linux distributors and are supported by many other distributors. While

140 CHAPTERY9. CASE STUDY: BUILDING A SECURE OPERATING SYSTEM FOR LINUX

the resulting LSM framework has been only semi-formally tested, it has generally been a successful
addition to the kernel. However, the combination of the Linux kernel and LSM framework is too
complex for a complete formal verification that would be required to prove complete mediation and
tamperproofing.

The challenge has been how to use the LSM reference monitor interface to enforce security
goals. We examined the SELinux system which provides a comprehensive set of services for im-
plementing security policies and a fine-grained and flexible protection system for precise control
of all processes. The SELinux approaches demonstrates the complexity of UNIX systems and the
difficulty in enforcing comprehensive security. The outstanding challenge is the definition and ver-
ification of desirable security goals in these low-level policies. The AppArmor LSM uses a targeted
policy to protect the system from network malice, but proof of security goal enforcement will also
have to verify requirements, such as information flow.

141

CHAPTER 10

Secure Capability Systems

A capability system [181] is an operating system that represents its access control policy from the
subjects’ perspectives. Recall from Chapter 2 that Lampson’s access matrix [176] identified two views
of an access control policy: (1) an object-centric view, called access control lists, where the policy is
defined in terms of which subjects can access a particular object (the columns of the matrix) and (2)
a subject-centric view, called capabilities, where the policy is defined in terms of which objects can
be accessed by a particular subject (the rows in the matrix).

Although the access control decisions made by capability and access control list systems are
the same, the capability perspective provides some opportunities to build more secure systems, but
this perspective also introduces some challenges that must be overcome to ensure enforcement of
security goals. In this chapter, we identify these opportunities and challenges, and describe capability
system designs that can leverage the opportunities while mitigating the challenges.

10.1 CAPABILITY SYSTEM FUNDAMENTALS

A capability is a reference to an object and a set of operations that the capability entitles the holder, first
formalized by Dennis and van Horn [72]. Such capability references are extended memory references
in that they not only provide location or naming information, but they may also provide access rights
for that reference [335]. This form of addressing is known as capability-based addressing [89]. Thus,
a capability is like a house key [128] in that it permits the holder the access associated with the key.
When a process needs to access an object, it presents the appropriate capability to the system, much
like one would select the appropriate key to unlock a door. If the capability includes the requested
operations, then the access is permitted.

An important difference between capability and access control list systems is the process’s
ability to name objects. In an access control list system, a process can name any object in the system
as the target of an operation. Typically, the name space of objects can be searched for a specific object
(e.g., file names in a directory hierarchy). Then, access is determined by checking the access control
list to determine if the subject associated with the process can perform the requested operations. In
a capability system, processes can only name objects for which they have a capability. That is, the
process can only reference objects to which they have some access (via a capability), then the system
can determine whether the capability authorizes the requested operations on that object.

In his book, Levy compares the access control afforded using the real world analogy of a safe
deposit box [181]. Two alternatives that the bank may use to control access to your safe deposit are:
(1) keep a list of those persons who are authorized to access the box or (2) provide a set of keys that
you can distribute to those persons you wish to give access. In the first approach, the bank uses an

142 CHAPTER 10. SECURE CAPABILITY SYSTEMS

access control list to authorize each person’s request to access your box. In the second approach, the
bank provides a capability (i.e., the key) that you may use to create copies to distribute to others to
which you may give access. The differences are between the two approaches are mainly in the cost of
authorization and the ease of revocation. The capability approach results in less work for the bank to
perform authorization, as simply possession of the necessary key is sufficient. However, if you want
to remove access for one person, the access control list enables immediate revocation, whereas the
capability approach requires the retrieval of keys.

A fundamental requirement of a capability system is that processes not be able to modify or
forge capabilities. If capabilities could be forged, then a process could build a capability for any access
it desires. To protect capabilities, capability systems traditionally store them in memory protected
from the process. For example, the kernel stores one or more capability lists or C-lists for each
process. When a process wants to invoke an operation using a particular capability, it references
this capability in the invocation. There are a variety of ways that capability systems have enabled
processes to reference protected memory securely in such invocations. The Plessey System 250 [63]
and CAP systems [336] stored process capabilities in special capability segments. Only the kernel
could write to these segments, but typical processes could read from their capability segments to
invoke their authorized operations. The IBM System/38 uses tagged memory where tag bits are
included with every memory word, enabling the system to distinguish capability and noncapability
memory [26, 138]. Amoeba and others [216, 12] use password-protected capabilities, where each
capability is encrypted using a key only available to the Amoeba kernel.

10.2 CAPABILITY SECURITY

Capability systems have a couple of conceptual security advantages over ordinary systems: (1) they
can be used to define process permissions more precisely, enabling /east privilege [265], and (2) they
enable permissions to be more easily transferred from one process to another, enabling the definition
of protected subsystems [265]. First, capability systems can assign a distinct set of capabilities to each
process, so it is possible to assign only the capabilities required for each process based on its specific
purpose. This contrasts with an access control list system where all the permissions for any possible
use of a program must be assigned. In a capability system, we can customize a process’s capabilities
based on the particular execution of that process’s program to minimize the set of permissions while
still providing the necessary function.

Second, capability systems enable processes to copy their capabilities for other processes (again,
like a house key), so a protected subsystem may perform operations on behalf of clients without the
need to be assigned the permissions of all clients. For example, a subsystem that provides access to a
database does not need to have its own permissions to the database entries. When it is invoked, the
client will provide those capabilities with the request, so that the subsystem need not accidentally
give the client unauthorized access.

This problem is known as the confused deputy problem [129], due to Hardy, and it is inherent
to ordinary operating systems. In an ordinary operating system, permissions are assigned to objects

10.3. CHALLENGES IN SECURE CAPABILITY SYSTEMS 143

and it is inconvenient to change which subjects can access an object at runtime. Thus, the subsystem
would be assigned the rights to operate on behalf of any client (i.e., subsystems have the union of all
their clients’ rights to the objects that they serve). As a result, if the subsystem is confused, it could
provide unauthorized access to another client’s data. Whereas in a capability system, this would not
be possible because the subsystem would only be able to perform operations using the capabilities
that the client could provide.

Many in the operating systems community saw capability systems as the proper architecture
for constructing fail-safe operating systems. The capability abstraction was first defined by Dennis
and Van Horn [72], and was quickly adopted in a variety of systems [344, 178, 4]. Initially, capabilities
were implemented in software, but performance concerns led to the development of several systems
that implemented capabilities in hardware [63, 336, 26, 238]. In the 19707, it was envisioned that
capability systems may provide better flexibility and security than ordinary operating systems, such
that they would supplant ordinary operating systems [186]. In more recent years, capabilities have
been used to support single address space operating systems [133, 45] and distributed operating
systems [216, 65].

10.3 CHALLENGES IN SECURE CAPABILITY SYSTEMS

The fundamental question is whether a capability system architecture is suitable for implementing a
secure operating system. Definition 2.5 requires that a secure operating system meet mediation, tam-
perproofing, and verifiability requirements when enforcing a mandatory protection system. While
the requirements for mediation and tamperproofing can be met, the flexible distribution of capa-
bilities fundamental to capability systems present some problems in verifying the enforcement of
security goals (i.e., the protection system is not mandatory). In this section, we identify these prob-
lems, and we describe how capability systems have been modified to address these problems in the
following section.

First, we describe how capability systems satisfy the secure operating system requirements of
mediation and tamperproofing. Since capabilities must be used to name objects, access control is
inherently bound to access operations in capability systems. For example, in order to access a file,
a process must provide a capability that both identifies which file to access (i.e., naming the file as
described above) and specifies the rights that the process has over that file. Without the capability,
the file cannot even be found, so mediation is fundamental to capability systems.

Tamperproofing requires that the trusted computing base, including the reference monitor
and protection state itself, cannot be modified by untrusted processes. Like an ordinary system, a
capability system provides untrusted processes with access to services offered by trusted processes,
such as the kernel and protected subsystems. For example, if an untrusted process has a capability
that enables the execution of a trusted process, the trusted process must protect itself from any
input the untrusted process may provide. These problems are not significantly different than for
ordinary operating systems, as they may accept requests from untrusted processes (e.g., network
communications) or be executed by an untrusted process (e.g., via setuid). Capability systems are

144 CHAPTER 10. SECURE CAPABILITY SYSTEMS

also fundamentally aware of the need to prevent unauthorized modification of the protection state.
As discussed above, the prevention of capability forgery are design principles of such systems.

The flexibility that processes have to distribute capabilities in capability systems conflicts
with the desire to prove that particular security goals are truly enforced, so ensuring that security
goals are verifiable is problematic in capability systems. Researchers have identified three specific
problems in ensuring the enforcement of security goals in capability systems: (1) care must be taken
to ensure that the x-property in the Bell-LaPadula policy is correctly enforced [23]; (2) capability
systems require addition mechanism to ensure that each protection state is safe [130], enforcing the
system security goals; and (3) changes in security requirements (i.e., policy) require that capability
systems revoke all newly unauthorized capabilities. In general, these problems are created by the
discretionary distribution of capabilities inherent to the model, so solutions focus on how to add
mandatory boundaries that ensure operation that satisfies system security goals.

10.3.1 CAPABILITIES AND THE x-PROPERTY

Boebert [32] and Karger [158] note that traditional capability systems fail to implement the *-
security property of the Bell-LaPadula policy [23], as shown in Figure 10.1. Suppose there are two
processes, a high secrecy process A that has access to high secrecy data and low secrecy process B
that is not authorized to access that data. If our goal is to implement a multilevel security (MLS)
policy such as Bell-LaPadula, then the high secrecy process may read data in the low secrecy process.
For example, A uses its legal capability BI read to read segment B1. Since capabilities are data, the
high secrecy process A can read the capabilities (e.g., B2 write in the low secrecy process’s segment
B1. Then, high secrecy process A has a capability to write its secrets (e.g., data from segment A1)
to a low secrecy segment B2, violating the x-security property.

While it may be unlikely that an error in a high secrecy process may result in such a leak,
remember that secure operating systems must prevent any code running in a high secrecy process,
including malware, such as Trojan horses, from leaking data. A Trojan horse could be designed that
retrieves write capabilities to low secrecy files to enable the leak.

10.3.2 CAPABILITIES AND CONFINEMENT
Karger states that the violation of the x-property implies that capability systems fail to enforce
process confinement [158]. Lampson defined confinement in terms of [177]: (1) processes only
being able to communicate using authorized channels and (2) process changes not being observable
to unauthorized processes. The failure above in implementing the *-property does result in an
unauthorized communication channel, but the problem is even broader than this: we must ensure
that no unauthorized communication is present for any security policy.

Consider a second example from Karger [157]. An attacker may control a program P. When
an unsuspecting victim provides a capability C to P, the malicious program can store the capability.
This enables the attacker to use this capability, presuming that the attacker can run at the same

10.3. CHALLENGES IN SECURE CAPABILITY SYSTEMS 145

Segment A1
High Secrecy B1 /B2)
Process A Read | \ Write
~- _T_ --7 Secret
4 \ N
Segment B1 Segment B2
Low Secrecy R A
Process B B2 ! :
Write ! Secret |

Figure 10.1: A problem with the enforcing the -property in capability systems

clearance as the victim. Clearly, the attacker should not have access to this capability, but how does
the kernel know that a capability stored by a program cannot be used in another context?

Confinement is not achieved in the example above because the program P has the discretion
to give the capability to the attacker. Like other mandatory access control systems, we want to define
a mandatory policy that ensures that the program P cannot give the victim’s rights away.

10.3.3 CAPABILITIES AND POLICY CHANGES

The third problem is the revocation problem; capabilities are difficult to revoke. Recall Levy’s safe-
deposit box example. When keys are distributed among the authorized people, the owner of the
safe-deposit and the bank lose the ability to restrict who has access. Should the owner or bank try to
change who can access the safe-deposit box after the keys have been distributed they have a couple
of challenges in enforcing this change. First, they have to locate all of the keys that were given out.
While they may know how many keys were created and to whom they were initially distributed, the
keys may not longer be in the possession of those people and they may not remember what they
did with them. Second, keys may have been copied, such that it may not be possible to determine

146 CHAPTER 10. SECURE CAPABILITY SYSTEMS

whether all the keys have been revoked. In general, it may be easier to change the lock and start
again.

This analogy means that should we decide to change the security goals that we want to
enforce in a capability system, we may not be able to determine whether we have accounted for all
the capabilities necessary to prove that the new goal can be achieved. We not be able to find all of the
capabilities to all objects or some unknown copies may have been made. Mechanisms to bring the
set of capabilities back into some approved state may be expensive (search all memory) or disruptive
(delete all capabilities and start again).

10.4 BUILDING SECURE CAPABILITY SYSTEMS

Work in secure capability systems aims to address these problems to enable effective verification
that the system enforces a well-defined set of security goals. While a variety of capability system
designs have been modified to solve these problems, we focus on two capability systems: SCAP [157]
and EROS [286]. Both SCAP and EROS are capability system designs based on existing designs,
CAP [135,223] and KeyKOS [128], respectively, but extended to solve these fundamental problems.
Table 10.1 shows a summary of how EROS and SCAP address the three problems in capability
systems. We develop and compare these solutions below.

Table 10.1: Summary of SCAP and EROS solutions to the major security issues
in capability systems.
Security Issue | SCAP Solution EROS Solution |

*-Property Convert to read-only Define weak capabilities
capabilities by MLS policy | that transitively fetch
only read-only capabilities

Confinement Use Access Control List to | Define safe environments for
define confinement confined processes or test via
authorize capabilities
Revocation Revocation by eventcounts | Indirect capabilities that
(single page entry) or permit later revocation
revocation by chaining of all descendants
(multiple page entries) (similar to Redell [252])

10.4.1 ENFORCING THE »-PROPERTY

The SCAP design to ensure that the x-property is not violated in capability systems leverages two key
insights [157]: (1) capabilities must be loaded into a capability cache prior to use and (2) we simply
need to remove unauthorized access from any capability loaded into the cache to prevent leakage.
SCAP requires that a process must load a capability into its capability cache (i.e., its capability list or
C-list) prior to using it. This load operation provides the operating system with a point of complete

10.4. BUILDING SECURE CAPABILITY SYSTEMS 147

mediation to inspect the capabilities being loaded. This mediation can be used to determine whether
the capability provides write access to an object with a lower access class than the process (i.e., where
write permission would violate the Bell-LaPadula policy). Enforcement of such an approach requires
the SCAP kernel to include labels with capabilities, labels with processes, and an MLS access policy,
so that the kernel can assess whether the capability may be loaded legally.

Other capability systems, the Secure Ada Target (SAT) [34] and the Monash capability
system [12] implement similar enforcement semantics, albeit with markedly different approaches.
SAT implements semantically similar checks as SCAP to ensure that any capability being loaded
adheres to an MLS policy, but the enforcement is done entirely in hardware. Monash’s solution
is also semantically similar, but Monash is a password capability system which limits access to
write capabilities by keeping the encryption keys used for these capabilities secret. Only authorized
processes can obtain the key from the system.

Rather than just providing a point of mediation to decide whether to reduce capability per-
missions, the EROS system defines a capability that automatically generates the correct permis-
sions [287]. EROS defines the notion of a weat attribute for a capability, the combination of which
we will call a weak capability. If a weak capability is used to fetch some other capabilities, all the
retrieved capabilities are automatically reduced to read-only and weak capabilities. Like SCAP, the
reduction is performed when the capabilities are loaded into the capability cache. Unlike SCAP,
EROS enforces the x-property without the need to consult an MLS policy at runtime, a potentially
significant performance advantage [288].

Instead, EROS requires that an MLS policy be consulted when capabilities are created (e.g.,
at load time) to determine when a process should be given a weak capability. In order to ensure that
this works, the system must ensure that any capabilities constructed that enable a process to access
lower-secrecy memory must be weak capabilities. As EROS does not define how capabilities are
initially distributed !, a higher-level service is necessary that understands the labeling of processes
and capabilities, and has access to a Bell-LaPadula policy [23], so the x-property is enforced correctly.

The idea of a weak attribute is based on sense capabilities in KeyKOS [128] which only enable
retrieval of read-only capabilities (i.e., in most cases), even if the capability fetched has read-write
privileges. The EROS design generalizes this by making the semantics uniform and transitive. First,
weak capabilities have the same effect regardless of the type of the object referenced by the capability.
Second, if a sequence of capabilities is required to retrieve some target capability, the target capability
is reduced to read-only and weak if any capability in the retrieval sequence is weak.

10.4.2 ENFORCING CONFINEMENT

The confinement problem was identified by Lampson in 1970 [177], so several capability system
designs in the 1970s aimed to provide confinement guarantees. The HYDRA capability system [56,
343] provided confinement by defining confined protection domains that were not allowed to store

TEROS does check that the capabilities available to a process being to an authorized set, which also is defined external to EROS,
as described below in Section 10.4.2.

148 CHAPTER 10. SECURE CAPABILITY SYSTEMS

capabilities or regular data into potentially shared objects. This prevents leakage of secret data, but
does not permit sharing that is legal under Bell-LaPadula model.

The Provably Secure Operating System (PSOS) [92, 226] is a design for a capability system
that also provides an approach for confinement 2. In PSOS, secure documents are defined such that
write capabilities may not be stored in such documents. This prevents propagation of write capabilities
that would enable leakage. The rules for checking whether a write capability may be stored are
complex, as they pre-date the definition of the Bell-LaPadula model.

In practice, there are two ways to enforce confinement: (1) build an execution environment
for the process that satisfies confinement requirements or (2) verify that confinement is preserved
whenever an access right is obtained. Both HYDRA and PSOS take the former approach. They
define restrictions on execution environments that enforce confinement requirements. In the second
approach, the system ensures that whenever a process obtains a capability (or access right in general)
the confinement requirements of the system are met, or the capability is revoked.

While the first approach is conceptually cleaner and more efficient to execute, it has a funda-
mental limitation. This limitation is the intractability of the safery problem [130]. A system is said
to be safe if all future protection states in a protection system only grant authorized permissions to
processes (i.e., confine the processes correctly). Harrison, Ruzzo, and Ullman showed that deter-
mining whether an arbitrary protection system prevents a principal from obtaining an unauthorized
permission is undecidable. That is, given a current protection state and the operations in a general
protection system, we cannot determine whether there may be some future protection state in this
system which some principal may obtain unauthorized access.

In addition to HYDRA and PSOS, general access control models have been defined in which
verifying safety is tractable, such as the Take-Grant model [155, 31], Typed Access Matrix [270],
and Schematic Protection Model [269]. However, all these models require limitations in the possible
policy designs that have proven unacceptable in practice.

Unlike these systems, SCAP enforces confinement by mediating each change in protection
state. In SCAP, changes in protection state require the loading of capabilities into SCAP’s capability
cache, so this serves as an effective point to enforce confinement as well. As described above, SCAP
verifies that a process can load a capability into the cache by verifying that the process label permits
access to write objects with capability’s label using an external policy. To enforce the x-property, an
MLS policy is checked, but any confinement policy may be used in general. Interestingly, SCAP uses
an access control list to define confinement policies, resulting in SCAP enforcement being based on
a combination of capabilities and access control lists.

EROS aims to provide confinement with a pure capability approach, rather than the hybrid
approach of SCAP [287]. Also, unlike SCAP, EROS provides confinement through the creation of
safe execution environments. EROS defines a safe execution environment as one that contains only
safe capabilities. A safe capability meets the following requirements:

1. It trivially conveys no mutate authority, or

2PSOS was the basis for the Secure Ada Target [34] mentioned above.

10.4. BUILDING SECURE CAPABILITY SYSTEMS 149
2. It is a read-only, weak capability, or

3. It is a capability to a constructor that (recursively) generates confined products (i.e., environ-
ments).

These capabilities preserve confinement because they do not change the protection state by
adding rights (#1 and #2) or they only add rights by generated new confined environments.

These requirements for a confined environment are very restrictive, so EROS includes a fall-
back position that is similar to that of SCAP. If a process has some capabilities that are not safe,
EROS checks whether these capabilities are authorized. That is, it checks whether the capabilities
that the confined environment may ultimately obtain are a subset of the authorized capabilities that
define confinement. If so, the process may be executed. Determining all the capabilities that a process
may need in advance is nontrivial undertaking, so in some cases, we envision that runtime checking
similar to SCAP, but using authorized capabilities to define confinement would be necessary. Since
EROS also mediates capability loads to enforce weak capabilities, this would be feasible.

The SCAP design also considers the impact of covert channels on confinement carefully.
SCAP prevents storage channels by eliminating system-wide views of system state. For example,
domains are limited to storage quotas and page tables are unshared. Addressing timing channels is
a more ad hoc procedure, but is a consideration throughout the design.

10.4.3 REVOKING CAPABILITIES

Redell defined the first comprehensive approach to revocation in capability systems [252]. In this
system, the owner of an object has a choice whether to grant normal capabilities (i.e., with no hope
of revocation) or grant capabilities that are associated with a special revoker capability. A revoker
capability is a level of indirection that enables the owner to revoke all the capabilities that reference
the object through that revoker capability. Simply by deleting the revoker capability, the other
capabilities lose access to the object. This is because the object is only available via the revoker
capability.

The idea is shown in Figure 10.2. An owner creates a revoker capability and grants a capability
that points to that revoker capability to Process 1. Revoker capabilities may be used by other subjects
as well. Process 1 can also create a revoker capability and create a capability that points to it for Process
2. Thus, the owner will revoke both Process 1 and Process 2’s access should she delete her revoker
capability. However, Process 1 can only revoke access from Process 2. Note that the capability for
Process 3 cannot be revoked (i.e., without examining Process 3’s memory) because it points directly
to the object.

Redell’s scheme could result in a deep nesting of revoker capabilities, so SCAP defines two
different schemes, called revocation with eventcounts and revocation by chaining. Revocation with
eventcounts is appropriate for systems that use the same page table for each shared object. In re-
vocation by eventcounts, an event, such as revoking a capability, causes an eventcount to change.
Eventcount values are stored with capabilities as well, so that should a revocation occur, the event-

150 CHAPTER 10. SECURE CAPABILITY SYSTEMS

Process 3
5
Cap >
Revoker Revoker .
Cap - Cap - ObleCt
by g by =
Process 1 Owner
A} A
Cap Cap
/ A
Process 2 Process 1

Figure 10.2: Redell’s revoker capability approach: When the revoker capability is revoked all the capa-

bilities that were based on it are also revoked.

count between the capability and the page table will differ, triggering a verification whether the
capability is still valid.

If there are multiple page table entries that point to the same physical page (because it is
shared by multiple processes), the revocation by eventcounts cannot be used. Revocation by chaining
creates a ring of capability records for the same page by adding a pointer field to each capability.
Thus, the revocation of any capability in the chain enables triggers a reassessment of the validity of
the remaining capabilities in the chain. All such capabilities are accessible because they are chained
together.

Both the revocation by eventcounts and revocation by chaining approaches are rather com-
plex and potentially expensive to implement, so the later EROS system reverted to an indirection
mechanism similar to Redell [252] to revoke capabilities. An indirect (revoker) capability may be
obtained that enables later revocation, as described above [288]. The memory usage problems cited
by SCAP as a reason for seeking alternative revocation schemes had become less of an issue by the
late 1990s.

10.5. SUMMARY 151
10.5 SUMMARY

In the chapter, we examine the construction of secure operating systems from capability systems.
Capability systems have conceptual advantages in enforcing security because they can be used to
define protection domains specific to a particular execution of a program easily and they enable
permissions to be distributed with program invocation preventing the confiused deputy problem [129]
by limiting the user of others’ permissions. However, capability systems also have sme inherent
security problems brought about by the discretionary nature of capability management.

The SCAP and EROS capability systems address these limitations by adding mandatory re-
strictions on the use of capabilities to ensure safe system behavior. They each define mechanisms
to limit the capabilities that a process can receive to only those within the system’s security goals
(e.g., weak capabilities of EROS), but restricting the system’s behavior in a sufficiently flexible man-
ner requires runtime checks (e.g., on capability loading). Revocation is a conceptual problem for
capability systems, but in practice simple ideas, such as Redell’s indirect rewvoker capabilities, ap-
pear sufficient. Thus, the biggest challenge for capability systems, like many systems, is providing a
practical execution environment that can be proven to ensure system security goals.

152

153

CHAPTER 11

Secure Virtual Machine Systems

A problem in building a new, secure operating system is that existing applications may not run on
the new system. Operating systems define an application programmer interface (API) consisting
of a set of system calls it supports. New operating systems often define new APIs, resulting in the
need to port applications and/or write new applications. This has been a major problem in gaining
acceptance for secure operating systems based on emerging kernels, such as Trusted Mach [35] and
Flask [295], and the reason for so much focus on securing commercial systems.

An alternative that enables execution of multiple operating systems on one computer is called
a virtual machine system. A virtual machine system enables multiple operating system instances and
their applications to run concurrently on a single physical machine. Each operating system instance
runs in a virtualized environment that emulates a physical platform, called a virtual machine (VM).
While each operating system still manages the state of its applications and abstractions (e.g., files,
sockets, processes, users, etc.), it does not actually manage use of the physical hardware.

In virtual machine systems, a new component is introduced, called a virtual machine monitor
(VMM), that multiplexes physical system resources among the operating systems in the VMs. The
virtual machine operating systems no longer control the use of system hardware, but instead receive
hardware access only via an indirection through the VMM. Only the VMM runs in supervisor mode,
so only it has access to system hardware directly.

VMM architectures are classified into two types, as shown in Figure 11.1, distinguished by
whether the VMM runs directly on the hardware (Type (1) or on another Aost operating system
(Type 2). Since a Type 2 VMM requires the services of a host operating system in order to run, its
trust model must include this operating system (and perhaps it is insecure). As a result, the trusted
computing base of a Type 1 VMM can be smaller than that of a Type 2 VMM. Examples of Type
1 VMM include IBM’s VM/370 [69], Xen [346], and VMWare’s ESX Server [319]. Examples
of Type 2 VMM include VMWare’s GSX Server [320], Microsoft’s Virtual PC [208], and User-
Mode Linux (UML) [77]. Of course, Type 1 VMMs must also provide system services, such as IP
networking, so care must be taken to keep the Type 1 VMM'’s trusted computing base as small as
possible.

There are variants Type 2 VMMs as well where all the VIMs use the same kernel interface, so
all VMs use the host operating system for handling all system calls. Such systems include Solaris
Containers (Zones) [175] (see Chapter 8) and FreeBSD Jails [156] (see Section 7.5.3). In both of
these systems, the host operating system creates isolated computing environments akin to virtual
machines, but all the system calls from the virtualized systems are forwarded to the host operating
system. There are no guest operating systems in these systems.

154 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

Virtual Machine Virtual Machine
Applications Applications
Guest OS Guest OS

Security Perimeter

VMM
VMM
Host OS
Hardware Hardware

Type 1 VMM System Type 2 VMM System

Figure 11.1: Type 1and Type 2 VMM Architectures: A Type 1 architecture runs directly on the hardware,

whereas a Type 2 architecture depends on a host operating system.

Virtual machine systems were originally envisioned as a means to provide better resource
utilization, by enabling multiple software systems to use a single system’s hardware. Virtual machine
system designs sometimes focus on supporting legacy code [39, 69], but other virtual machine
designs have focused on security, or at least isolation, as a main goal [161, ,]. In general,
virtual machine system designers now expect to: (1) support legacy applications effectively, with
little or no modification; (2) provide effective isolation and security enforcement; and (3) with a
modest performance overhead that would be undetectable given modern hardware. For security,

virtual machine systems have a couple of significant advantages over traditional systems.

11.1. SEPARATION KERNELS 155

First, virtual machine systems offer the potential of reducing the size of the trusted computing
base. Since operating systems run in VMs, it is possible to remove the operating system from the
trusted computing base. The VMM now becomes the trusted computing base. However, whether
this actually reduces the size of the system’s trusted computing base depends on how the VMM is
designed. While a few have specially-designed, small code bases, many VMMs depend themselves
on a complete, ordinary operating system (even Type I VIMMs).

Second, virtual machine systems provide an additional, coarser-grained layer of control for
securing a system. The hope is that coarser-grained enforcement translates into simpler mediation
and simpler policies. With respect to the reference monitor guarantees, virtual machine systems
should make it easier to ensure complete mediation and make it easier to verify that security goals
are met. First,a VIVIM reference monitor only needs to mediate the distribution of resources among
VMs and inter-VM communication. Since resources are typically partitioned among VMs (i.e.,
they are not shared), securing resource distribution is often simpler. Once a VM is started, only
communication with other VMs needs to be mediated. Typically, only a small number of primitives
enable inter-VIM communication. Second, the VMM policy will likely be simpler than a secure
operating system policy. Because the number of VMs is smaller than the number of processes
running on an operating system and the number of possible inter-VIM communications is smaller
than the number of resources in a traditional system (e.g., files), it should be easier to verify that the
VMM policy expresses the intended security goals.

Rushby identified the reasons above as motivation for moving from the security kernel ap-
proach (see Chapter 6) to a new approach, called a separation kernel [259, 260]. We first review
Rushby’s arguments for the separation kernel architecture. We then examine the design and im-
plementation of a secure virtual machine system, the VAX VMM Security Kernel [161]. We then
examine issues in building secure operating systems in the context of the current virtual machine
systems.

While the additional layer of control offered by virtual machine systems presents these poten-
tial benefits, building secure virtual machine systems is not without challenges [107]. First, virtual
machine systems may generate problems for administrators, as there will be many more VMs to
administer and disinfect than physical machines. Second, the ability to save, restore, and migrate
VMs may generate difficulties in ensuring that the VM software base is current and consistent with
organizational requirements. Third, the identity of virtual machines will be harder to determine than
the identity of physical machines. Virtual machines may even be able to migrate across administra-
tive domains. Fourth, data leaks of VMs into various physical systems and the integrity impact of
individual systems into VMs may be difficult to track [51, 52]. Virtual machine security solutions
must account for these challenges in order to leverage its benefits.

11.1 SEPARATION KERNELS

In 1981, Rushby examined the difficulty of building security kernel systems, such as Scomp and
GEMSOS discussed in Chapter 6. Rushby found that security kernel systems, despite their near-

156 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

minimal trusted computing base, had a significant, uncontrolled reliance on trusted services. As a
result, he defined an alternative approach that he called a separation kernel [259, 260].

In a multilevel (MLS) system, if any process can write data from a higher sensitivity level to a
lower sensitivity level, it violates the MLS policy (see the Bell-LaPadula policy [23] in Chapter 5).
However, some services are entrusted with such operations, such as inline encryption systems [259],
that encrypt secret data and send it via public networks. Also, other services may be trusted to process
data at multiple sensitivity levels with leakage, such as file and print servers. In an MLS system, such
processes are simply trusted, and the MLS policy is not enforced on them.

Rushby claimed that ensuring the correct behavior of trusted services of a security kernel
system is too complex. In a general purpose system, we have a large number of trusted services,
potentially complex interactions among trusted services, and a variety of interfaces accessible to
untrusted processes. The SELinux system with its 30+ trusted programs is indicative of the number
of trusted programs in a general-purpose system. The interactions among the resulting trusted
processes are not clearly identified, but they are likely to be complex. Most dangerous of all is the
number of ways that untrusted processes may invoke trusted programs. In minimal security kernel
system, such as Scomp and GEMSOS, there were 30-40 gates defined to control such invocations.
In a modern operating system, there are hundreds of system calls.

Rushby’s solution is to treat each trusted program as one would a single node in a distributed
system. For example, a file server node would be a single-purpose system attached to other systems
via a single communication channel. If the “file server adheres to and enforces the multilevel security
policy, the security of the rest of the system follows” [259]. That is, enforcement of system security
goals can be composed from isolated elements that “adhere to and enforce” [259] those security
goals.

Rushby coined the name of such a system as a separation kernel to distinguish it from a security
kernel. A separation kernel emphasizes independence and authorized communication. Each trusted
service runs in a isolated and independent system, perhaps on the same physical platform or perhaps
not, and the services can only be accessed by a small number of mediated communication channels.
The separation kernel is capable of complete mediation of such communication channels, such that
the services could be isolated completely from the remainder of the system.

Rushby noted the similarity between the separation kernel concept and virtual machine sys-
tems, as we described them above. The major distinction is that separation kernels do not require
that the separation kernel provide a virtualized hardware API, as a virtual machine monitor does.
The trusted services in a separation kernel may be customized to a separation kernel system and
minimized (e.g., not run a guest operating system). With increasing popularity of paravirtualized
hypervisors, such as Xen [19], which require some awareness of running on a virtual machine mon-
itor, and custom VMs as proposed for Terra [105], the line between a separation kernel and a virtual
machine system is becoming blurrier each year.

A vparticular family of systems that implement the separation kernel approach are called
Multiple Independent Levels of Security (MILS) systems [131, 7,193, 9]. A MILS system architecture

11.2. VAX VMM SECURITY KERNEL 157

is shown in Figure 11.2. A each service runs in an isolated regime supported by a MILS middleware

C I Trusted
Application #1 Application #2 Service Network
(Encryptor) Service
MILS MILS
Middleware Middleware

| / Yl ‘
N —

Separation Kernel

Figure 11.2: A Multiple Independent Levels of Security (MILS) system architecture: individual systems
are treated like separation physical machines and unsafe operations (e.g., encryption of secret data prior
to network delivery) are routed through a simplified and verifiable trusted service.

layer. Coarse-grained communication channels, analogous to network communication are provided,
and an MILS separation kernel mediates access. If a trusted service is required (i.e., is trusted to
enforce MLS as described above), it placed in its own regime, and the MILS middleware forwards
unsafe requests to such services automatically. For example, Figure 11.2 shows a service that encrypts
network traffic before being forwarded to the network service. Such trusted services should be small,
so they may be verifiable. The MILS separation kernel architecture has been applied to mission-
critical deployments for some time, but it is just now starting to garner attention in the mainstream.
A proposal for how to construction and evaluate MILS systems has been proposed [233] (i.e., a
protection profile, see Chapter 12), as has a critique [347].

11.2 VAX VMM SECURITY KERNEL

The VAX VMM Security Kernel is a virtual machine system that aims to achieve the goals of a
secure operating system [161]. The VAX VMM runs untrusted VMs in such a manner that it can
control all inter-VM communications, even covert channels. The key features of the VAX VMM are
its implementation of virtualization, which ensures that the untrusted VMMs cannot circumvent the
authority of the VMM, and its layered system architecture, which improves security via modularity
and minimizing interdependencies.

The VAX VMM design was begun in 1981 from a discussion between Paul Karger and Steve
Lipner. The project was motivated by the KVIM/370 system, which was a retrofit of the security
into the existing IBM VM/370 system [114]. The KVM/370 design was limited by the need to
reuse the code from the existing VIM/370 system. The KVIM/370 design isolates VM into separate
security classes within the architecture of the VIM/370 system by adding a layer between the VIM/370

158 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

VMM and the untrusted VMs, called the Non-Kernel Control Program (NKCP). An NKCP was
created for each MLS sensitivity level (e.g., secret and confidential), and they ensured that all VM
communication across sensitivity levels was mediated. However, the addition of this additional layer
means that access to VMM functions generated wo context switches, one to NKCP and one to the
VMM. This had a significant effect on system performance, reducing the performance by a factor
of 2-10 [114]. In addition, the VAX VMM had more extensive support for security management
and covert channel prevention not present in the KVM/370 system.

11.2.1 VAXVMM DESIGN
The architecture of the VAX VMM Security Kernel system is shown in Figure 11.3. The VAX VMM

Applications Applications Applications
(Top Secret) (Secret) (Unclassified)
Ultrix OS VMS OS VMS OS

.

l

/

VMM Security Kernel

— LN T

Memory Disk Print Display
Device Device Device Device

Figure 11.3: The VAX VMM System Architecture: virtual machines are labeled according to the secrecy
of the information that they can obtain through the VMM security kernel to the system’s physical devices.

is a Type 1 VMM, in that it runs directly on the hardware. The VMM includes services for storage
(on tape and disk) and for printing. In general, the VMM must multiplex all physical devices among
VMs, but some key devices, in particular Ethernet networking devices, were not supported, which
became problematic for the system’s deployment. Each VM could run at its own clearance, and
the VMM includes a reference monitor that ensures that any use of physical resources is mediated
according to a mandatory access control policy.

11.2. VAX VMM SECURITY KERNEL 159

The VMM architecture results in coarser-grained physical resources than for a traditional
operating system. The VAX VMM views access to individual devices and storage (i.e., disk and tape)
volumes as objects. Thus, its reference monitor mediates access at this level. The VAX VMM also
provides an abstraction called virtual disks, which partitions the physical disk into isolated chunks
that may or may not correspond to the physical disk boundaries. The use of virtual disks enables two
VM at different clearances to share a single physical disk securely (e.g., preventing one VM from
accessing the other’s data).

The VAX VMM enforces both secrecy and integrity requirements upon its VIMs. Versions of
the Bell-LaPadula secrecy model [23] and Biba integrity model [27] (see Chapter 5) are supported.
In order to express permissions that do not fit into these information flow models, the VAX VMM
provides the means for specifying additional privileges. For example, if a user is permitted to see some
data at a higher secrecy level than she is allowed by her clearance, a user privilege can be specified to
permit such access. The use of such privileges requires a zrusted path (see Chapter 7), and such uses
are audited by the VMM.

The VAX VMM itself is designed in a layered fashion, motivated by the Multics design work
of Janson [151], Reed [254], and the Naval Postgraduate School [67]. The idea is that each layer adds
well-defined VMM functionality, and no layer depends on functionality provided by a higher (i.e.,
less-trusted) layer. For example, the I/O layer provides device I/O (i.e., supplies the VIMM system
drivers), and the VM physical memory layer uses some of these drivers to manage physical memory.
The VM virtual memory layer uses both to implement manage access to a prescribed amount of
physical memory per VM and ensure proper mapping of device resources (e.g., storage via the I/0
layer) to virtual memory.

In building the VAX VMM security kernel, four major challenges had to be addressed: (1)
virtualizing the protection rings of the VAX processor; (2) identifying the sensitive instructions of
the VAX processor; (3) emulating I/O operations generated by the untrusted user VMs; and (4)
enabling the VAX VMM system to be self-virtualizable. The first two challenges ensure that the
VMM’s reference monitor truly provides complete mediation. The second two challenges provide
function in a secure manner.

First, the VAX VMM designers had to add a new virtual ring to the VAX processor. The
VAX processor supports four rings: kernel, executive, supervisor, and user. A traditional VAX OS
(VMS) ran in the kernel ring, but also some specific VMS system software ran in the executive and
supervisor rings as well. Thus, all four physical rings were already used. The VAX VMM design runs
the VMM in the kernel ring, and compresses the OS kernel and executive into a single ring. While
some protections between kernel and executive code are added, in general, the OS kernel may not
be protected from bugs in the executive since they run in the same ring.

Second, even though the OS kernel is run a higher ring than the VMM, the processor may still
permit the higher ring to run security-sensitive operations, thus circumventing complete mediation.
Processor instructions that may be run only in the privileged ring (i.e., the kernel ring in the VAX
architecture) are said to be privileged. Processor instructions that reference or modify sensitive data

160 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

in the privileged ring are said to be sensitive, and are security-sensitive in building a VMM reference
monitor. Popek and Goldberg [247] state that for an architecture to be virtualizable, all sensitive
instructions must be privileged. However, for the VAX instruction set, this was not the case, so the
designers had to extend the VAX architecture (i.e., change the VAX microcode actually) to indicate
whether code was running in a VM, so that the VMM could emulate its execution securely. For
example, the hardware register that stored the current ring number had to be emulated to prevent
the OS from discovering that it is being virtualized (e.g., to prevent a false error from being raised).

Third, in addition to emulating sensitive, but unprivileged instructions, the VAX VMM must
also emulate access to I/O devices. Since only the VMM runs in kernel, devices are no longer
accessible to the VIMs guest operating systems (i.e., all physical devices are only accessible from
the VMM). Virtualizing I/O access for the VAX processor was especially difficult because 1/0 was
implemented by reading and writing registers that are mapped to physical memory. In the guest
VM, these addresses would no longer mapped to the real registers. To emulate this, the VAX VMM
required a small change to kernel software to invoke a ring trap once the I/O memory is updated.
The VMM then uses the VMs I/O memory setup to process the real I/O request.

The result of making all sensitive processor instructions privileged is that the VAX VMM
system is self-virtualizable. A se/f~virtualizable VIVIM can run in one of its own VMMs, permitting
recursive construction of VM systems. Self-virtualization is a nontrivial property of processors.
Until the introduction of the Intel VT and AMD Pacifica processors, no x86 architectures were
self-virtualizable, thus any VMM design for x86 (see Section 11.3) had to address similar problems
as in the VAX VMM design. Ways in which the x86 is not self-virtualizable are described by Robin
and Irvine [258].

11.2.2 VAXVMM EVALUATION

We evaluate the security of VAX VMM system using the reference monitor principles stated in
Chapter 2. The VAX VMM design made several considerations to prevent covert communication
channels, in addition to the overt channels controlled by the reference monitor interface. However,
it is difficult to guarantee reference monitor tamperproofing and verifiability in real systems, as we
will show. Nonetheless, the VAX VMM system has been carefully designed with security in mind,
and aimed for an Al-assurance according to the Orange Book [304].

1. Complete Mediation: How does the reference monitor interface ensure that all security-
sensitive operations are mediated without creating security problems, such as TOCTTOU?

The requirement for mediation in the VAX VMM is that all security-sensitive instructions
in the VAX processor’s instruction set be privileged. As a result, all the instructions that
enable updates of VMM state or enable communication via I/O are trapped to the VMM for
mediation. Instruction-level mediation requires provides access to all the system resources in

need of modification, so TOCTTOU is not a problem.

11.2. VAX VMM SECURITY KERNEL 161

2. Complete Mediation: Does the reference monitor interface mediate security-sensitive oper-
ations on all system resources?

In the VAX VMM design virtualization enables mediation of VM operations, such as disk
volume and device access. Since the VM OS cannot access any privileged instruction and the
changes to the VAX microcode for the VAX VMM ensures that all sensitive instructions are
privileged, the VMM has the opportunity to mediate all security-sensitive commands.

3. Complete Mediation: How do we verify that the reference monitor interface provides com-
plete mediation?

Privileged instruction traps define the reference monitor interface which provides a reliable
mediation if indeed all security-sensitive operations are privileged. Note that the VAX VMM
depends on modified operating systems to ensure that I/O commands take the necessary trap.
If an attacker can control the VIM’s operating system code, she can cause a sensitive I/O
operation to circumvent the mediation.

4. Tamperproof: How does the system protect the reference monitor, including its protection
system, from modification?

The VAX VMM reference monitor and protection system are contained within the VMM
itself in ring 0. A small amount of user administration is possible from the VMs based on
SECURE commands. These require a trusted path between the user and the VAX VMM.

How the system distinguishes between trusted users and untrusted users is unclear.

Also, there are several interfaces by which the untrusted VM code can invoke trusted VMM
code, such as the execution of sensitive instructions and I/O emulation (i.e., device access).
While the design of the VAX VMM mediates all these entry points, the design must further
ensure that all the data received from the untrusted VM is handled properly. Unlike Multics,
which uses gatekeepers to ensure that malicious input data is filtered, the VAX VMM provides
no explicit mechanism for such filtering. We imagine that such filtering is done in an ad hoc
manner, but its description is not detailed.

5. Tamperproof: Does the system’s protection system protect the trusted computing base pro-
grams?

The VAX VMM contains no trusted code outside of ring 0. Administrators use a trusted path
to access code running inside the VAX VMM to perform administrative operations. Other
trusted services, such as authentication are also performed in the secure server inside the VIVIM.
This approach is unique to the systems that we have examined. On the positive side, it limits
assurance to the VMM itself. Also, the required use of a trusted path to access administrative
services significantly limits the ways that trusted code can access such services. On the negative
side, any change in trusted services requires changes to the VIMM.

162 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

6. Verifiable: What is basis for the correctness of the system’s trusted computing base?

In order to assure correctness of the VAX VMM software to the Al-assurance level of the
Orange Book [304], the design ! was formally specified and analyzed for verify that it satisfied
the security policy model. In addition, the system implementation was informally shown to be
consistent with the design. Further, the development process of the VAX VMM was tightly
controlled. All design decisions and code were reviewed, including any changes to either. The
filtering of untrusted input, mentioned under tamperproofing above, was tested thoroughly
for response to a variety of legal, illegal, and malformed requests. Even the CPUs were tested
for correct implementation of VAX architecture specification.

7. Verifiable: Does the protection system enforce the system’s security goals?

The VAX VMM’s security goals are embodied in the Bell-LaPadula and Biba information
flow models. If Bell-LaPadula was strictly followed, then no software could leak data to an
unauthorized user. Similarly, if Biba was strictly followed, then no software would depend on
untrusted code or data. In practice, Bell-LaPadula and Biba are both too restrictive, as the
designers acknowledge by the addition of system privileges. However, the ability to verify that
the system ensures a concrete security goal in the presence of a set of assigned privileges is a
challenging task. The VAX VMM system provided no specialized support for understanding
the impact of privilege assignments on the resultant information flows. Presumably, these
would be manually verified by the administrators of individual deployments.

The design of the VAX VMM system also provided several countermeasures for controlling
covert channels. In addition to an informal analysis, the designers also used a technique called
the Shared-Resource Matrix [162, 163] to identify storage channels. Many storage channels were
eliminated by preallocation of resources, excepting storage channels due to disk arm movement [275]
which required a special technique [160]. Covert timing channels are even more difficult to address,
and in the course of the VAX VMM project new means were developed to identify covert timing
channels [341] and counter these channels by obfuscating timing [140].

11.2.3 VAXVMM RESULT

Despite the diligent efforts of the VAX VMM team, successful pilot deployments, and the Al-
assurance preparations, Digital Equipment Corporation (DEC) canceled the project in March 1990.
The exact reasons for the cancellation have not been revealed and remain a mystery. However,
the reasons why a functional, high security system would be discarded just as it became ready for
commercial deployment would be illuminating to those aiming to build high security software in
the future.

1Speciﬁca_lly, the part of the system design called the formal top-level specification was modeled and analyzed.

11.3. SECURITY IN OTHER VIRTUAL MACHINE SYSTEMS 163

The VAX VMM kernel was stable in early 1988, self-hosting 2 by mid-1988, and supported
DEC’s VMS and Ultrix-32 operating systems by 1989. An external field test was performed in late
1989, and execution performance was found to be “acceptable.”

Undoubtedly, the field test and other business case information was used to determine not
to go forward with the VAX VIMIM as a commercial product. Despite the secrecy, we wonder what
aspects of the system caused it not be sold, given acceptable performance. In the rest of this section,
we examine some of the challenges faced in building the VAX VMM kernel system that we should
consider when constructing future systems.

First, all the device drivers were run in the VMM, which ensured trusted access to hardware,
particularly in these days well before an I/O MMUs (see the discussion on I/O MMUs and direct
memory addressing in Chapter 6). However, as operating systems must support a large number of
devices, new devices are introduced frequently (and often contain bugs [82], and the Al-assurance
required detailed code reviews for any new code, this would present a challenge for system mainte-
nance.

Second, the combination of Pascal, PL/1, and a significant amount of assembler (nearly 1/4 of
the VMM code) was somewhat unusual for operating systems, circa 1990. Particularly the presence
of a significant amount of assembly code, over 11,000 LOC, would present challenges in maintaining
A1 assurance.

Third, the VAX multiprocessor hardware introduced high performance covert channels (see
Section 5.4) on the shared multprocessor bus. To remedy this problem, the most effective solution
given hardware constraints was to use a fuzzy time [140] approach whereby certain operations are
delayed to prevent an attacker from accurately communicating using such a channel. Delays naturally
slow the system’s performance, particularly for I/O operations which are the focus of the delays. Al-
though the research paper reports a slowdown of only 5-6%, the performance analysis is not detailed,
so some significant performance degradations may have been a concern for commercialization.

11.3 SECURITYIN OTHER VIRTUAL MACHINE SYSTEMS

We briefly examine the state of security in current VM systems. While the initial motivation for VIMs
was to better leverage physical resources, security has become a recent focus. Current commercial
operating systems have failed to provide adequate, manageable security controls, but building a
brand new operating system is no longer a practical option. As in the case of the VAX VMM, a
new VM system enables the development of new security controls while still being able to execute
existing software, and the ability to execute legacy code is a requirement of any system. However,
we must construct VM systems in a manner that avoids the problems of operating systems, such as
rootkits [170].

2 By self-hosting, we mean that the VAX VMM could be used to build new versions of the VAX VMM.

164 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

PR/SM IBM’s Processor Resource/Systems Manager [142] (PR/SM, pronounced “prism”) is a
type 1 hypervisor that is capable of running a variety of operating systems, including various IBM
OSes and Linux, on IBM mainframe hardware, now called the zSeries. PR/SM enables a security
administrator to configure virtual machines such that complete isolation is ensured. That is, PR/SM
prevents the sharing of the physical systems I/O resources, so no virtual machine can learn about any
virtual machines use of system 1/O. PR/SM enables such isolation using an Interpretive Execution
Facility that only allows virtual machines to execute processor instructions in a controlled manner,
which restricts covert channel communications. PR/SM has been evaluated to the Common Criteria
EAL 5 in 2005 [14]. Since the focus of the PR/SM product is isolation its evaluation does not aim
for MLS protection profiles, such as LSPP (see Chapter 12).

VMware Although VM systems have been around for many years (e.g., IBM z/VM [143]) and
have had a reputation for security for quite some time, the introduction of VMware, a VM system for
the ubiquitous x86 processor, brought VM systems to the masses [299]. VMware security is enabled
by its dynamic translation of resource requests (CPU, memory, I/O) into virtualized commands that
VMware VM monitors can mediate. VIMware can both restrict the types of commands that can be
performed via this translation and determine the interface for mediation.

When a VMware guest VM executes a storage or network request, the VMware VMM
mediates the request and determines how this request will actually be implemented. For network
requests, the VIMware ESX server defines virzual ports which determine the network configuration for
that VM (e.g., its MAC address and forwarding tables) independently from its physical platform [46].
A template specification is attached to a VM from which its connectivity can be defined regardless
of the host upon which it runs. For storage, traditional 1/O requests to a local disk can be converted
into a variety of storage system requests [46]. Thus, simpler I/O requests can be authorized and
converted into SAN requests, if desired.

The VMware VirtualCenter defines the policy over VMware VM interactions. Resources
are grouped into resource pools which partition the CPU and memory resources. Resources pools
may be arranged hierarchically and delegated to other subjects. The VMware VirtualCenter uses
Windows security controls (see Chapter 7) and roles to define access. The partitioning of resources
using pools enables isolation, but if one VM can delegate control of a pool resource to another
VM, then a compromise may lead to an information flow that violations the system’s security goals.
VMware’s system design includes a variety of hardening features to protect the VMM’s trusted
computing base [47], but this does not ensure that a guest VM with control of resource pools cannot
be compromised. VIMware supports the introspection of guest VMs [106], which may enable the
detection of a guest VM compromise from the protected VMM [321]. By running the intrusion
detection software (e.g., virus scanners) outside the guest VM protects it from being compromised
as well, it does not prevent intrusion or malicious behavior unless the compromise is detectable.

11.3. SECURITY IN OTHER VIRTUAL MACHINE SYSTEMS 165

NetTop The first major effort that aimed to leverage VMware for security was the NetTop
project [205, 136]. NetTop provides end-to-end secrecy protection using virtual machines for iso-
lation, rather than physical machines. The NetTop system is built on a Type 2 VMware system that
uses SELinux [229] (see Chapter 9) as its host operating system. Prior to NetTop, organizations with
stringent secrecy requirements used isolated networks to prevent leakage of information. Because
of the lack of security in commercial operating systems, these organizations required that distinct
machines be connected to each network to prevent leakage. Using NetTop, individual VMs can
be isolated on the same physical machine, so a single physical machine can be used to connect to
multiple isolated networks.

VMware provides the isolation primitives for NetTop. In addition to storage and memory
isolation, VMware supports virtualized VLANSs, which limits the set of destination systems to which
a VM may send network traffic in a LAN. For some time, network switches have supported the
configuration of network partitions in a LAN, such that machines can only send to other members of
their VLAN partition. VIMware supports the assignment of a virtual machines to distinct VLANS,
such that a VM can only send packets to other members of its VLAN partition (other VMs or
physical machines). There are different ways to configure VMware VMs to use VLANs [46], but
we describe one approach here. Using virtual ports, each VLAN is assigned to virtual port, and each
guest VM is assigned to the virtual port as well. The virtual port tags the network frames, so that
the VLAN switches can ensure that there is no leakage between VLANS.

Why VMware provides isolation primitives, SELinux is used to ensure that any inter-VIM
communication is authorized according to a mandatory access control policy. VMware by default
uses a discretionary access control policy (based on Windows), so resources can be delegated by users
and the VMs. Thus, a compromised VM could delegate rights that would cause an unauthorized leak
of information. NetTop uses SELinux in two ways: (1) SELinux access control within a privileged
VM defines a least privilege [265] policy whereby the permissions of services are contained, even if
they are compromised and (2) SELinux defines the resource allotted to VMs by the system, and no
delegation is authorized. For example, each virtual machine in NetTop is only authorized to access
files with a corresponding label. As a result, a VM in one partition cannot access files in another
partition. With the VMware isolation and SELinux policy, NetTop can isolate VMs on the same
machine, under the assumption that the trusted computing base cannot be compromised. Even with
the least privilege policy, it may be possible for particular trusted services to compromise NetTop
should they be compromised.

Xen Xen is another x86 virtual machine system. Xen provides similar isolation guarantees as
VMware (e.g., support for VLANs), but the management of inter-VIM communication is different.
Unlike the discretionary controls of VIMware or the SELinux controls within a privileged VM, Xen
provides mandatory access control (MAC) at the hypervisor (i.e., VMM) level. The exact imple-
mentation of a reference monitor in the Xen hypervisor is an ongoing project, but the aim is similar

166 CHAPTER 11. SECURE VIRTUAL MACHINE SYSTEMS

to the Linux Security Modules (LSM) interface in Linux [342]. Xen isolation, without leveraging
its MAC enforcement, has been applied to isolate web applications [66].

The Xen design aimed for virtualization performance originally, but security has also become
a focus for Xen. Xen is a Type 1 VMM consisting of two major components: (1) a hypervisor that
runs directly on the hardware and (2) a privileged VM that provides I/O and VM configuration
support. The Xen hypervisor provides VM communication primitives, mainly aiming at increasing
the performance of I/O emulation between the untrusted VMs and the privileged VM which does
the actual I/O processing. Unlike the VAX VMM, Xen uses a VM (i.e., a traditional operating
system running in a VM, Linux) to provide I/O emulation to the untrusted VMs.

Security for Xen consists of mediating communication between VMs and controlling the
distribution of resources (i.e., access to physical devices and memory). To achieve this, two projects
have added a reference monitor interface to the Xen hypervisor. Xen sHype is a reference monitor
interface that mainly focuses on inter-VIM communication control [263]. The Xen communication
mechanisms (i.e., grant tables and event channels [19]) are mediated to ensure that only authorized
VMs can communicate. However, the distribution and use of resources is controlled by the privileged
VM in an ad hoc manner. Since Xen’s privileged VM partitions disk and memory resources and
multiplexes network resources among its VMMs, no overt communication using these resources is
permitted by default. However, this puts a lot of trust in the ordinary OS (Linux) running in the
privileged VM to partition resources correctly. Should these resources be shared among VMs in
the future, then there sharing must be mediated by trusted software. The second project, the Xen
Security Modules (XSM) reference monitor interface mediates both communication and resource
distribution [57]. However, now that the reference monitor hooks are in place, it is necessary to
determine the policies necessary to utilize these XSM hooks to enforce practical security goals.

11.4 SUMMARY

Virtual machine systems, and more generally separation kernels, provide a layer of abstraction be-
tween the operating system and the physical platform. This enables better utilization of hardware,
the ability to run multiple operating systems and their applications on one device, and a point of
indirection that may be beneficial for security control. Because the complexity of operating systems
has prevented them from being effective and manageable arbiters of security, separation kernels and
virtual machine monitors are seen as a layer where security guarantees can be practically enforced.
While these systems have been around for a while and have historically supported security, secure
VMM (i.e., in the manner required in Chapter 2) are not readily available. The VAX VMM defined
a formally rigorous design and implementation of a secure VIMM system, but it was never released
as a product. The VAX VMM design demonstrated that VIMM security depends on control of all
sensitive commands, including those performed by I/O resources. But, this created a conflict, as
the number and variety of drivers tends to overwhelm the code management and testing required
for formal assurance. MILS separation kernel systems are also being developed, but are specialized
systems not yet leveraged by mainstream computing. VMware and Xen are available VMMs that

11.4. SUMMARY 167

are being extended to support the enforcement of security, but they emulate I/O in an ordinary
operating system. The trade-off between what function belongs in the VMM, and what function
can be performed in ordinary operating systems with sufficient security guarantees is an ongoing
source of debate.

168

169

CHAPTER 12

System Assurance

The aim of system assurance is to verify that a system enforces a desired set of security goals. For
example, we would like to know that a new operating system that we are developing can protect the
secrecy of one group of users’ data from another group. First, we would like to know that the operating
system mechanisms (e.g., reference monitor) and policies (e.g., multilevel security) are appropriate
to enforce the goal. Second, we would like to know whether the operating system implementation
correctly implements intended mechanisms and policies. System assurance describes both whar
determines reasonable goal and what is a satisficing implementation, and system assurance also
describes Aow a secure operating system should be built and maintained.

The development of Multics, see Chapter 3, and the subsequent security kernel systems,
see Chapter 6, demonstrated to the security community that building a secure operating system
was a difficult undertaking. The security kernel approach emerged as the appropriate technique for
constructing secure system, see Section 6.1. Three specific tasks were identified [10, 108]. First, the
system development team must clearly define the security goals for their system. Second, the system
development team must construct a system design in a such a way that its security properties can be
verified, formally if possible. Third, the system development team must implement the kernel in a
manner that can be traced to the verified design, automatically if possible. This approach to system
development motivation the construction of several design verification tools(e.g., [48, 118, 79, 78,
331]).

Using the security kernel approach as a guide, the US Department of Defense (DoD) de-
veloped a set of standards for the security requirements of systems and evaluation procedures for
verifying these requirements, called the Rainbow Series [222]. These standards cover security func-
tion ranging from passwords and authentication to recovery and audit to access control and system
configuration. Further, there are standards for procedures including documentation, procurement,
facilities management, etc. The standards covering operating systems, called the Trusted Computer
System Evaluation Criteria (TCSEC) or the “Orange Book” [304], have generated the most discus-
sion and probably the most use. The Orange Book defines a progressively-more-secure sequence of
requirements for operating systems. The Orange Book combines desired security features with the
tasks to verify correct implementation of those features into a set of assurance classes. Ultimately,
this approach was found to be unnecessarily constraining, as the levels of security function and as-
surance may not coincide. In the succeeding assurance approach, called the Common Criteria [60],
evaluation criteria are organized into distinct components: the security function into the zarget of
evaluation (TOE) and evaluation effort into the evaluation assurance levels (EALs). Thus, a system’s
particular security features can be assured to different levels depending on its design, development,
documentation, configuration, testing, etc.

170 CHAPTER 12. SYSTEM ASSURANCE

In this chapter, we describe the Orange Book and Common Criteria assurance methodologies
and their impact on operating system design and implementation.

12.1 ORANGE BOOK

The TCSEC or Orange Book was developed by the US DoD’s Computer Security Center which
was formed in 1981 [304]. The main focus of the center was to encourage the development of
secure operating systems by vendors. However, as discussed throughout the book, building a secure
operating system is a challenging task, and by this time the commercial market had largely moved
away from the features of secure operating systems (e.g., Multics [237] and security kernels, such
as Scomp [99] and GEMSOS [290]) to the function and flexibility of UNIX systems which did
not focus on security (see Chapter 4). Thus, the center needed to not only define how to build such
systems, but also encourage the development of secure operating systems.

The Orange Book defines two sets of requirements: (1) specific security feature requirements
and (2) assurance requirements. The specific security feature requirements define the operating system
features that are necessary to enforce the security requirements. The assurance requirements specify
the effort necessary to verify the correct implementation of the specific security features.

The Orange Book is primarily known for its definition of assurance classes that dictate specific
security feature and assurance requirement combinations. Ultimately, these classes were organized
into divisions with similar assurance requirements (A through D). Each class defines four categories
of requirements for their systems: (1) the security policy model, including the administration of poli-
cies described in the model and the labeling of system resources; (2) the level of accountability for
system actions, including authentication of individual subjects and audit of system actions; (3) the
degree of operational assurance that the system behaves as expected, including the implementation
and maintenance of the system; and (4) the documentation provided to support the design, imple-
mentation, assurance, and maintenance of the system. The first two categories describe the specific
security feature requirements that dictate the security function intended by the system design. The
second two categories specify assurance requirements that determine whether the implementation
satisfies the intended design. Each class specifies its minimal requirements for these categories.

We describe Orange Book classes below, starting with the lowest security classes (i.e., least
assurance of security enforcement).

D — Minimal Protection Class D is reserved for systems that have been evaluated, but fail to meet
the requirements of any higher security class.

The next set of classes support discretionary access control security policies. These classes
are grouped into a division called Discretionary Protection (division C) where only discretionary
mechanisms are necessary to evaluated be at one of these classes. Other features and assurance
requirements distinguish the classes.

12.1. ORANGE BOOK 171

C1 — Discretionary Security Protection A Class C1 system requires a discretionary access control
(DAC) model specifying the permissions of named users to named objects. Users must authenticate
themselves prior to performing any system actions. System actions are performed by hardware-
protected domains whose rights are associated with the authenticated users. Assurance requires
testing that there are no obvious ways to bypass these controls. Basic documentation is required.

This class defines a basic DAC system with hardware protection of processes and user au-
thentication.

C2 — Controlled Access Protection A Class C2 system provides the DAC model of Class C1 where
the rights may be specified at the granularity of a single user, and where administration is authorized.
Authentication shall be based on a secret (e.g., a password) that is protected from access by other
users. Audit and object reuse are introduced by this class. Audit of a specific set of events is defined,
and such auditing requires a protected log. Object reuse means that when an object is provided, such
as a file, no data from its previous use is accessible. Assurance requires testing for obvious flaws and
obvious bypass. Documentation for users, facilities, design, and testing is required.

C2 is the evaluation level for most discretionary systems, such as Windows and UNIX systems,
historically. Access control is based on a user identity, and passwords are protected from access. As
of 1996, five operating systems were assured at this class, including Windows NT 3.5 Service Pack
3, albeit without networking.

The next division, called Mandatory Protection, defines classes of systems that provide manda-
tory access control (MAC).

B1 — Labeled Security Protection A Class B1 system provides the DAC, audit, and object reuse
features of Class C2 plus a MAC model where each named subject and object is associated with a
sensitivity label, corresponding to a multilevel security (IMLS) policy (see Section 5.2). These labels
must be integrity-protected and exported with the data when it leaves a system (e.g., by device or via
a printed page). Authentication must identify a user by sensitivity level for authorization. Assurance
now requires that the security mechanisms of the system must work as claimed in the system
documentation. An examination of the design documentation, source code, and object code are
necessary to prove this. The documentation must support such testing through detailed descriptions
of the security policy model and protection mechanisms, including a justification how they satisfy
the model.

B1 is the class in which mandatory access control is introduced. Also, at this stage detailed
testing that the documentation and source code implement the intended security features is required.
Seven operating systems were evaluated at this class, including Trusted Solaris V1.1 Compartmented
Mode Workstation (see Chapter 8).

172 CHAPTER 12. SYSTEM ASSURANCE

B2 — Structured Protection A Class B2 system extends the B1 class by requiring enforcement
on access to all subjects and objects (i.e., not just named ones) and covert channel protections (see
Section 5.4). At this stage, authentication requires a trusted path (see Section 7.5). Also, requirements
on the trusted computing base (TCB) design are added. The protection-critical part of the TCB
must be identified, and its interface must be well-defined. At this point, the TCB must be shown to
be “relatively resistant to penetration.”

B2 is the class at which covert channels are first mentioned. This introduces a new significant
and complex design and evaluation task to the assurance process. The evaluation of the TCB is also
much more detailed. The design specification includes a “descriptive top-level specification” that
includes an accurate description of the TCB interface and its exceptions, error messages, and effects.
Only two systems were evaluated at this class, Trusted Xenix 3.0 and 4.0 [111].

B3 — Security Domains A Class B3 system extends the B2 class by requiring that the TCB satisfy
the reference monitor concept in Definition 2.6. The TCB design and implementation are directed
toward minimal size and minimal complexity. The system is expected to be “highly resistant to
penetration.” At this point, the audit subsystem must be able to record all security-sensitive events.

At this point, we see the requirements for a secure operating system, but without the formal
verification necessary for Division A assurance below. As of 1996, only one system was assured at
B3, the XTS-300 system [21] that was a successor to the Scomp system discussed in Section 6.2.

A1 —Verified Design A Class A1 system is functionally equivalent to a B3 system, but the evaluation
of this system must be derived from a formal design specification. Unlike the other classes, the
assurance of a Class A1l system is developmental in that the design and implementation of the
system follow from a formal top-level specification (F'TLS).

A Class Al system must meet the following five requirements:

1. A formal model of the security policy must be documented and include a mathematical proof
that the model is consistent with the policy.

2. An FTLS must specify the functions that the TCB performs and the hardware/firmware

support for separate execution domains.

3. The FTLS of the TCB must be shown to be consistent with the formal model of the security
policy.

4. The TCB implementation must be consistent with the FTLS.

5. Formal analysis techniques must be used to identify and analyze covert channels. The continued
existence of covert channels in the system must be justified.

12.2. COMMON CRITERIA 173

A Class Al system is a secure operating system that has been semi-formally verified to satisfy
the reference monitor guarantees. Building a Class A1 system requires diligence from the outset of
the development process to build and verify the formal specifications of the system design (FTLS),
the security policy, and the TCB of the system. No Class Al operating systems are commercially
available, although custom systems, such as BLACKER [330] based on GEMSOS [290], have been
evaluated at A1, and the VAX/VMM system (see Section 11.2) was designed and implemented to
be evaluated at Class Al.

Beyond Class A1 'The Class Al requirements include exceptions that permit informal verification
where no formal analysis tool exist. In particular, research in the 1980s indicated that formal veri-
fication of security properties down to the level of the source code may be possible, so the Beyond
Class A1 left open the possibility that security requirements could be verified more precisely. Formal
verification tools that can prove the satisfaction of the variety of security properties required for
large source code bases, such as operating systems, have not become practical. As a result, no further
classes were defined.

12.2 COMMON CRITERIA

While the Orange Book defined targets for security features and assurance, the linking of features
and assurance requirements became cumbersome. A detailed formal assurance may be performed for
systems that do not provide all of the features in B3 (e.g., covert channel protection). Also, the six
classes of security features themselves were constraining. The market may determine combinations
of security features that do not neatly fit into one of these classes. Out of this desire for a more
flexible assurance approach, the Common Criteria emerged [60, 61].

In the early 1990s, independent approaches for system assurance were be developed in Europe
and Canada. The Information Technology Security Evaluation Criteria (ITSEC) version 1.2 was
released in 1991 as a joint standard used by France, Germany, the Netherlands, and the United
Kingdom [147]. ITSEC defines a set of criteria for evaluating a system, called the targes of evaluation,
to verify the presence of a set of security features and to verify its defenses against a comprehensive
set of penetration tests. The set of security features implemented by a system need not conform to
a specific TCSEC class, but rather can be defined as part of the evaluation, called the securizy target.
The amount of evaluation effort determines a confidence level in the target of evaluation, called
evaluation levels that range from EO (lowest) to E6 (highest).

In Canada, the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) defined
its evaluation approach in 1993 [41, 194]. CTCPEC leverages the security feature requirements of
the Orange Book while incorporating the notion of distinct assurance levels of the ITSEC approach.

Inspired by facets of each of these evaluation approaches, the Common Criteria approach was
developed [60]. Like the ITSEC and CTCPEC approaches, the Common Criteria separates the
assurance effort from the security features being assured. Like the Orange Book, the Common Cri-

174 CHAPTER 12. SYSTEM ASSURANCE

teria defines security feature configurations that would lead to a meaningful assurance for developers
and consumers.

12.2.1 COMMON CRITERIA CONCEPTS

An overview of the Common Criteria approach is shown in Figure 12.1. The Common Criteria

Target of Evaluation

Security Target

Evaluation ,_I__‘ Protection

Assurance

Level (EAL) Profile

Assurance
Decision

Figure 12.1: Common Criteria Overview: A farget of evaluation is converted to a security target that
defines the features and assurance being evaluated. The prozection profile specifies the security features
required and the assurance levels define a set of possible assurance requirements for those features.

consists of four major concepts: (1) the zarget of evaluation (TOE) which is the system that is the
subject of evaluation; (2) the protection profile (PP) which specifies a required set of security features
and assurance requirements for systems to satisfy that profile; (3) the security target (ST) which defines
the functional and assurance measures of the TOE security that are to be evaluated, perhaps satisfying
one or more PPs; and (4) the evaluation assurance level (EAL) which identifies the level of assurance
that the TOE satisfies the ST. In a Common Criteria evaluation, the TOE’s security threats, security
objectives, features, and assurance measures are collected in an ST for that system. The ST may
claim to satisfy the requirements of one or more PPs which defines a set of requirements on the ST.
The PPs typically indicate a minimum EAL that can be assured using its assurance requirements,
but the ST may exceed these assurance requirements to satisfy the requirements of a higher EAL.
We examine these concepts in more detail below.

12.2. COMMON CRITERIA 175

The protection profiles (PPs) are generally derived from the popular TCSEC classes. For
discretionary access control (DAC) systems, the Controlled Access Protection Profile (CAPP) was
developed that corresponds to TCSEC Class C2 [230]. The functional requirements of a CAPP
system correspond to a Class C2 system, and CAPP also defines assurance requirements for a typical
system with a minimum EAL 3 assurance required (see below for EAL definitions). For mandatory
access control (MAC) systems, the Labeled Security Protection Profile (LSPP) was developed [231]. It
corresponds to TCSEC Class B1. LSPP also defines assurance requirements that require a minimum
of EAL3 assurance, although a higher level of assurance is expected.

I Level and TCSEC Map I Requirements I
EAL1 functionally tested
EAL2 (C1: low) structurally tested

EAL3 (C2/B1: moderate) methodically tested and checked
EAL4 (C2/B1: medium) methodically designed, tested and reviewed

EALS (B2: high) semiformally designed and tested
EALG6 (B3: high) semiformally verified design and tested
EAL7 (A1: high) formally verified design and tested

Figure 12.2: Common Criteria Evaluation Assurance Levels

The evaluation assurance levels (EALs) and their abstract test and verification requirements
are listed in Table 12.2. The EAL levels indicate identifiable assurance that the ST is implemented
correctly by the TOE system. It is important to note that the assurance level does not indicate that
a system has more security features, but rather whether the system’s design and implementation
assures that the support security features are correct. Both the security features and assurance must
be assessed to determine whether the system satisfies the requirements of a secure operating system
(Definition 2.5 in Chapter 2).

Table 12.2 also includes an indication of high, medium, moderate, and low assurance for the
levels. This categorization is not universally agreed upon, but the important thing to take away is
that there are significant assurance differences between the aggregations. For example, EAL3 is the
first level to require a methodical testing, including grey box testing and a search for vulnerabilities.
Also, a high-level design description is required. However, EAL4 assurance requires a much higher
effort on the part of the developer for a low-level design and a detailed vulnerability test. EAL5-7
are all considered as high assurance as the levels all require some application of formal methods to
the assurance. Only 2 products on the Common Criteria’s List of Evaluated Products have been
evaluated at EAL7 (two data diode devices for restricting the flow of secret data from Tenix) and
none have been evaluated at EAL6. For operating systems, only the Processor Resource/System
Manager (PR/SM) system from IBM and the XTS-400 system from BAE systems are evaluated at
EALS.

176 CHAPTER 12. SYSTEM ASSURANCE

Security Targets (STs) are constructed from the TOE system using a set of predefined compo-
nents. There are functional components that cover security features, such as for audit, cryptographic
support, user data protection (access control), and authentication. There are also assurance com-
ponents that cover the extent to which the ST features can be evaluated, including configuration
management, system delivery and operation (deployment), documentation, and testing. The as-
surance components also include ones for assuring that PPs are satisfied and that the ST itself is
complete, consistent, and technically sound.

The components form the foundation of STs and PPs, and as such they are low-level. For
example, CAPP uses functional components [58] for User Data Protection for discretionary access
control policy (indicated by a component identifier, FDP_ACC.1), discretionary access control
function (FDP_ACEF.1), and object reuse (FDP_RIP.2). User Data Protection forms a class of
requirements, identified by the name FDP. Each of these components that were chosen belong
to different families (FDP_ACC, FDF_ACEF, and FDP_RIP, respectively). LSPP builds on the
CAPP requirements for User Data Protection by adding functional components for mandatory
access control (FDP_IFC.1) and label import and export (FDP_ITC.2 and FDP_ETC.2), among
others. Thus, the PP definitions consist of a set of functional components organized by their classes.

Similarly, STs would be defined from the same pool of functional components, but they must
also be defined in terms of assurance components in order to be evaluated against the specified EAL.
Assurance components refer to classes of requirements in the areas of configuration management
(ACM), delivery and operation (ADO), life cycle support (ALC), vulnerability assessment (AVA),

etc. The EAL definition includes a set of components from these classes.

12.2.2 COMMON CRITERIA IN ACTION

Recently, RedHat Linux Enterprise Linux Version 5 was assured at EAL4 for LSPP. What did it
take to perform this evaluation? First, the Linux system formed the TOE of evaluation, so an ST
for this system was constructed. Building an ST for achieving LSPP at EAL4 requires by collecting
all the components required by LSPP [231] and all the components required by EAL4 [59] into a
single ST specification. LSPP requires nearly 40 functional requirement components and nearly 20
assurance requirement components. The functional requirement components include the obvious
ones for multilevel security (IMLS), which is at the heart of the profile, but also components for
export/import of labeled data, among others. The assurance requirement components for LSPP
include those necessary to describe the system design (a high-level design for LSPP) and manage
the deployment and maintenance of the system. As the assurance level does not impact function,
EAL4 adds only assurance requirements to those required for LSPP. LSPP is designed to support
EALS3 evaluation, so the additional requirements of EAL4 evaluation above EAL3 must be added
to the ST. There are 7 additional assurance requirements for EAL4 over EAL3. While this is a
small number of components, these require significant additional evaluation effort. These additional
components include a complete functional specification, an implementation representation of the
system, module-level design, and a focused vulnerability analysis.

12.2. COMMON CRITERIA 177

Once the Linux ST is defined, the TOE must be evaluated against these requirements. For each
of the nearly 70 requirements, a set of e/ements must be fulfilled. For example, a complete functional
specification (ADV_FSP.4) has 10 elements. There are elements related to the development of the
system, verification of the system’s content and presentation, and evaluation of the quality of the
other elements. First, two elements must be provided by the developer: (1) a functional specification
and (2) a description linking the functional specification to all the security functional requirements.
A case must be made as to how the Linux TOE satisfies those requirements. These elements define
the system structure and how it implements the required security functions.

Next, there are six content and presentation elements that specify how the system satisfies its
security requirements. These include: (1) demonstrating that the functional specification completely
represents the trusted computing base of the system, called the zarget of security function (TSF); (2)
the purpose and method of each interface in the T'SF; (3) a description of all the parameters for each
interface in the TSF; (4) all the actions performed based on interface invocation of the TSF; (5) all
error messages that may result due to an interface invocation of the TSF; and (6) a description linking
the security functional requirements to the interfaces of the TSF. Cumulatively, these describe how
the system’s trusted computing base is invoked and how it implements the required security function
when invoked.

Lastly, the evaluator must confirm that the specifications above are complete and correct.
There are two elements required: (1) the evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence and (2) the evaluator shall determine
that the functional specification is an accurate and complete instantiation of the security function
requirements.

Note that this is just one of the nearly 70 requirements that needs to be fulfilled as part of the
evaluation. While this is one of the most demanding elements, the level of effort necessary to fulfill
each of the elements is significant. Many pages of documentation are generated in the assurance
process, and resulting costs are impressive.

In the end, the degree of effort taken in an evaluation process should have some positive effect
on the quality of the target system. However, even the effort put into verifying the functional spec-
ification does not prove correctness in any concrete sense. Notice that the requirements above only
require a manual examination of code and an informal description of how the security requirements
are implemented.

As EAL4 aims for medium assurance, this level of analysis is appropriate, but it is generally
accepted that general-purpose, commercial operating systems, such as Linux, BSD, and Windows,
will never be evaluated at a higher assurance level due to their complexity and the limits of their
development processes. For higher assurance, the development process must be tightly controlled,
such that the formal specifications can be generated and tested against the code. In the future, we need
assurance techniques and tools that enable effective development while constructing the necessary
case for source code level assurance. These challenges have been with the security community since
the evaluation process was proposed, but we still have a ways to go.

178 CHAPTER 12. SYSTEM ASSURANCE
12.3 SUMMARY

System assurance is the process of verifying that a system enforces a desired set of security goals.
The TCSEC or Orange Book was developed in the early 1980s to define how to verify security
in operating systems. The Orange Book defined a set of classes that specified distinct security and
assurance requirements for operating systems. The Orange Book notion of system assurance gained
acceptance, if only because the US DoD mandated the use of assured systems.

However, the European and Canadian and eventually American security communities saw
the need to separate the security function of a system from the assurance that it truly implements
that function. The Orange Book notions of security function were extended and combined with
the assurance approaches developed in Europe (ITSEC) and Canada (CTCPEC) to create the
Common Criteria approach.

Many more evaluations have now been performed using the Common Criteria than were ever
performed under the Orange Book, resulting a worldwide approach to assuring systems. Performing
a system evaluation is still strongly motivated by government markets, and the cost of performing
even medium-level assurance for most systems is prohibitive. Further, the current, commercial de-
velopment process precludes high assurance of systems. The weak link in assurance has been and
continues to be techniques and tools to build systems whose security can be verified in a mostly, au-
tomated fashion. While this problem is intractable in general, work continues on developing usable,

formal verification techniques (e.g., NICTA [81]).

Bibliography

[1] Solaris Trusted Extensions Developer’s Guide.
http://docs.sun.com/app/docs/doc/819-7312, 2008.

[2] M. Abadi, E. Wobber, M. Burrows, and B. Lampson. Authentication in the Taos Operating
System. In Proceedings of the 14th ACM Symposium on Operating System Principles, pp. 256-269,
Asheville, NC, 1993. DOI: 10.1145/168619.168640

[3] A.Acharyaand M. Raje. MAPbox: Using parameterized behavior classes to confine untrusted
applications. In Proceedings of the 9th USENIX Security Symposium, August 2000.

[4] W. B. Ackerman and W. W. Plummer. An implementation of a multiprocessing computer
system. In Proceedings of the First ACM Symposium on Operating Systems Principles, 1967.
DOI: 10.1145/800001.811666

[5] Aesec corporation, 2008. http://www.aesec.com/.

[6] A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A confined execution environment for
internet computations. In Proceedings of the 1999 USENIX Annual Technical Conference, 1999.

[7] J. Alves-Foss, W. S. Harrison, P. Oman, and C. Taylor. The MILS architecture for high
assurance embedded systems. International Journal of Embedded Systems, 2007. In press.
DOI: 10.1504/1JES.2006.014859

[8] AMD I/O Virtualization Technology (IOMMU) Specification. Technical Report 34434,
Advanced Micro Devices, Inc.
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs
34434 .pdf, February 2007.

[9] B. Ames. Real-time software goes modular. Mi/itary & Aerospace Electronics, 14(9), 2003.

[10] S. A. Ames, M. Gasser, and R. R. Schell. Security Kernel Design and Implementation: An
Introduction. IEEE Computer, 16(7):14-22,1983. DOI: 10.1109/MC.1983.1654439

[11] J. P. Anderson. Computer security technology planning study. Technical Report ESD-TR-
73-51, The MITRE Corporation, Air Force Electronic Systems Division, Hanscom AFB,
Badford, MA, 1972.

[12] M. Anderson, R. D. Pose, and C. S. Wallace. A password capability system. The Computer
Journal, 29(1):1-8, February 1986. DOI: 10.1093/comjnl/29.1.1

http://docs.sun.com/app/docs/doc/819-7312
http://doi.acm.org/10.1145/168619.168640
http://dx.doi.org/10.1145/800001.811666
http://www.aesec.com/
http://dx.doi.org/10.1504/IJES.2006.014859
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs
34434.pdf
http://dx.doi.org/10.1109/MC.1983.1654439
http://dx.doi.org/10.1093/comjnl/29.1.1

180 BIBLIOGRAPHY

[13] Security starts with your operating system.http: //www.argus-systems. com/home3. shtml,
2008.

[14] Evaluation of IBM PR/SM z/Series990/890. atsec News Release at
http://www.atsec.com/01/news-article-63.html, 2005.

[15] L.Badger, D.F. Sterne,D. L. Sherman, K. M. Walker,and S. A. Haghighat. A domain and type
enforcement UNIX prototype. In Proceedings of the 5th USENILX Security Symposium, 1995.
DOI: 10.1109/SECPRI.1995.398923

[16] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. Practical
Domain and Type Enforcement for UNIX. In SP ’95: Proceedings of the 1995 IEEE Sym-
posium on Security and Privacy, p. 66, IEEE Computer Society, Washington, DC, 1995.
DOI: 10.1109/SECPRI.1995.398923

[17] A. Baliga, P. Kamat, and L. Iftode. Lurking in the Shadows: Identifying systemic threats to
kernel data. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, pp. 246-251,
May 2007. DOI: 10.1109/SP.2007.25

[18] T. Ball and S. Rajamani. The SLAM toolkit: Debugging system software via static analysis.
In Proceedings of the ACM Conference on Principles of Programming Languages, January 2002.

[19] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), October 2003. DOI: 10.1145/945445.945462

[20] Bastille Linux. http://www.bastille-linux.org/.

[21] DigitalNet - Solutions - Information Assurance.
http://www.digitalnet.com/solutions/information_assurance/
xts300so0l_ste.htm\#hadg, 2008.

[22] XTS-400 Trusted Computer System, from BEA Systems.
http://www.baesystems.com/ProductsServices/bae_prod_csit_xts400.html,
2008.

[23] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306, Deputy for Command and Management
Systems, HQ_Electronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, MA,
March 1976. Also, MITRE Technical Report MTR-2997.

[24] M. Bellis. Inventors of the modern computer.
http://inventors.about.com/library/weekly/aa033099.htm.

http://www.argus-systems.com/home3.shtml
http://www.atsec.com/01/news-article-63.html
http://dx.doi.org/10.1109/SECPRI.1995.398923
http://dx.doi.org/10.1109/SECPRI.1995.398923
http://dx.doi.org/10.1109/SP.2007.25
http://doi.acm.org/10.1145/945445.945462
http://www.bastille-linux.org/
http://www.digitalnet.com/solutions/information_assurance/
xts300sol_ste.htm#hadg
http://www.baesystems.com/ProductsServices/bae_prod_csit_xts400.html
http://inventors.about.com/library/weekly/aa033099.htm

BIBLIOGRAPHY 181

[25] J. L. Berger,]. Picciotto, J. P. L. WOodward, and P. T. Cummings. Compartmented Mode
Workstation: Prototype highlights. IEEE Transactions on Software Engineering, 16(6):608—
618, June 1990. DOI: 10.1109/32.55089

[26] V. Berstis. Security and protection of data in the IBM System 38. In Proceedings of 7"
Symposium on Computer Architecture, pp. 245-252, May 1980. DOI: 10.1145/800053.801932

[27] K.]. Biba. Integrity considerations for secure computer systems. Technical Report MTR-
3153, MITRE, April 1977.

[28] A.D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart. The Echo distributed file system.
Technical Report 111, Digital Systems Research Center, September 1993.

[29] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

[30] M. Bishop and M. Digler. Checking for race conditions in file accesses. Computer Systems,
9(2), Spring, 1996.

[31] M. Bishop and L. Snyder. The transfer of information and authority in a protection system.
In Proceedings of the 1" ACM Symposium on Operating System Principles, pp. 45-54, 1979.
DOI: 10.1145/800215.806569

[32] W.E.Boebert. On the inability of an unmodified capability machine to enforce the *-property.
In Proceedings of the T' h DoD/NBS Computer Security Conference, pp.291-293, September 1984.

[33] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies. In
Proceedings of the 8th National Computer Security Conference, 1985.

[34] W. E. Boebert, R. Y. Kaln, W. D. Young, and S. A. Hansohn. Secure Ada Target: Issues,
system design, and verification. In Proceedings of the 1985 IEEE Symposium on Security and
Privacy, May 1985. DOI: 10.1109/5P.1985.10022

[35] M. Branstad, H. Tajalli, and F. L. Mayer. Security issues of the Trusted Mach system. In
Proceedings of the 1988 Aerospace Computer Security Applications Conference, pp. 362-367, De-
cember 1988. DOI: 10.1109/ACSAC.1988.113334

[36] M. Branstad, H. Tajalli, . L. Mayer, and D. Dalva. Access mediation in a message pass-
ing kernel. In Proceedings of the 1989 IEEE Symposium on Securityband Privacy, 1989.
DOI: 10.1109/SECPRI.1989.36278

[37] D.F.C.Brewer and M. J. Nash. The Chinese Wall security policy. In Proceedings of the IEEE
Symposium on Security and Privacy, 1989. DOI: 10.1109/SECPRI.1989.36295

[38] E.Brewer, P. Gauthier, I. Goldberg, and D. Wagner. Basic flaws in internet security and com-
merce. http://www.cs.berkeley.edu/"daw/papers/endpoint- security.html.

http://dx.doi.org/10.1109/32.55089
http://dx.doi.org/10.1145/800053.801932
http://dx.doi.org/10.1145/800215.806569
http://dx.doi.org/10.1109/SP.1985.10022
http://dx.doi.org/10.1109/ACSAC.1988.113334
http://dx.doi.org/10.1109/SECPRI.1989.36278
http://dx.doi.org/10.1109/SECPRI.1989.36295
http://www.cs.berkeley.edu/~daw/papers/endpoint-
security.html

182 BIBLIOGRAPHY

[39] E.Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running commodity operationg
systems on scalable multiprocessors. ACM Transactions on Computer Systems, 15(4):412-447,
November 1997. DOI: 10.1145/265924.265930

[40] C-R.Tsai, V. D. Gligor, and C. S. Chandersekaran. A formal method for the identification of
covert storage channels in source code. In Proceedings of the 1987 IEEE Symposium on Security
and Privacy, 1987. DOI: 10.1109/5P.1987.10014

[41] The Canadian Trusted Computer Product Evaluation Criteria. Canadian System Security
Centre, Communications Security Establishment, Government of Canada, January 1993.

[42] M. Carson, et al. Secure window systems for UNIX. In Proceedings of the USENIX Winter
1989 Conference, January 1989.

[43]]J. Carter. Using GConf as an example of how to create a userspace ob-
ject manager. In Proceedings of the 2007 SELinux Symposium. Available at
http://selinux-symposium.org/2007/agenda.php, March 2007.

[44] S. Chari and P. Cheng. Bluebox: A policy-driven, host-based intrusion detection sys-
tem. ACM Transaction on Infomation and System Security, 6:173-200, May 2003.
DOI: 10.1145/762476.762477

[45]].S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and protection in a single-
address-space operating system. ACM Transactions on Computer Systems, 12(4):271-307,1994.
DOI: 10.1145/195792.195795

[46] C.Chaubal. Security design of the VMware Infrastructure 3 architecture. VMware Inc., doc-
umentathttp://www.vmware.com/pdf/vi3_security_architecture_wp.pdf,2007.

[47] C. Chaubal. VMware Infrastructure 3 security hardening. VMware Inc., document at
http://www.vmware.com/pdf/vi3_security_hardening_wp.pdf, 2007.

[48] M. H. Cheheyl and et al. Verifying security. ACM Computing Surveys, 13(3):279-339, 1981.

[49] H.Chen, D.Dean, and D. Wagner. Model checking one million lines of C code. In Proceedings
of the 11th ISOC Network and Distributed Systems Security Symposium (NDSS04), pp. 171-185,
February 2004.

[50] A.Chitturi. Implementing mandatory network security in a policy-flexible system, April/June
1998. University of Utah, Master’s Thesis.

[51] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Understanding data
lifetime via whole system simulation. In Proceedings of the 13th USENILX Security Sympo-
stum, 2004.

http://dx.doi.org/10.1145/265924.265930
http://dx.doi.org/10.1109/SP.1987.10014
http://selinux-symposium.org/2007/agenda.php
http://dx.doi.org/10.1145/762476.762477
http://dx.doi.org/10.1145/195792.195795
http://www.vmware.com/pdf/vi3_security_architecture_wp.pdf
http://www.vmware.com/pdf/vi3_security_hardening_wp.pdf

BIBLIOGRAPHY 183

[52]]J. Chow, B. Pfaft, T. Garfinkel, and M. Rosenblum. Shredding your garbage: Reducing data
lifetime through secure deallocation. In Proceedings of the 14th USENILX Security Symposium,
2005.

[53] Commercial IP Security Option (CIPSO 2.2).
http://sourceforge.net/docman/display_doc.php?docid=34650&group_id=
174379, July 1992.

[54] D. D. Clark and D. Wilson. A comparison of military and commercial security policies. In
1987 IEEE Symposium on Security and Privacy, May 1987. DOI: 10.1109/5P.1987.10001

[55] E. Cohen. Information transmission in computational systems. ACM SIGOPS Operating
Systems Review, 11(5):133-139, 1977. DOI: 10.1145/1067625.806556

[56] E. Cohen and D. Jefferson. Protection in the Hydra operating system. In Proceed-
ings of the Fifth ACM Symposium on Operating Systems Principles, pp. 141-160, 1975.
DOI: 10.1145/800213.806532

[57] G. Coker. Xen Security Modules (XSM).

http://wuw.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf. These
are presentation slides from the 2007 Xen Summit, April 2007.

[58] Part 2: Security functional components.
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R2.pdf.
Version 3.1, Revision 2, September 2007.

[59] Part 3: Security assurance components.
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R2.pdf.
Version 3.1, Revision 2, September 2007.

[60] Common Criteria—the Common Criteria portal.
http://www.commoncriteriaportal.org, 2008.

[61] Official CC/CEM versions. http://www.commoncriteriaportal.org/thecc.html.
Latest version at time of writing is Version 3.1, Revision 2, 2008.

[62] F. J. Corbat6 and V. A. Vyssotsky. Introduction and overview of the Multics System. In
Proceedings of the 1965 AFIPS Fall Joint Computer Conference, 1965.

[63] D. C. Cosserat. A capability oriented multi-processor system for real-time applications. In
Proceedings of the 1972 International Conference on Computer Communications, October 1972.

[64] C.Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. Stackguard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security Symposium, 1998.

http://sourceforge.net/docman/display_doc.php?docid=34650&group_id=
174379
http://dx.doi.org/10.1109/SP.1987.10001
http://dx.doi.org/10.1145/1067625.806556
http://dx.doi.org/10.1145/800213.806532
http://www.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R2.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R2.pdf
http://www.commoncriteriaportal.org
http://www.commoncriteriaportal.org/thecc.html

184 BIBLIOGRAPHY

[65] R. Cox, E. Grosse, R. Pike, D. Presotto, and S. Quinlan. Security in Plan 9. In Proceedings of
the 11th USENIX Security Symposium, August 2002.

[66] R.S. Cox,]. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-oriented platform for web
applications. In Proceedings of the 2006 IEEE Symposium on Security and Privacy, May 2006.
DOI: 10.1109/SP.2006.4

[67] L.A. Cox,Jr.and R. R. Schell. The structure of a security kernel for a Z8000 multiprocessor.
In Proceedings of the 1981 IEEE Symposium on Security and Privacy, pp. 124-129, April 1981.
DOI: 10.1109/5P.1981.10015

[68] CP/M main page. http://www.seasip.demon.co.uk/Cpm/index.html.

[69] R.]. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research and
Development, 25(5), 1981.

[70] D. Denning. A lattice model of secure information flow. Communications of the ACM,
19(5):236-242, 1976. DOI: 10.1145/360051.360056

[71] D. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[72] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed computa-

tions. Communications of the ACM, 9(3):143-155, 1966. DOI: 10.1145/365230.365252
[73] K. D. Dent. Postfix: The Definitive Guide. O’Reilly Media, 2003.

[74] J. Dias. A guide to Microsoft Active Directory (AD) design. Technical Report UCRL-MA-
148650, Lawrence Livermore National Laboratory, May 2002.

[75] The first PC operating system. http://www.digitalresearch.biz/CPM.HTM.

[76] E. W. Dijkstra. The structure of the “THE”-multiprogramming system. Communications of
the ACM, 11(5):341-346, 1968. DOI: 10.1145/363095.363143

[77] J. Dike. The User-mode Linux Kernel Home Page.
http://user-mode-linux.sourceforge.net/, 2008.

[78] S. Eckmann. Ina Flo: The FDM Flow Tool. In Proceedings of the 10th National Computer
Security Conference, pp. 175-182, Sept 1987.

[79] S.Eckmannand R. A. Kemmerer. Inatest: An interactive environment for testing formal spec-
ifications. Soffware Engineering Notes, 10(4):17-18, 1985. DOI: 10.1145/1012497.1012504

[80] N. Edwards, J. Berger, and T. H. Choo. A secure Linux platform. In ALS '01: Proceedings of
the 5th Annual Conference on Linux Showcase & Conference, 2001.

http://dx.doi.org/10.1109/SP.2006.4
http://dx.doi.org/10.1109/SP.1981.10015
http://www.seasip.demon.co.uk/Cpm/index.html
http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1145/365230.365252
http://www.digitalresearch.biz/CPM.HTM
http://dx.doi.org/10.1145/363095.363143
http://user-mode-linux.sourceforge.net/
http://dx.doi.org/10.1145/1012497.1012504

BIBLIOGRAPHY 185

[81] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Kernel development for high
assurance. In Proceedings of the 1 1th Workshop on Hot Topics in Operating Systems, 2007.

[82] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific
g g sy g sy P
programmer-written compiler extensions. In Proceedings of the 4th Symposium on Operating
System Design and Implementation, pp. 1-16, December 2000.

[83] D.R.Engler, M.F.Kaashoek,and J. O"Toole. Exokernel: An operating system architecture for

application-level resource management. In Proceedings of the Fifteenth Symposium on Operating

Systems Principles, pp. 251266, 1995. DOI: 10.1145/224056.224076

[84] System call interception whitepaper. Entercept Security Technologies at
http://www.entercept.com/whitepaper/systemcalls/.

[85] J.Epstein and J. Picciotto. Trusting X: Issues in building trusted X window systems -or- what’s
not trusted about X? In Proceedings of the 14th Annual National Computer Security Conference,
October 1991. DOI: 10.1109/CSAC.1991.213019

[86] J. Epstein, et al. Evolution of a Trusted B3 Window System prototype. In Proceed-
ings of the 1992 IEEE Symposium on Research in Security and Privacy, May 1992.
DOI:10.1109/RISP.1992.213258

[87] F.]. Corbaté et al. The Compatible Time Sharing System: A Programmer’s Guide. MIT Press,
first edition, 1963.

[88] F-securevirus descriptions: Codered.http://www.f-secure.com/v-descs/bady.shtml.

[89] R.S. Fabry. Capability-based addressing. Communications of the ACM, 17(7):403-412, 1974.
DOI:10.1145/361011.361070

[90] G.Faden. Reconciling CMW requirements with those of X11 applications. In Proceedings of
the 14th Annual National Computer Security Conference, October 1991.

[91] R. Feiertag. A technique for proving specifications are multilevel secure. Technical Report

CSL-109, Stanford Research Institute, 1980.

[92] R.]. Feiertag and P. G. Neumann. The foundations of a provably secure operating system
(PSOS). In Proceedings of the National Computer Conference, pp. 329-334,1979.

[93] J. S. Fenton. Memoryless subsystems. Computer Journal, 17(2):143-147, May 1974.
DOI: 10.1093/comjnl/17.2.143

[94] D.F.Ferraiolo and D. R. Kuhn. Role-based access control. In 75¢h National Computer Security
Conference, October 1992.

http://dx.doi.org/10.1145/224056.224076
http://www.entercept.com/whitepaper/systemcalls/
http://dx.doi.org/10.1109/CSAC.1991.213019
http://dx.doi.org/10.1109/RISP.1992.213258
http://www.f-secure.com/v-descs/bady.shtml
http://dx.doi.org/10.1145/361011.361070
http://dx.doi.org/10.1093/comjnl/17.2.143

186 BIBLIOGRAPHY

[95] N. Feske and C. Helmuth. A nitpicker’s guide to a minimal-complexity secure GUI. In
Proceedings of the 21st Annual Computer Security Applications Conference, pp. 85-94, 2005.
DOI: 10.1109/CSAC.2005.7

[96] T. Fine and S. E. Minear. Assuring Distributed Trusted Mach. In Proceedings of the IEEE
Symposium on Security and Privacy, pp. 206-218, 1993. DOI: 10.1109/RISP.1993.287631

[97] Secure minicomputing operating system (KSOS) executive summary: Phase I: De-
sign of the department of defense kernelized secure operating system. Techni-
cal Report WDL-781, Ford Aerospace and Communications Corp. Available at
http://csrc.nist.gov/publications/history/ford78.pdf, March 1978.

[98] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Microkernels meet
recursive virtual machines. In Proceedings of the 2nd Symposium on Operating Systems Design
and Implementation, pp. 137-151,1996. DOI: 10.1145/238721.238769

[99] L.]J.Fraim. SCOMP: A solution to the multilevel security problem. IEEE Computer,16(7):26—
34,1983. DOI: 10.1109/TC.1983.1676120

[100] L.J. Fraim. Secure office management system: The first commodity application on a trusted
system. In Proceedings of the 1987 Fall Joint Computer Conference on Exploring TEchnology:
Today and Tomorrow, pp. 421-426, 1987.

[101] T. Fraser. LOMAC: Low water-mark integrity protection for COTS environments.
In Proceedings of the 2000 IEEE Symposium on Security and Privacy, May 2000.
DOI: 10.1109/SECPRI.2000.848460

[102] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic software
wrappers. In Proceedings of the 1999 IEEE Symposium on Security and Privacy, May 1999.
DOI: 10.1109/SECPRI.1999.766713

[103] The FreeBSD Project. http://www.freebsd.org/, 2008.

[104] K. Fu, M. F. Kaashoek, and D. Maziéres. Fast and secure distributed read-only file system.
ACM Transactions on Computer Systems, 20(1):1-24, 2002. DOI: 10.1145/505452.505453

[105] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based
platform for trusted computing. In Proceedings of the 19th ACM Symposium on Operating System
Principles(SOSP 2003), Bolton Landing, NY, October 2003. DOI: 10.1145/945445.945464

[106] T. Garfinkel and M. Rosenblum. A virtual machine introspection-based architecture for in-
trusion detection. In Proceedings of the 2003 ISOC Symposium on Networked and Distributed
System Security Symposium (NDSS03), San Diego, CA, February 2003.

http://dx.doi.org/10.1109/CSAC.2005.7
http://dx.doi.org/10.1109/RISP.1993.287631
http://csrc.nist.gov/publications/history/ford78.pdf
http://dx.doi.org/10.1145/238721.238769
http://dx.doi.org/10.1109/TC.1983.1676120
http://dx.doi.org/10.1109/SECPRI.2000.848460
http://dx.doi.org/10.1109/SECPRI.1999.766713
http://www.freebsd.org/
http://dx.doi.org/10.1145/505452.505453
http://dx.doi.org/10.1145/945445.945464

BIBLIOGRAPHY 187
[107] T. Garfinkel and M. Rosenblum. When virtual is harder than real: Security challenges in

virtual machine based computing environments. In Proceedings of the 10" Workshop on Hot
Topics in Operating Systems, May 2005.

[108] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold.
http://cs.unomaha.edu/"stanw/gasserbook.pdf, 1988.

[109] Gemini Trusted Network Processor—Class A1 Evaluation. Available at
http://www.aesec.com/eval/CSC-EPL-94-008.html.

[110] C.Girling. Covert channels in LANs. IEEE Transactions on Software Engineering, 13(2):292—
296, February 1987. DOI: 10.1109/TSE.1987.233153

[111] V. D. Gligor, C. S. Chandersekaran, R. S. Chapman, L. J. Dotterer, M. S. Hecht, W-
D. Jiang, A. Johri, G. L. Luckenbaugh, and N. Vasudevan. Design and implementa-
tion of Secure Xenix. IEEE Transactions on Software Engineering, 13(2):208-221, 1987.
DOI: 10.1109/TSE.1987.232893

[112] GPL General Public License. http://www.gnu.org/licenses/gpl.html, 2007.

[113]]J. Goguen and J. Meseguer. Security policies and security models. In Proceedings of the 1982
IEEE Symposium on Security and Privacy, 1982.

[114] B.D. Gold, R. R. Linde, and P. F. Cudney. KVM/370 in retrospect. In Proceedings of the 1984
IEEE Symposium on Security and Privacy, pp. 13-23,May 1984. DOI: 10.1109/5P.1984.10002

[115] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for untrusted
helper applications. In Proceedings of the 6th Usenix Security Symposium, San Jose, CA, 1996.

[116] D. B. Golub, R. W. Dean, A. Forin, and R. F. Rashid. UNIX as an application program. In
Proceedings of the 1990 USENIX Summer Conference, pp. 87-95, 1990.

[117] L.Gong, G. Ellison,and M. Dageforde. Inside Java 2 Platform Security. Addison-Wesley, 2003.

[118] D. I. Good. Mechanical proofs about computer programs. In Mathematical Logic and Pro-
gramming Languages. Prentice-Hall, 1985.

[119] B. Goodheart and J. Cox. The Magic Garden Explained: The Internals of Unix System V.
Prentice-Hall, 1994.

[120] S. Govindavajhala and A. W. Appel. Windows Access Control Demystified.
http://wuw.cs.princeton.edu/ sudhakar/papers/winval.pdf, January 2006.

[121] Homepage of PaX. http://pax.grsecurity.net/, 2008.

http://cs.unomaha.edu/~stanw/gasserbook.pdf
http://www.aesec.com/eval/CSC-EPL-94-008.html
http://dx.doi.org/10.1109/TSE.1987.233153
http://dx.doi.org/10.1109/TSE.1987.232893
http://www.gnu.org/licenses/gpl.html
http://dx.doi.org/10.1109/SP.1984.10002
http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf
http://pax.grsecurity.net/

188 BIBLIOGRAPHY

[122] S.Gupta and V. D. Gligor. Towards a theory of penetration-resistant systems and its applica-
tion. In Proceedings of the 4th IEEE Computer Security Foundations Workshop, pp. 62—78, June
1991. DOI: 10.1109/CSFW.1991.151571

[123] S. Gupta and V. D. Gligor. Experience with a penetration analysis method and tool. In
Proceedings of the 15th National Computer Security Conference, pp. 165-183, October 1992.

[124] J.T. Haigh, R. A. Kemmerer,]. McHugh, and W. D. Young. An experience using two covert
channel analysis techniques on a real system design. IEEE Transactions on Software Engineer-

ing, 13(2):157-168, 1987. DOI: 10.1109/TSE.1987.226479

[125] J. T. Haigh and W. D. Young. Extending the noninterference version of MLS
tor SAT. IEEE Transactions on Software Engineering, 13(2):141-150, 1987.
DOI: 10.1109/TSE.1987.226478

[126] T. Haigh. Multicians.org and the history of operating systems.
http://www.cbi.umn.edu/iterations/haigh.html, Sept 2002.

[127] S. E. Hallyn and P. Kearns. Domain and type enforcement for Linux. In Proceedings of the
4th Annual Linux Showcase and Conference. At
http://www.sagecertification.org/publications/library/proceedings/als0
0/2000papers/papers/full_papers/hallyn/hallyn_html/index.html, October
2000.

[128] N. Hardy. The KeyKOS architecture. Operating Systems Review, 19(4):8-25, October 1985.
DOI: 10.1145/858336.858337

[129] N. Hardy. The confused deputy. Operating Systems Review, 22(4):36-38, October 1988.
DOI: 10.1145/54289.871709

[130] M. Harrison, W. Ruzzo, and J. D. Ullman. Protection in operating systems. Communications
of the ACM, August 1976. DOI: 10.1145/360303.360333

[131] W.S.Harrison, N. Hanebutte, P. Oman, and J. Alves-Foss. The MILS architecture for a secure
global information grid. Crosstalk: The Journal of Defense Software Engineering, 10(10):20-24,
October 2005.

[132] G.Heiser, K. Elphinstone, I Kuz, G.Klein, and S. M. Petters. Towards trustworthy computing
systems: Taking microkernels to the next level. ACM Operating Systems Review, 41(4):3-11,
July 2007. DOI: 10.1145/1278901.1278904

[133] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The Mungi single-
address-space operating system. Soffware Practice and Experience, 18(9), July 1998.
DOI: 10.1002/(SICI)1097-024X(19980725)28:9<901::AID-SPE181>3.0.CO;2-7

http://dx.doi.org/10.1109/CSFW.1991.151571
http://dx.doi.org/10.1109/TSE.1987.226479
http://dx.doi.org/10.1109/TSE.1987.226478
http://www.cbi.umn.edu/iterations/haigh.html
http://www.sagecertification.org/publications/library/proceedings/als0
0/2000papers/papers/full_papers/hallyn/hallyn_html/index.html
http://dx.doi.org/10.1145/858336.858337
http://dx.doi.org/10.1145/54289.871709
http://dx.doi.org/10.1145/360303.360333
http://dx.doi.org/10.1145/1278901.1278904
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<901::AID-SPE181>3.0.CO;2-7

BIBLIOGRAPHY 189
[134] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Formal specification and verifica-

tion of data separation in a separation kernel for an embedded system. In Proceedings of
the 13th ACM Conference on Computer and Communications Security, pp. 346-355, 2006.
DOI: 10.1145/1180405.1180448

[135] A.]. Herbert. A new protection architecture for the Cambridge Capability Computer. ACM
SIGOPS Operating Systems Review, 12(1), 1978. DOI: 10.1145/775323.775326

[136] HP NetTop: A Technical Overview. Available at:
http://h71028.www7.hp.com/enterprise/downloads/HP_NetTop_Whitepaper2.
pdf, 2004.

[137] G. Hoglund and]. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley, 2005.

[138] M. E.Houdek, F. G. Soltis, and R. L. Hoffman. IBM System/38 support for capability-based
addressing. In Proceedings of gth Symposium on Computer Architecture, pp. 341-348, May 1981.

[139] M. Howard and S. Lipner. The Security Development Lifecycle. Microsoft Press, 2006.

[140] W-M. Hu. Reducing timing channels with fuzzy time. In Proceedings of the 1991 IEEE
Symposium on Security and Privacy, May 1991. DOI: 10.1109/RISP.1991.130768

[141] J. Humphreys and T. Grieser. Mainstreaming server virtualization: The Intel approach.
Technical report, Intel Corporation.
http://www.intel.com/business/technologies/idc_virtualization_wp.pdf,

June 2006.

[142] System z PR/SM.
http://publib.boulder.ibm.com/infocenter/eserver/vir2/index. jsp?topic=
/eicaz/eicazzlpar.htm, 2007.

[143] IBM z/VM Operating System. International Business Machines Corp. at
http://www.vm.ibm.com/, 2008.

[144] J. W. Gray III. Probabilistic interference. In Proceedings of the 1990 IEEE Symposium on
Security and Privacy, 1990. DOI: 10.1109/RISP.1990.63848

[145] C.Irvine. The reference monitor concept as a unifying principle in computer security educa-
tion. In Proceedings of the 1*" World Conference on Information Systems Security Education, June
1999.

[146] C. E. Irvine. A multilevel file system for high assurance. In Proceedings of the 1995 IEEE
Symposium on Security and Privacy, 1995. DOI: 10.1109/SECPRI.1995.398924

[147] Information Technology Security Evaluation Criteria. Commission of the European Com-
munities, June 1991.

http://dx.doi.org/10.1145/1180405.1180448
http://dx.doi.org/10.1145/775323.775326
http://h71028.www7.hp.com/enterprise/downloads/HP_NetTop_Whitepaper2.
pdf
http://dx.doi.org/10.1109/RISP.1991.130768
http://www.intel.com/business/technologies/idc_virtualization_wp.pdf
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=
/eicaz/eicazzlpar.htm
http://www.vm.ibm.com/
http://dx.doi.org/10.1109/RISP.1990.63848
http://dx.doi.org/10.1109/SECPRI.1995.398924

190 BIBLIOGRAPHY
[148] T. Jaeger, K. Butler, D. H. King, S. Hallyn, J. Latten, and X. Zhang. Leveraging

IPsec for mandatory access control across systems. In Proceedings of the Second Inter-
national Conference on Security and Privacy in Communication Networks, August 2006.

DOI: 10.1109/SECCOMW.2006.359530

[149] T.Jaeger, A. Edwards, and X. Zhang. Consistency analysis of authorization hook placement in
the Linux security modules framework. ACM Transactions on Information and System Security

(TISSEC), 7(2):175-205, May 2004. DOI: 10.1145/996943.996944

. Jaeger, Ix. dailer, an . ang. Analyzing integri rotection 1n the 1nux example
[150] T. Jaeger, R. Sail d X. Zhang. Analyzing integrity p ion in the SELI pl
policy. In Proceedings of the 12th USENIX Security Symposium, pp. 59-74, August 2003.

[151] P. A. Janson. Using Type Extension to Organize Virtual Machine Mechanisms. PhD thesis,
Massachusetts Institute of Technology, September 1976.

[152] J. Johansson. Security watch: The long-term impact of wuser account control.
http://technet.microsoft.com/en-us/magazine/cc137811.aspx, 2008.

[153] M. St. Johns. Draft revised IP security option. IETF RFC 1038.

[154] R.Johnson and D. Wagner. Finding user/kernel pointer bugs with type inference. In Proceed-
ings of the 13! conference on USENIX Security Symposium, pp. 9-9, 2004.

[155] A.Jones,R.Lipton,and L. Snyder. A linear time algorithm for deciding security. In Proceedings
of the 17" Annual Symposium on Foundations of Computer Science, 1976.

[156] P-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root. Available at
http://docs.freebsd.org/44doc/papers/jail/jail.html. Originally, presented in
the 2"? International SANE Conference, 2000.

[157] P. A.Karger. Improving Security and Performance for Capability Systems. PhD thesis, University
of Cambridge, October 1988.

[158] P.A.Kargerand A.J. Herbert. An augmented capability architecture to support lattice security
and traceability of access. In Proceedings of the 1984 IEEE Symposium on Security and Privacy,
pp. 2-12, May 1984. DOL: 10.1109/SP.1984.10001

[159] P. A. Karger and R. R. Schell. MULTICS security evaluation: Vulnerability analysis. Techni-
cal Report ESD-TR-74-193, Deputy for Command and Management Systems, Electronics
Systems Division (ASFC), L. G. Hanscom Field, Bedford, MA, June 1974. Reprinted in the
Proceedings of the 2004 Annual Computer Security Applications Conference.

[160] P. A. Karger and J. C. Wray. Storage channels in disk arm optimization. In Proceedings of the
1991 IEEE Symposium on Security and Privacy, May 1991. DOI: 10.1109/RISP.1991.130771

http://dx.doi.org/10.1109/SECCOMW.2006.359530
http://dx.doi.org/10.1145/996943.996944
http://technet.microsoft.com/en-us/magazine/cc137811.aspx
http://docs.freebsd.org/44doc/papers/jail/jail.html
http://dx.doi.org/10.1109/SP.1984.10001
http://dx.doi.org/10.1109/RISP.1991.130771

BIBLIOGRAPHY 191

[161] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn. A retrospective on
the VAX VMM security kernel. IEEE Transactions on Software Engineering, 17(11):1147-
1165, 1991. DOI: 10.1109/32.106971

[162] R.Kemmerer. A practical approach to identifying storage and timing channels. Proceedings of
the 1982 IEEE Symposium on Security and Privacy, 1982.

[163] R. A. Kemmerer. Shared Resource Matrix methodology: An approach to identifying stor-
age and timing channels. ACM Transactions on Computer Systems, 1(3):256-277, 1983.
DOI: 10.1145/357369.357374

[164] R. A. Kemmerer and P. A. Porras. Covert Flow Trees: A visual approach to analyzing
covert storage channels. IEEE Transactions on Software Engineering,17(11):1166-1185,1991.
DOI: 10.1109/32.106972

[165] S. Kent. Security options for the internet protocol. IETF RFC 1108.
[166] S. Kent and R. Atkinson. IP authentication header. IETF RFC 2402.
[167] S.Kent and R. Atkinson. IP encapsulating security payload. IETF RFC 2406.

[168] S. Kent and R. Atkinson. Security architecture for the internet protocol. IETF RFC 2401.
DOI:10.1016/50167-4048(97)81995-5

[169] G. H. Kim and E. H. Spafford. The design and implementation of Tripwire: A file system
integrity checker. In Proceedings of the 2nd ACM Conference on Computer and Communications
Security (CCS), pp. 18-29, 1994. DOI: 10.1145/191177.191183

[170] S.T. King, P. M. Chen, Y-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. SubVirt:

Implementing malware with virtual machines. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, May 2006.

[171] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick. Detecting and countering system intru-
sions using software wrappers. In Proceedings of the 9th USENILX Security Symposium, 2000.
DOI: 10.1109/5P.1984.10000

[172] S.Kramer. The MITRE flow table generator. Technical Report M83-31, The MITRE Cor-
poration, January 1983.

[173] S. Kramer. Linus IV-An experiment in computer security. In Proceedings of the 1984 IEEE
Symposium on Security and Privacy, 1984.

[174] M.N.Krohn, A.Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,and R. Morris. Infor-
mation flow control for standard OS abstractions. In Proceedings of the 215t ACM Symposium on
Operating Systems Principles, pp. 321-334, October 2007. DOI: 10.1145/1294261.1294293

http://dx.doi.org/10.1109/32.106971
http://dx.doi.org/10.1145/357369.357374
http://dx.doi.org/10.1109/32.106972
http://dx.doi.org/10.1016/S0167-4048(97)81995-5
http://dx.doi.org/10.1145/191177.191183
http://dx.doi.org/10.1109/SP.1984.10000
http://dx.doi.org/10.1145/1294261.1294293

192 BIBLIOGRAPHY

[175] M. Lageman. Solaris Containers—What They Are and How to Use Them.
http://www.sun.com/blueprints/0505/819-2679.pdf, May 2005.

[176] B. W. Lampson. Protection. In 5z Princeton Conference on Information Sciences and Systems,
1971.

[177] B. W. Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613-615, 1973. DOI: 10.1145/362375.362389

[178] B.W.Lampson and H. E. Sturgis. Reflections on an operating system design. Communications
of the ACM, 19(5):251-265, May 1976. DOI: 10.1145/360051.360074

[179] C.E.Landwehr. Formal models for computer security. ACM Computing Surverys, 13(3):247—
278,1981. DOI: 10.1145/356850.356852

[180] C. E. Landwehr. The best available technologies for computer security. IEEE Computer,
16(7):86-100, 1983. DOI: 10.1109/MC.1983.1654445

[181] H. M. Levy. Capability-Based Computer Systems. Digital Press. Available at
http://www.cs.washington.edu/homes/levy/capabook/, 1984.

[182] N. Li, Z. Mao, and H. Chen. Usable mandatory integrity protection for operating sys-
tems. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, May 2007.
DOI: 10.1109/SP.2007.37

[183] LIDS Secure Linux System. http://www.1lids.org/, 2008.

[184] J. Liedtke. Improving IPC by kernel design. In Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles, pp. 175-188,1993. DOI: 10.1145/168619.168633

[185] J. Liedtke, K. Elphinstone, S. Schonberg, H. Haertig, G. Heiser, N. Islam, and T. Jaeger.
Achieved IPC performance. In Proceedings of the 1997 Workshop on Hot Topics in Operating
Systems, pp. 28-31,1997. DOI: 10.1109/HOT0S.1997.595177

[186] T. A. Linden. Operating system structures to support security and reliable software. ACM
Computing Surveys, 8(4):409-445, December 1976. DOI: 10.1145/356678.356682

[187] The Linux kernel archives. http://www.kernel.org/, 2008.
[188] Kernel Summit 2006 - Security. http://lwn.net/Articles/191737/, July 2006.

[189] S. B. Lipner. A comment on the confinement problem. In Proceedings of the Fifth ACM
Symposium on Operating Systems, 1975. DOI: 10.1145/1067629.806537

[190] S. B. Lipner. Non-discretionery controls for commercial applications. In Proceedings of the
1982 IEEE Symposium on Security and Privacy, 1982. DOI: 10.1109/5P.1982.10022

http://www.sun.com/blueprints/0505/819-2679.pdf
http://dx.doi.org/10.1145/362375.362389
http://dx.doi.org/10.1145/360051.360074
http://dx.doi.org/10.1145/356850.356852
http://dx.doi.org/10.1109/MC.1983.1654445
http://www.cs.washington.edu/homes/levy/capabook/
http://dx.doi.org/10.1109/SP.2007.37
http://www.lids.org/
http://dx.doi.org/10.1145/168619.168633
http://dx.doi.org/10.1109/HOTOS.1997.595177
http://dx.doi.org/10.1145/356678.356682
http://www.kernel.org/
http://lwn.net/Articles/191737/
http://dx.doi.org/10.1145/1067629.806537
http://dx.doi.org/10.1109/SP.1982.10022

BIBLIOGRAPHY 193
[191] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and J. F. Farrell.

The Inevitability of Failure: The flawed assumption of security in modern computing environ-
ments. In Proceedings of the 21st National Information Systems Security Conference, pp. 303-314,
October 1998.

[192] R. Love. Linux Kernel Development. Sams, 2003.

[193] W. Martin, P. White, F. Taylor, and A. Goldberg. Formal construction of the mathematically
analyzed separation kernel. In Proceedings of the 15" International Conference on Automated
Software Engineering, pp. 133-141, 2001. DOI: 10.1109/ASE.2000.873658

[194] E. Mate-Bacic. The Canadian Trusted Computer Product Evaluation Criteria. In Pro-
ceedings of the 1990 Annual Computer Security Applications Conference, pp. 188-196, 1990.
DOI: 10.1109/CSAC.1990.143768

[195] F.Mayer, K. Macmillan, and D. Caplan. SELinux by Example: Using Security-Enhanced Linux.
Addison-Wesley, 2006.

[196] F. L. Mayer. An interpretation of a refined Bell-La Padula model for the TMach kernel.
In Proceedings of the 1988 Aerospace Computer Security Applications Conference, pp. 368-378,
December 1988. DOI: 10.1109/ACSAC.1988.113335

[197] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key management
from file system security. In Proceedings of the 17" AcM Symposium on Operating System
Principles, pp. 124-139,1999. DOI: 10.1145/319344.319160

[198] E.J. McCauley and P. J. Drongowski. KSOS: The design of a secure operating system. In
Proceedings of the 1979 National Computer Conference, vol. 48, pp. 345-353,1979.

[199] D. Mcllroy and]. Reeds. Multilevel windows on a single-level terminal. In Proceedings of the
(First) USENIX Security Workshop, August 1988.

[200] M.D.Mcllroy and J. A. Reeds. Multilevel security in the UNIX tradition. Soffware—Practice
and Experience, 22:673-694,1992. DOI: 10.1002/spe.4380220805

[201] M.K.McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design and Implementation
of the 4.4BSD Operating System. Addison-Wesley, 1996.

[202] J. McLean. Proving noninterference and functional correctness using traces. Journal of Com-

puter Security, 1(1), 1992.

[203] J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software Engineering.
John Wiley & Sons, 1994.

[204] Medusa DS9 Security System. http://medusa.terminus.sk/, 2008.

http://dx.doi.org/10.1109/10.1109/ASE.2000.873658
http://dx.doi.org/10.1109/CSAC.1990.143768
http://dx.doi.org/10.1109/ACSAC.1988.113335
http://dx.doi.org/10.1145/319344.319160
http://dx.doi.org/10.1002/spe.4380220805
http://medusa.terminus.sk/

194 BIBLIOGRAPHY
[205] R.Meushaw and D. Simard. NetTop: Commercial technology in high assurance applications.
Tech Trend Notes, 9(4):1-8, 2000.
[206] Microsoft Computer Dictionary. Microsoft Press, fifth edition, 2002.

[207] Microsoft Developer Network. Microsoft Library at
http://msdn.microsoft.com/en-us/library/default.aspx, 2008.

[208] Microsoft Virtual PC. Microsoft document at
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.
mspx, 2008.

[209] Inside the Secure Windows Initiative.
http://www.microsoft.com/technet/archive/security/bestprac/secwinin.
mspx?mfr=true.

[210] PREfast for Drivers.
http://www.microsoft.com/whdc/devtools/tools/prefast.mspx.

[211] J. K. Millen. Covert channel capacity. In Proceedings of the 1987 IEEE Symposium on Security
and Privacy, 1987.

[212] J. K. Millen. 20 years of covert channel modeling and analysis. In Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pp. 113-114,1999.

[213] S. E. Minear. Providing policy control over object operations in a Mach-Based system. In
Proceedings of the 5th USENIX Security Symposium, pp. 141-156, 1995.

[214] P. Moore. NetLabel — Explicit labeled networking for Linux.
http://netlabel.sourceforge.net/, October 2007.

[215] I. S. Moskowitz and A. R. Miller. The channel capacity of a certain noisy timing channel.
IEEE Transactions on Information Theory, 38(4):1339-1344,1992. DOI: 10.1109/18.144712

[216] S. Mullender. Principles of Distributed Operating System Design. PhD thesis, Vrije University,
October 1985.

[217] Multics history. http://www.multicians.org/history.html, Apr 2008.

[218] A. C. Myers and B. Liskov. A decentralized model for information flow control. In
Proceedings of the 16th ACM Symposium on Operating System Principles, October 1997.
DOI: 10.1145/268998.266669

[219] A.C.Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java + information flow. Software
release. Located at http://www.cs.cornell.edu/jif, July 2001.

http://msdn.microsoft.com/en-us/library/default.aspx
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.
mspx
http://www.microsoft.com/technet/archive/security/bestprac/secwinin.
mspx?mfr=true
http://www.microsoft.com/whdc/devtools/tools/prefast.mspx
http://netlabel.sourceforge.net/
http://dx.doi.org/10.1109/18.144712
http://www.multicians.org/history.html
http://dx.doi.org/10.1145/268998.266669
http://www.cs.cornell.edu/jif

BIBLIOGRAPHY 195

[220] R. Naraine. Hacker, Microsoft duke it out over Vista design flaw.
http://blogs.zdnet.com/security/?p=29, February 2007.

[221] R. Naraine. Russinovich: Malware will thrive, even with Vista’s UAC.
http://blogs.zdnet.com/security/?p=175, April 2007.

[222] Rainbow series. http://en.wikipedia.org/wiki/Rainbow_Series, 2008.

[223] R. M. Needham and R. Walker. The Cambridge CAP computer and its protection system.
In Proceedings of the 6" ACM Symposium on Operating System Principles, pp. 1-10, 1977.
DOI: 10.1145/1067625.806541

[224] The NetBSD Project. http://www.netbsd.org/, 2008.

[225] B.C.Neuman and T. Ts’0. Kerberos: An authentication service for computer networks. IEEE
Communications, 32(9):33-38, 1994. DOI: 10.1109/35.312841

[226] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A provably
secure operating system: The system, its applications, and proofs. Technical Report CSL-
116, Stanford Research Institute, May 1980.

[227] A. Noodergraaf and K. Watson. Solaris Operating Environment Security.
http://wuw.sun.com/blueprints/0100/security.pdf, January 2000.

[228] AppArmor Linux application security.
http://www.novell.com/linux/security/apparmor/, 2008.

[229] Security-Enhanced Linux. http://www.nsa.gov/selinux.

[230] Controlled Access Protection Profile, Version 1.d.
http://www.commoncriteriaportal.org/files/ppfiles/capp.pdf, October 1999.

[231] Labeled Security Protection Profile, Version 1.b.
http://www.commoncriteriaportal.org/files/ppfiles/1spp.pdf, October 1999.

[232] A. One. Smashing the stack for fun and profit. Phrack, 7(49), Available at
http://www.phrack.org/issues.html?id=14&issue=49, 1997.

[233] The Partitioning Kernel Protection Profile. The Open Group, June 2003. Draft Under Review.
[234] OpenAFS. http://wuw.openafs.org/,2008.
[235] OpenBSD. http://www.openbsd.org/, 2008.

[236] OpenWall Project - Information security software for open environments.
http://www.openwall.com/, 2008.

http://blogs.zdnet.com/security/?p=29
http://blogs.zdnet.com/security/?p=175
http://en.wikipedia.org/wiki/Rainbow_Series
http://dx.doi.org/10.1145/1067625.806541
http://www.netbsd.org/
http://dx.doi.org/10.1109/35.312841
http://www.sun.com/blueprints/0100/security.pdf
http://www.novell.com/linux/security/apparmor/
http://www.nsa.gov/selinux
http://www.commoncriteriaportal.org/files/ppfiles/capp.pdf
http://www.commoncriteriaportal.org/files/ppfiles/lspp.pdf
http://www.phrack.org/issues.html?id=14&issue=49
http://www.openafs.org/
http://www.openbsd.org/
http://www.openwall.com/

196 BIBLIOGRAPHY

[237] E. Organick. The Multics System: An Examination of its Structure. MIT Press,
http://wuw.multicians.org/flass-organick.html, 1972.

[238] E. Organick. 4 Programmer’s View of the Intel 432 System. McGraw-Hill, 1983.
[239] A. Ott. RSBAC and LSM.

http://wuw.rsbac.org/documentation/why_rsbac_does_not_use_lsm, 2006.

[240] A. Ott. RSBAC: Extending Linux security beyond the limits. http://www.rsbac.org/,
2008.

[241] D.L.Parnas. On the criteria to be used in decomposing systems into modules. Communications

of the ACM, 15(12):1053-1058, 1972. DOI: 10.1145/361598.361623

[242] D. Paul. A summary of the Unisys experience with GEMSOS. In Proceedings
of the 1989 Annual Computer Security Applications Conference, pp. 112-113, 1989.
DOI: 10.1109/CSAC.1989.81039

[243] Vista backlash: Microsoft quietly lets Vista users revert to XP.
http://blogs.pcworld.com/staffblog/archives/005512.html, September 2007.

[244] N. L. Petroni, Jr,, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a coprocessor-based
kernel runtime integrity monitor. In Proceedings of the 13" USENIX Security Symposium,
pp- 179-194, 2004.

[245] N.L.Petroni, Jr., T. Fraser, A. Walters, and W. A. Arbaugh. An architecture for specification-
based detection of semantic integrity violations in kernel dynamic data. In Proceedings of the
15" USENIX Security Symposium, 2006.

[246] G. Popek and D. Farber. A model for the verification of data security in operating systems.
Communications of the ACM, 21(9):237-249, September 1978. DOI: 10.1145/359588.359597

[247] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412-421, July 1974.
DOI: 10.1145/361011.361073

[248] G.]J. Popek, A. Kampe, C. S. Kline, A. Stoughton, M. Urban, and E. J. Walton. UCLA Secure
Unix. In Proceedings of the AFIPS National Computer Conference, vol. 48, pp. 355-364, 1979.

[249] N. E. Proctor and P. G. Neumann. Architectural implications of covert channels.
In Proceedings of the Fifteenth National Computer Security Conference, pp. 28-43.
http://www.csl.sri.com/users/neumann/ncs92.html, October 1992.

[250] N. Provos. Improving host security with system call policies. In Proceedings of the 2003
USENIX Security Symposium, August 2003.

http://www.multicians.org/flass-organick.html
http://www.rsbac.org/documentation/why_rsbac_does_not_use_lsm
http://www.rsbac.org/
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/CSAC.1989.81039
http://blogs.pcworld.com/staffblog/archives/005512.html
http://dx.doi.org/10.1145/359588.359597
http://dx.doi.org/10.1145/361011.361073
http://www.csl.sri.com/users/neumann/ncs92.html

BIBLIOGRAPHY 197

[251] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In Proceedings of the
USENIX Security Symposium, August 2003.

[252] D. Redell. Naming and Protection in Extendible Operating Systems. PhD thesis, University
of California, Berkeley, 1974. Reprinted as Project MAC TR-140, Massachusetts Institute
of Technology.

[253] D. P. Reed. Processor Multiplexing In A Layed Operating System. PhD thesis, Massachusetts
Institute of Technology, 1976.

[254] D. P. Reed. Processor multiplexing in a layered operating system. Technical Report
MIT/LCS/TR-164, Massachusetts Institute of Technology, July 1976.

[255] P.Reiher, T. Page, S. Crocker,]. Cook, and G. Popek. Truffles—a secure service for widespread
file sharing. In Proceedings of the The PSRG Workshop on Network and Distributed System
Security, February 1993.

[256] J. Reynolds and R. Chandramouli. Role-Based Access Control Protection Profile, Ver-
sion 1.0. http://www.commoncriteriaportal.org/files/ppfiles/RBAC_987.pdf,
July 1998.

[257] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
DOI: 10.1145/359340.359342

[258] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium’s ability to support a secure virtual
machine monitor. In Proceedings of the 9th conference on USENIX Security Symposium, 2000.

[259] J. Rushby. Design and verification of secure systems. In Proceedings of the Eighth
ACM Symposium on Operating System Principles, pp. 12-21, December 1981.
DOI: 10.1145/800216.806586

[260] J. Rushby. Proof of separability: A verification technique for a class of security kernels. In
Proceedings of the International Symposium on Programming, pp. 352-367,1982.

[261]]J. Rushby. Noninterference, transitivity and channel-control security policies. Technical Re-
port CSL-92-02, Stanford Research Institute, December 1992.

[262] Best practices for UNIX chroot() operations.
http://www.unixwiz.net/techtips/chroot-practices.html.

[263] R. Sailer, T. Jaeger, E. Valdez, R. Céceres, R. Perez, S. Berger, J. Griffin, and L. van Doorn.
Building a MAC-based security architecture for the Xen opensource hypervisor. In Proceed-
ings of the 215t Annual Computer Security Applications Conference (ACSAC 2005), Miami, FL,
December 2005. DOI: 10.1109/CSAC.2005.13

http://www.commoncriteriaportal.org/files/ppfiles/RBAC_987.pdf
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/800216.806586
http://www.unixwiz.net/techtips/chroot-practices.html
http://dx.doi.org/10.1109/CSAC.2005.13

198 BIBLIOGRAPHY

[264]]. H. Saltzer. Protection and the control of information sharing in Multics. Communications

of the ACM, 17(7):388-402, July 1974. DOI: 10.1145/361011.361067

[265] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9), September 1975. DOI: 10.1109/PROC.1975.9939

[266] P.H. Salus. 4 Quarter Century of UNLX. Addison-Wesley, 1994.

[267] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation
of the Sun Network Filesystem. In Proceedings of the 1985 Summer USENIX Conference,
pp- 119-130, 1985.

[268] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST Model for Role-Based Access Control:
Towards a unified standard. In Proceedings of the 5' h ACM Role-Based Access Control Workshop,
July 2000. DOI: 10.1145/344287.344301

[269] R.S.Sandhu. The Schematic Protection Model: Its definition and analysis for acyclic atten-
uating schemes. Journal of the ACM, 35(2):404-432, 1988. DOI: 10.1145/42282.42286

[270] R.S. Sandhu. The Typed Access Matrix model. In Proceedings of the 1992 IEEE Symposium
on Security and Privacy, 1992. DOI: 10.1109/RISP.1992.213266

[271] R. S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9-19, 1993.
DOI: 10.1109/2.241422

[272] R.S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based Access Control
Models. IEEE Computer, 29(2):38-47,1996.

[273] O.S. Saydjari, J. K. Beckman, and J. R. Leaman. LOCKing computers securely. In Proceedings
of the 10th National Computer Security Conference, pp. 129-141,
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA219100&Location=U2&doc=
GetTRDoc.pdf, 1987.

[274] O. S. Saydjari, J. K. Beckman, and]. R. Leaman. LOCK Trek: Navigating uncharted
space. In Proceedings of the 1989 IEEE Symposium on Security and Privacy, 1989.
DOI: 10.1109/SECPRI.1989.36291

[275] M. Schaefer, B. Gold, R. Linde, and]. Scheid. Program confinement in KVM/370.
In Proceedings of the 1977 ACM Annual Conference, pp. 404-410, October 1977.
DOI: 10.1145/800179.1124633

[276] M. A. Schaffer and G. Walsh. LOCK/ix: On implementing Unix on the LOCK TCB. In
Proceedings of the 11th National Computer Security Conference, 1988.

[277] R. Schell, T. Tao, and M. Heckman. Designing the GEMSOS security kernel for security
and performance. In Proceedings of the National Computer Security Conference, 1985.

http://dx.doi.org/10.1145/361011.361067
http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1145/344287.344301
http://dx.doi.org/10.1145/42282.42286
http://dx.doi.org/10.1109/RISP.1992.213266
http://dx.doi.org/10.1109/2.241422
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA219100&Location=U2&doc=
GetTRDoc.pdf
http://dx.doi.org/10.1109/SECPRI.1989.36291
http://dx.doi.org/10.1145/800179.1124633

BIBLIOGRAPHY 199
[278] G.Schellhorn, W.Reif, A. Schairer, P. A. Karger, V. Austel,and D. Toll. Verification of a formal

security model for multiapplicative smart cards. In Proceedings of the European Symposium on
Research in Computer Security, pp. 17-36, 2000.

[279] M. D. Schroeder. Engineering a security kernel for Multics. In Proceedings of the Fifth ACM
Symposium on Operating Systems Principles, pp. 25-32,1975. DOI: 10.1145/800213.806518

[280] M. D. Schroeder, D. D. Clark, J. H. Saltzer, and D. Wells. Final report of the MUL-
TICS kernel design project. Technical Report MIT-LCS-TR-196, MIT, March 1978.
DOI:10.1145/800214.806546

[281] M. D. Schroeder and J. H. Saltzer. A hardware architecture for implementing protection
rings. Communications of the ACM, 15(3):157-170, 1972. DOI: 10.1145/361268.361275

[282] Software requirements specification for Distributed Trusted Mach. Technical Report DT-
Mach CDRL A005, Secure Computing Corporation, June 1992.

[283] DTOS Lessons Learned Report. Technical Report DTOS CDRL A008, Secure Computing
Corporation. At
http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/final-docs/lessons. pdf,
June 1997.

[284] G. Shah, A. Molina, and M. Blaze. Keyboards and covert channels. In Proceedings of the 15th
USENIX Security Symposium, August 2006.

[285] U.Shankar, T. Jaeger, and R. Sailer. Toward automated information-flow integrity verification
for security-critical applications. In Proceedings of the 2006 ISOC Networked and Distributed
Systems Security Symposium (NDSS06), San Diego, CA, February 2006.

[286]]. S. Shapiro. EROS: A Capability System. PhD thesis, University of Pennsylvania, 1999.

[287]].S. Shapiro. Verifying the EROS confinement mechanism. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, May 2000. DOI: 10.1109/SECPRI.2000.848454

[288]]. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast capability system. In Proceedings of
the 17th ACM Symposium on Operating System Principles, December 1999.

[289] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia. Design of the EROS trusted
window system. In Proceedings of the 13th conference on USENIX Security Symposium, 2004.

[290] W. R. Shockley, T. F. Tao, and M. F. Thompson. An overview of the GEMSOS class A1l
technology and application experience. In Proceedings of the 11th National Computer Security
Conference, pp. 238-245, October 1988.

http://dx.doi.org/10.1145/800213.806518
http://dx.doi.org/10.1145/800214.806546
http://dx.doi.org/10.1145/361268.361275
http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/final-docs/lessons.pdf
http://dx.doi.org/10.1109/SECPRI.2000.848454

200 BIBLIOGRAPHY

[291] V. Simonet. The Flow Caml System: Documentation and User’s Manual. Technical Report
0282, Institut National de Recherche en Informatique et en Automatique (INRIA), July 2003.
©INRIA.

[292] R. E. Smith. Constructing a high assurance mail guard. In Proceedings of the 17th National
Computer Security Conference, 1994.

[293] R. E. Smith. Cost profile of a highly assured, secure operating system. ACM Transactions on
Information Systems Security, 4(1):72-101, 2001. DOI: 10.1145/383775.383778

[294] R.W. Smith and G. S. Knight. Predictable design of network-based covert channel commu-
nication systems. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, 2008.
DOI: 10.1109/SP.2008.26

[295] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask
architecture: System support for diverse security policies. In Proceedings of the 8th USENIX
Security Symposium, pp. 123139, August 1999.

[296] B. Spengler. grsecurity. http://www.grsecurity.net/, 2008.
[297] B. Spengler. grsecurity LSM. http://www.grsecurity.net/lsm.php, 2008.

[298] G.R.Stoneburner and D. A. Snow. The Boeing MLS LAN: Heading towards an INFOSEC
security solution. In Proceedings of the 12th National Computer Security Conference, pp. 254-266,
1989.

[299] J. Sugerman, G. Venkitachalam, and B-H. Lim. Virtualizing I/O devices on VMware Work-
station’s hosted virtual machine monitor. In Proceedings of the 2002 USENIX Annual Technical
Conference, pp. 1-14, 2001.

[300] W. Sun, R. Sekar, G. Poothia, and T. Karandikar. Practical proactive integrity protection: A
basis for malware defense. In Proceedings of the 2008 IEEE Symposium on Security and Privacy,

May 2008. DOI: 10.1109/SP.2008.35

[301] Sun Microsystems. Understanding Security Attributes Assigned to Computers. Under Chap-
ter 7in http://docs.sun.com/app/docs/doc/816-1048/.

[302] D.Sutherland. A model of information. In Proceedings of the Ninth National Computer Security
Conference, 1986.

[303] M. M. Swift, A. Hopkins, P. Brundrett, C. Van Dyke, P. Garg, S. Chan, M. Goertzel, and
G.Jensenworth. Improving the granularity of access control for Windows 2000. ACM Transac-
tions on Information and Systems Security, 5(4):398-437,2002. DOI: 10.1145/581271.581273

[304] Trusted Computer System Evaluation Criteria (Orange Book). Technical Report DoD
5200.28-STD, U.S. Department of Defense, December 1985.

http://dx.doi.org/10.1145/383775.383778
http://dx.doi.org/10.1109/SP.2008.26
http://www.grsecurity.net/
http://www.grsecurity.net/lsm.php
http://dx.doi.org/10.1109/SP.2008.35
http://docs.sun.com/app/docs/doc/816-1048/
http://dx.doi.org/10.1145/581271.581273

BIBLIOGRAPHY 201

[305] How to exploit a format string vulnerability.
http://doc.bughunter.net/format-string/exploit-fs.html, 2008.

[306] M. F. Thompson, R. R. Schell, A. Tao, and T. Levin. Introduction to the Gemini Trusted
Network Processor. In Proceedings of the 13th National Computer Security Conference, pp. 211—
217, 1990.

[307] B.Tobotras. Linux kernel capabilities FAQ.
http://ftp.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4/
capfaq-0.2.txt, April 1999.

[308] Policy management server.http://oss.tresys.com/projects/policy-server, Tresys
Corp., 2008.

[309] Reference Policy. http://oss.tresys.com/projects/refpolicy, Tresys Corp., 2008.

[310] L.Tan,X.Zhang, X.Ma, W.Xiong, and Y. Zhou. AutoISES: Automatically inferring security
specifications and detecting violations. In Proceedings of the 17th USENLX Security Symposium,
2008.

[311] J. T. Trostle. Modeling a fuzzy time system. In Proceedings of the 1993 IEEE Symposium on
Security and Privacy, May 1993. DOI: 10.1109/RISP.1993.287641

[312] TrustedBSD - Home. http://www.trustedbsd.org/, 2008.

[313] The Distributed Trusted Operating System (DTOS) Home Page. At
http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos. . html.

[314] A. Vahdat. Operating System Services for Wide-Area Applications. PhD thesis, University of
California, Berkeley, December 1998.

[315] T.van Vleck. Timing channels. http://www.multicians.org/timing- chn.html, 1990.

[316] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. N. Krohn, C. Frey, D. Ziegler,
M. F. Kaashoek, R. Morris, and D. Mazié¢res. Labels and event processes in the
Asbestos operating system. ACM Transactions on Computer Systems, 25(4), 2007.
DOI: 10.1145/1314299.1314302

[317] W. Venema. The Postfix home page. http://www.postfix.org.

[318] J. Viega and G. McGraw. Building Secure Software: How to Avoid Security Problems the Right
Way. Addison-Wesley, 2001.

[319] VMware ESX bare-metal hypervisor for virtual machines. VMware Inc., document at
http://www.vmware.com/products/vi/esx/, 2008.

http://doc.bughunter.net/format-string/exploit-fs.html
http://ftp.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4/
capfaq-0.2.txt
http://oss.tresys.com/projects/policy-server
http://oss.tresys.com/projects/refpolicy
http://dx.doi.org/10.1109/RISP.1993.287641
http://www.trustedbsd.org/
http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html
http://www.multicians.org/timing-
chn.html
http://dx.doi.org/10.1145/1314299.1314302
http://www.postfix.org
http://www.vmware.com/products/vi/esx/

202 BIBLIOGRAPHY

[320] VMware Server, virtual server consolidation, free virtualization. VIMware Inc., document at
http://www.vmware.com/products/server/, 2008.

[321] VMware VMsafe Security Technology. VMware Inc., document at
http://www.vmware.com/overview/security/vmsafe/security_technology.
html, 2008.

[322] V. A. Vyssotsky, F. J. Corbaté, and R. M. Graham. Structure of the Multics supervisor. In
Proceedings of the 1965 AFIPS Fall Joint Computer Conference, 1965.

[323] K.M.Walker, D. F. Sterne, M. L. Badger, M.]. Petkac, D. L. Sherman, and K. A. Oostendorp.
Confining root programs with domain and type enforcement (DTE). In Proceedings of the 6th
USENIX Security Symposium, 1996.

[324] D. Walsh. Using Reference Policy/Generating a reference policy module.
http://danwalsh.livejournal.com/8707.html?thread=6451,2007.

[325] E. Walsh. Application of the Flask architecture to the X Window Sys-
tem server. In Proceedings of the 2007 SELinux Symposium. Available at
http://selinux-symposium.org/2007/agenda.php, March 2007.

[326] K.G.Walter. Primitive models for computer security. Technical report, Case Western Reserve
University, January 1974.

[327] R. Watson, W. Morrison, C. Vance, and B. Feldman. The TrustedBSD MAC framework:
Extensible kernel access control for FreeBSD 5.0. In Proceedings of the USENIX Annual
Technical Conference, June 2003. DOI: 10.1109/DISCEX.2003.1194900

[328] R. N. M. Watson. TrustedBSD: Adding trusted operating system features to FreeBSD. In
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference, pp. 15-28,
2001.

[329] C.Weissman. Security controls in the ADEPT-50 time-sharing system. In Proceedings of the
1969 AFIPS Fall Joint Computer Conference, pp. 119133, 1969.

[330] C. Weissman. Blacker: Security for the DDN, examples of A1l security engineering trades.
In Proceedings of the 1992 IEEE Symposium on Security and Privacy, pp. 286—292, May 1992.
DOI: 10.1109/RISP.1992.213253

[331] T. Wheeler, S. Holtsberg, and S. Eckmann. Ina Go user’s guide. Technical Report
TM8613/003, Paramax Systems Corporation, 1992.

[332] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance in the Denali isolation
kernel. In Proceedings of the 5th USENIX Symposium on Operating Systems Design and Imple-
mentation, December 2002. DOI: 10.1145/1060289.1060308

http://www.vmware.com/products/server/
http://www.vmware.com/overview/security/vmsafe/security_technology.
html
http://danwalsh.livejournal.com/8707.html?thread=6451
http://selinux-symposium.org/2007/agenda.php
http://dx.doi.org/10.1109/DISCEX.2003.1194900
http://dx.doi.org/10.1109/RISP.1992.213253
http://dx.doi.org/10.1145/1060289.1060308

BIBLIOGRAPHY 203

[333] J. Whitmore, A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and
J. Stern. Design for MULTICS security enhancements. Technical Re-
port ESD-TR-74-176, Honeywell Information Systems, Inc. Available at
http://csrc.nist.gov/publications/history/whit74.pdf, December 1973.

[334] Code red (computer worm) - Wikipedia.
http://en.wikipedia.org/wiki/Code_Red_worm.

[335] M. V. Wilkes. Time-Sharing Computer Systems. Elsevier Science Ltd., 3rd ed., 1975.

[336] M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer and Its Operating System.
Elsevier North Holland Inc., 1979.

[337] R. Wojtczuk. Defeating Solar Designer’s non-executable stack patch.
http://insecure.org/sploits/non-executable.stack.problems.html, 1998.

[338] M. Wolf. Covert channels in LAN protocols. In Proceedings of the Workshop on Local Area
Network Security, 1991.

[339] R. M. Wong. A comparison of secure UNIX operating systems. In Proceed-
ings of the Sixth Annual Computer Security Applications Conference, December 1990.
DOI: 10.1109/CSAC.1990.143794

[340] J. P. L. Woodward. Security requirements for system high and compartmented mode work-
station. Technical Report Document DDS-2600-5502-87, Defense Intelligence Agency,
November 1987.

[341]]J. C. Wray. An analysis of covert timing channels. In Proceedings of the 1991 IEEE Symposium
on Security and Privacy, May 1991. DOI: 10.1109/RISP.1991.130767

[342] C.Wright, C. Cowan, S. Smalley,]. Morris, and G. Kroah-Hartman. Linux Security Modules:
General security support for the Linux kernel. In Proceedings of the 11th USENILX Security
Symposium, pp. 17-31, August 2002.

[343] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. Hydra:
The kernel of a multiprocessor operating system. Communications of the ACM, 17(6), 1974.
DOI:10.1145/355616.364017

[344] W.A.Wulf,R. Levin, and S. P. Harbison. HYDRA/C.mmp: An Experimental Computer System.
McGraw-Hill, 1981.

[345] The X Foundation: http://www.x.org.

[346] Xen Community. Available at http://xen.xensource.com/, 2008.

http://csrc.nist.gov/publications/history/whit74.pdf
http://en.wikipedia.org/wiki/Code_Red_worm
http://insecure.org/sploits/non-executable.stack.problems.html
http://dx.doi.org/10.1109/CSAC.1990.143794
http://dx.doi.org/10.1109/RISP.1991.130767
http://dx.doi.org/10.1145/355616.364017
http://www.x.org
http://xen.xensource.com/

204 BIBLIOGRAPHY

[347] V. Yodiaken. Response to Partitioning Kernel Protection Profile.
http://wuw.yodaiken.com/papers/securityx.pdf. FSMLabs Draft.

[348] M. Young, A.Tevanian, R. F. Rashid, D. B. Golub, J. L. Eppinger,]. Chew, W.]. Bolosky, D. L.
Black, and R. V. Baron. The duality of memory and communication in the implementation of
a multiprocessor operating system. In Proceedings of the 11th Symposium on Operating Systems
Principles, pp. 63-76,1987. DOI: 10.1145/37499.37507

[349] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazié¢res. Making information flow
explicit in HiStar. In Proceedings of the 7th Symposium on Operating System Design and Imple-
mentation, pp. 263-278, 2006.

[350] N. Zeldovich, S. Boyd-Wickizer, and D. Maziéres. Securing distributed systems with infor-
mation flow control. In Proceedings of the 5th Symposium on Networked Systems Design and
Implementation, April 2008.

[351] X.Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static analysis of authorization hook
g g g Y
placement. In Proceedings of the 11th USENIX Security Symposium, pp. 33—48, San Francico,
CA, August 2002.

http://www.yodaiken.com/papers/securityx.pdf
http://dx.doi.org/10.1145/37499.37507

Biographies

Trent Jaeger is an Associate Professor in the Computer Science and Engineering Department
at The Pennsylvania State University and the Co-Director of the Systems and Internet Infrastructure
Security Lab. He joined Penn State after working for IBM Research for nine years in operating
systems and system security research groups. Trent’s research interests include operating systems
security, access control, and source code and policy analysis tools. He has published over 70 refereed
research papers on these subjects. Trent has made a variety of contributions to open source systems
security, particularly to the Linux Security Modules framework, the SELinux module and policy
development, integrity measurement in Linux, and the Xen security architecture. He is active in the
security research community, having been a member of the program committees of all the major
security conferences, and the program chair of the ACM CCS Government and Industry Track and
ACM SACMAT, as well as chairing several workshops. He is an associate editor with ACM TOIT
and has been a guest editor of ACM TISSEC. Trent has an M.S. and a Ph.D. from the University
of Michigan, Ann Arbor, in Computer Science and Engineering in 1993 and 1997, respectively.

Glenn Faden is a Distinguished Engineer in the Solaris Security Technologies Group, and has
worked at Sun for 19 years. He is currently the architect for Solaris Trusted Extensions, and was one
of the architects for Trusted Solaris and Role-Based Access Control. He designed Sun’s multilevel
desktops based on Open Look, CDE, and GNOME; he holds a patent for the underlying X11
security policy. Glenn has made extensive contributions to the Solaris security foundation, including
Access Control Lists, Auditing, Device Allocation, and OS Virtualization. He also developed the
RBAC and Process Rights Management tools for the Solaris Management Console. He has authored
several articles for Sun’s Blueprints website, and the Solaris Developer Connection.

Glenn previously worked for Qubix, OmniCad, and Gould Computer Systems in Desktop
Publishing and OS development. He has an MS in Computer Science from Florida Institute of
Technology.

Christoph Schuba has studied mathematics and management information systems at the
University of Heidelberg and the University of Mannheim in Germany. As a Fulbright scholar,
he earned his M.S. and Ph.D. degrees in Computer Science from Purdue University in 1993 and
1997, performing most of his dissertation research in the Computer Science Laboratory at the Xerox
Palo Alto Research Center (PARC). Christoph has taught undergraduate and graduate courses in
computer and network security, cryptography, operating systems, and distributed systems at San José

206 BIOGRAPHIES

State University, USA, at the Universtitit Heidelberg, Germany, at the International University in
Bruchsal, Germany, at Linképings universitet in Linképing, Sweden, and most recently at Stanford
University, USA.

Christoph has been working since 1997 at Sun Labs and most recently in the Solaris Software
Security Organization at Sun Microsystems, Inc. He holds ten patents and is author and co-author
of numerous scientific articles in computer and network security.

Index

*-integrity property, 65
*-property, 144

x-property, enforcing the, 146
*-security property, 64, 144

access
bracket, 29
class, 62
control
discretionary, 11
entries, 50
fundamentals, 9
list, 10, 28
mandatory, 13
policies, discretionary, 31
role based, 118
trusted extensions, 104
direct memory, 80
enforcement mechanism, 9
matrix definition, 9
matrix, Lampson’s, 9
Protection, C2 — Controlled, 171
protection profile, controlled, 175
virtualizing 1/0, 160
accountability, level of, 170
ACEs, 50
ACL, 10, 28, 50
active directory, 50
address space, 41
administration, SELinux, 135
administration, trusted extensions, 118
administrator users, 55

analysis

Multics vulnerability, 36

UNIX security, 45

Windows security, 53
API, 153
application programmer interface, 153
applications, Scomp, 84
arbitrary access control lists, 50
architecture

DTMach, 96

GEMSOS, 86

Scomp, 78

VAX VMM, 158
argument addressing mode, 80
Asbestos model, 70
assessment criteria, 19
assurance

classes, 170

common criteria, 169

operational, 170

requirements, 170

system, 169

weak link in, 178
assurance class

Al1,172

A1, Beyond, 173

B1,171

B2,172

B3,172

C1,171

C2,171

D, 170

207

208 INDEX

attacker, 7

audit manager, 66

authorization
module, 14, 15
SELinux, 129
UNIX, 43
Windows, 51

availability, 5

batch systems, 1
Bell Labs, 39
Bell-LaPadula model, 5, 62
Beyond Class A1, 173
Biba integrity model, 65
BLACKER, 89
BLP model, 62, 64
bracket
access, 29
call, 29
rings and, 29
buffer, translation lookaside, 77
building a secure operating system for Linux,
121
building secure capability systems, 146

C-List, 11
call bracket, 29
can-flow, 62
capabilities
and confinement, 144
and policy changes, 145
and the x-property, 144
revoking, 149
capability, 44
list, 11, 142
safe, 148
security, 142
systems
building secure, 146

challenges in secure, 143
EROS, 146
fundamentals, 141
history, 143
SCAP, 146
secure, 141
weak, 147
CAPP, 175
category sets, 131
CDlIs, 68
CFT, 71
challenge of trusted processes, 69
challenges in secure capability systems, 143
channel
covert, 70, 162
storage covert, 71
timing covert, 71
types, 71
CIPSO, 100, 115
Clark-Wilson integrity, 68
class
A1l system, 172
A1 system, Beyond, 173
access, 62
B1 system, 171
B2 system, 172
B3 system, 172
C1 system, 171
C2 system, 171
D system, 170
security, 60
code red worms, 56
commercial
era, 93
operating systems
history of retrofitting, 93
retrofitting security into, 91
securing, 91
common criteria, 173

approach, 174

assurance approach, 169

concepts, 174

evaluation assurance level, 174

history, 173

in action, 176

protection profile, 174

security target, 174

target of evaluation, 174
communications processor, secure, 77
compatibility, trusted Solaris, 105

complete mediation, 16, 17, 19, 45, 53, 84, 138,

160

components of a reference monitor, 14
compromise a system, 7
computing base, trusted, 6, 18
concept

common criteria, 174

of a file, 41

of a protection system, 21

of access control, 9

of reference monitor, 16
confinement, capabilities and, 144
confinement, enforcing, 147
confused deputy problem, 80, 142
constrained data items, 68
containers, Solaris, 105
contexts, SELinux, 129
control

discretionary access, 31

fundamentals, access, 9

list, access, 10, 28

role based access, 118

trusted extensions access, 104
Controlled Access Protection, C2, 171
controlled access protection profile, 175
covert channels, 70, 162
covert flow trees, 71
criteria

INDEX 209

assessment, 19

common, 169, 173

concepts, common, 174

in action, common, 176

trusted computer system evaluation, 169

CTCPEC, 173

DAC, 104
DAC system, 11, 42, 60
daemons, network-facing, 47
data secure UNIX and KSOS, emulated
systems, 93
decentralized information flow control model,
70
decentralized label model, 70
definition of
access matrix, 9
capability system, 141
information flow, 57
mandatory protection system, 12
protection domain, 10
protection system, 9
secure operating system, 16
Denning’s lattice model, 60
descriptor base root, 80
Design, A1 — Verified, 172
design, VAX VMM, 158
development, policy, 136
DIFC, 70
direct memory access, 80
discretionary
access control policies, 31
access control system, 11
protection, 170
Security Protection, C1, 171
disks, virtual, 159
DLM, 70
DMA, 80

documentation, support, 170

210 INDEX

domain and type enforcement, 98 administration, trusted, 118
Domains, B3 — Security, 172 mediation, trusted, 106
dominance, 62 multilevel services, trusted, 116
DTE policy model, 99 networking, trusted, 115
DTE UNIX, 99 Extensions
DTMach, 96 Solaris Trusted, 91, 93, 100, 102, 103, 119
DTMach architecture, 96
DTOS, 96 FDP, 176
file, concept of a, 41
EAL, 169,174 file descriptor, 44
EAL3,176 finite lattice, 61
EAL4,176,177 finite lattice model, 62
emulated systems: data secure UNIX and flow, information, 57
KSOS, 93 Fluke/Flask, 97

enabled by default, 56 formal top-level specification, 172
enforcement FTLS, 172

domain and type, 98 fundamentals

mechanism, access, 9 access control, 9

security, 56 capability system, 141
enforcing confinement, 147 Multics, 25
enforcing the x-property, 146 Multics security, 25
environment variables, 48 system assurance, 169
era fuzzy time, 72

co'mmercial, 93 GARNETS, 88

microkernel, 95

gate, return, 32

UNIX, 97 gatekeeper, 32, 135
EROS, 146, 148

lation, privilege, 19 gates, 49
esczll ation, p 8% Gemini secure operating system, 86
evaluation GEMSOS, 75, 86

assurance level, 169, 174 applications, 89

government markets, 178 architecture, 86

levels, 173 kernel architecture, 87
SCOH?P, 84 ' security kernel, 86
SELinux security, 137 trusted software, 88
target of, 169, 173 GID, 42
TOE, 177 goals, security, 4, 5
VAX VMM, 160 id
: group id, 42
extensions

access control, trusted, 104 hardware, Scomp, 79

hardware vulnerability, 36
hierarchical file systems, 25
history
capability systems, 143
common criteria, 173
LSM, 121
Multics, 23
of retrofitting commercial OS’s, 93
Scomp, 77
system, 39
UNIX, 39
VAX VMM, 157
Windows, 40
hooks, LSM, 124

IBM, 164
id, group, 42
id, user, 42
identity, UNIX, 41
implementation, LSM, 123
information flow, 57
graph, 58
integrity models, 64
model, 60
model policy, 60
secrecy models, 59
integrity, 5
Clark-Wilson, 68
classes, 65
definitions, 64
levels, 65
low-water mark, 67
model, Biba, 65
models, information flow, 64
verification procedures, 68
interface, 14
application programmer, 153
definition, LSM reference monitor, 123
package, Scomp kernel, 83

INDEX 211

placement, LSM reference monitor, 124
reference monitor, 14
interpretive execution facility, 164
intersection, 53
I/0
addresses, virtual, 82
memory protection, 81
MMU, 81
virtualizing, 160
ITSEC, 173
IVPs, 68
IX, 97

Java 2, 50

kernel, 39
design, security, 76
device layer, 87
gate library, 86
GEMSOS security, 86
interface package, Scomp, 83
security, 75, 76, 82, 86, 90
separation, 155
specific security policy, 76
VAX VMM security, 157
KGL, 86
KSOS, emulated systems: data secure UNIX
and, 93
KVM/370, 94

labeled networking, 99
Labeled Security Protection, B1, 171
labeling state, 12, 13, 42, 64
labeling state, SELinux, 132
labels, 12
Lampson’s access matrix, 9
lattice model, Denning’s, 60
layer, kernel device, 87
levels
evaluation, 173

212 INDEX

evaluation assurance, 169
of accountability, 170
of security, multiple independent, 156
sensitivity, 131
Linux
building a secure operating system for, 121
security-enhanced, 121, 126
security modules, 17, 121
list
access control, 10, 28
arbitrary access control, 50
capability, 11, 142
LOMAC, 13
LOMAC model, 67
Low-Water Mark, 13
low-water mark integrity, 67
LSM, 17,121
history, 121
hooks, 124
implementation, 123
reference monitor
implementations, 124
interface definition, 123
interface placement, 124
SELinux system, 139

MAC, 13,171

MAC policy, 135

machine systems, secure virtual, 153

mail guard, 84

mandatory
access control system, 13
labeling state, 43
protection, 171
protection state, 12, 64
protection system, 11, 12, 57, 64
transition state, 43

master mode, 37

matrix, Lampson’s access, 9

mechanisms, resource, 1
mediation, complete, 17
mediation, trusted extensions, 106
memory pages, 41
microkernel
DTMach, 96
DTOS, 96
era, 95
Fluke/Flask, 97
system, 95
MILS, 156
MLS, 30, 77,103, 131, 156
MLS model, 64
mode bits, 42
model
Asbestos, 70
Bell-LaPadula, 5, 62
Biba integrity, 65
BLP, 64
decentralized information flow control, 70
decentralized label, 70
Denning’s lattice, 60
DTE policy, 99
finite lattice, 62
information flow, 60
integrity, 64
secrecy, 59
LOMAC, 67
MLS, 64
Multics protection system, 28
policy, information flow, 60
security policy, 170
threat, 4, 7
trust, 4, 6
modular policies, 135
module
authorization, 14, 15
Linux security, 17, 121
security protection, 79, 80

INDEX 213

signaller, 37 object reuse, 77
monitor objects, 5
implementations, LSM reference, 124 operating
interface program, Scomp trusted, 82

definition, LSM reference, 123
placement, LSM reference, 124
reference, 14
Multics reference, 31
reference, 9, 14
SELinux reference, 126
virtual machine, 153
monolithic policies, 135
MS-DOS, 40
Multics, 23
commercial, 24
consortium, 39
fundamentals, 25
hardware vulnerability, 36
history, 23
project, 24
protection system, 30

system
retrofitting security into a commercial,
91
systems
definition, 1
definition, secure, 16
design, 8
for Linux, building a secure, 121
Gemini secure, 86
history of retrofitting commercial, 93
kernel, 41
Scomp trusted, 78
secure, 3
securing commercial, 91
security in ordinary, 39
Solaris, 103

) operation, security-sensitive, 14
protection system models, 28

] operational assurance, 170
reference monitor, 31
security, 33

security fundamentals, 25
software vulnerability, 37
system, 24

TCB, 32

vulnerability analysis, 36

operations, 5, 9
Orange Book, 77, 94, 160, 169, 170
A1 — Verified Design, 172
assurance classes, 170
B1 - Labeled Security Protection, 171
B2 — Structured Protection, 172
B3 — Security Domains, 172

multilevel security, 30

multilevel services, trusted extensions, 116 Beyond'Clas§ A1,173))
multiple independent levels of security, 156 €l —11?iscret10nary Security Protection,
NetTop, 164 C2 - Controlled Access Protection, 171
network-facing daemons, 47 D — Minimal Protection, 170
networking, labeled, 99 security classes, 170

networking, trusted extensions, 115 sets of requirements, 170

NICTA, 178 US DoD, 170

noninterference, 72 ordinary operating systems, security in, 39

214 INDEX

package, Scomp kernel interface, 83

policy
Bell-LaPadula, 62
changes, capabilities and, 145
development, 136
discretionary access control, 31
information flow model, 60
kernel specific security, 76
MAC, 135
model, DTE, 99
modular, 135
monolithic, 135
SELinux, 130, 132
store, 14, 16
user-level, 137
polyinstantiation, 106
PP, 174
PR/SM, 163
principle of least privilege, 5
principle of separation of duty, 68
privilege escalation, 19
privilege, principle of least, 5
problem
confinement, 147
confused deputy, 80, 142
revocation, 145
safety, 148
processes, 1, 41
challenge of trusted, 69
security of all, 1
user, 7

processor, secure communications, 77
program, Scomp trusted operating, 82

programs, SELinux trusted, 136
property
*-integrity, 65
*-security, 64, 144
simple-integrity, 65
simple-security, 5, 63

protection
B1 - Labeled Security, 171
B2 - Structured, 172

C1 - Discretionary Security, 171

C2 - Controlled Access, 171
D — Minimal, 170
discretionary, 170
domain, 25
definition, 10
transitions, 13
I/O memory, 81
mandatory, 171
profile, 157,174
profile, controlled access, 175
requirement of, 11
state, 9
mandatory, 12
operations, 9
SELinux, 129, 132
system, 9
definition, 9
mandatory, 11, 12, 57
models, Multics, 28
Multics, 30
UNIX, 41
Windows, 50

Rainbow Series, 169
RBAC, 118,130
read, 5
reboots, 77
recent UNIX systems, 100
RedHat Linux Version 5, 176
reference monitor, 9, 14
components, 14
concept, 16
implementations, LSM, 124
interface, 14
definition, LSM, 123

placement, LSM, 124

Multics, 31

security, 51

SELinux, 126, 131
registry, Windows, 55
requirement of security, 12
resource mechanisms, 1
resources, shared, 48
restricted contexts, 53

result, VAX VMM, 162

retrofitting commercial OS’s, history of, 93
retrofitting security into a commercial OS, 91

return gate, 32

reuse, object, 77

revocation problem, 145
revoking capabilities, 149
rings and brackets, 29

role based access control, 118
rootkits, 37, 48

safe capability, 148
safety problem, 148
SAT, 147
SCAP, 146, 148
scheduling, 1
scheduling mechanisms, 2
Scomp, 75
applications, 84
architecture, 78
evaluation, 84
hardware, 79
kernel interface package, 78, 83
system, 77
trusted
computing base, 78
operating program, 82
operating system, 78
SDW, 25, 26, 28

secrecy, 5

INDEX 215

categories, 66
classes, 65
models, information flow, 59

securc

Ada target, 147
capability systems, 141
building, 146
challenges in, 143
communications processor, 77
operating systems, 3
definition, 16
for Linux, building a, 121
Gemini, 86

requirements, 4

UNIX and KSOS, emulated systems: data,

93
virtual machine systems, 153
Xenix, 94

securing commercial operating systems, 91
security

analysis, UNIX, 45

analysis, Windows, 53

automated verified, 178

capability, 142

classes, 60

classes, Orange Book, 170

Domains, B3,172

enforcement, 56

enhanced Linux, 121, 126
evaluation, SELinux, 137

feature requirements, 170

for Xen, 166

fundamentals, Multics, 25

goals, 4,5

goals, verifiable, 57

in ordinary operating systems, 39

in other virtual machine systems, 163
into a commercial OS, retrofitting, 91

kernel, 75, 76, 82, 86, 90

216 INDEX

building a, 75
definition, 76
design, 76
VAX VMM, 155, 157
modules, Linux, 17,121
Multics, 33
multilevel, 30
multiple independent levels of, 156
of all processes, 1
Orange Book, 169
policy model, 170
Protection, B1 — Labeled, 171
Protection, C1 — Discretionary, 171
protection module, 79, 80
reference monitor, 51
requirement of, 12
sensitive operation, 14
standards for the, 169
target, 173, 174
typed languages, 69
UNIX, 41
Windows, 49
segment descriptor word, 25, 28
self-virtualizable, VMM, 160
SELinux, 121, 126
administration, 135
authorization, 129
contexts, 129
labeling state, 132
MLS labels, 131
policies, 132
policy, 130
protection state, 129, 132
reference monitor, 126, 131
security evaluation, 137
transition state, 134
trusted programs, 136
user-level policy, 137
sensitivity levels, 131

separation kernel, 155
separation of duty principle, 68
services, trusted extensions multilevel, 116
sets, category, 131
shared resources, 48
SID, 50
signaller module, 37
simple-integrity property, 65
simple-security property, 5, 63
SKIP, 78, 83
software, trusted, 82, 88
software vulnerability, 37
Solaris, 116
compatibility, trusted, 105
containers, 105
Trusted Extensions, 91, 93, 100, 102, 103,
119
specific security feature requirements, 170
SPM, 80
SRM, 51
ST, 174
standards for the security, 169
state
labeling, 12, 13, 42, 64
mandatory
labeling, 43
protection, 12, 64
transition, 43
operations, protection, 9
protection, 9
SELinux
labeling, 132
protection, 129, 132
transition, 134
transition, 12, 13, 42, 64
STOP, 78, 82
storage covert channel, 71
store, policy, 14, 16

Structured Protection, B2, 172
STs, 176

subjects, 5, 9

Sun Microsystems, 103
supplementary groups, 42

tamperproof, 16, 18, 20, 46, 54, 85, 138, 161
target of evaluation, 169, 173, 174
target of security function, 177
TCB, 6, 18, 25, 41, 76, 106
TCSEC, 169
threat model, 4, 7
time, fuzzy, 72
time-of-check-to-time-of-use, 17, 49
timesharing systems, 1
timing covert channel, 71
TIS, 98
TLB, 77
TNP, 89
TOCTTOU, 17, 49
TOE, 169,174,177
token, 50
TPs, 68
tranquility, 64
transformation procedures, 68
transition state, 12, 13, 42, 64
transition state, SELinux, 134
transitions, protection domain, 13
translation lookaside buffer, 77
Trojan Horse, 59, 144
trust model, 4, 6
trusted
computer system evaluation criteria, 169
computing base, 6, 18, 41, 106
extensions
access control, 104
administration, 118
mediation, 106
multilevel services, 116

INDEX 217

networking, 115
information systems, 98
network processor, 89
operating program, Scomp, 82
path, 106, 116, 159
processes, challenge of, 69
programs, SELinux, 136
software, 82, 88
Solaris compatibility, 105

Trusted Extensions

Solaris, 91, 93, 100, 102, 103, 119

TSFE, 177

type enforcement, domain and, 98
types, channel, 71

UDlIs, 69
UID, 42,130
unconstrained data items, 69

UNIX, 15

and KSOS, emulated systems: data secure,
93

authorization, 43

concept of a file, 41

domain and type enforcement, 98

DTE, 99

environment variables, 48

era, 97

hierarchical file systems, 25

history, 39

identity, 41

1X, 97

mode bits, 42

protection domain transitions, 44

protection system, 41

rootkits, 48

security, 41

security analysis, 45

shared resources, 48

system, 24

218 INDEX

systems, recent, 100

TCB, 41, 46

TOCTTOU, 49

vulnerabilities, 47
US DoD, Orange Book, 170
user

data protection, 176

id, 42

identity, 171

level policy, 137

privilege, 159

processes, 7

VAX VMM
architecture, 158
design, 158, 159
evaluation, 160
history, 157
result, 162
security kernel, 155, 157
VAX/VMS, 94
verifiability enforcement, 47
verifiable, 17, 18, 20, 47, 54, 85, 139, 162
verifiable security goals, 57
verification, 76
Verified Design, A1, 172
virtual
disks, 159
I/O addresses, 82
machine
monitor, 153
system, 153
systems, secure, 153
systems, security in other, 163
ports, 164
virtualizing 1/0, 160

VM, 153
VMM, 153
architectures, 153
self-virtualizable, 160
Type 1,153
Type 2,153
VMware, 164
vulnerability, 7
analysis, Multics, 36
hardware, 36
software, 37
UNIX, 47
Windows, 41, 55

weak capability, 147

weak link in assurance, 178

Windows
ACL, 50
administrator users, 55
authorization, 51
enabled by default, 56
history, 40
protection system, 50
registry, 55
restricted contexts, 53
security, 49
security analysis, 53
services, 52
SRM, 51
vulnerabilities, 55
vulnerability, 41

write, 5

Xen, 165

Xenix, secure, 94

	Contents
	Preface
	Introduction
	Secure Operating Systems
	Security Goals
	Trust Model
	Threat Model
	Summary

	Access Control Fundamentals
	Protection System
	Lampson's Access Matrix
	Mandatory Protection Systems

	Reference Monitor
	Secure Operating System Definition
	Assessment Criteria
	Summary

	Multics
	Multics History
	The Multics System
	Multics Fundamentals
	Multics Security Fundamentals
	Multics Protection System Models
	Multics Protection System
	Multics Reference Monitor

	Multics Security
	Multics Vulnerability Analysis
	Summary

	Security in Ordinary Operating Systems
	System Histories
	UNIX History
	Windows History

	UNIX Security
	UNIX Protection System
	UNIX Authorization
	UNIX Security Analysis
	UNIX Vulnerabilities

	Windows Security
	Windows Protection System
	Windows Authorization
	Windows Security Analysis
	Windows Vulnerabilities

	Summary

	Verifiable Security Goals
	Information Flow
	Information Flow Secrecy Models
	Denning's Lattice Model
	Bell-LaPadula Model

	Information Flow Integrity Models
	Biba Integrity Model
	Low-Water Mark Integrity
	Clark-Wilson Integrity
	The Challenge of Trusted Processes

	Covert Channels
	Channel Types
	Noninterference

	Summary

	Security Kernels
	The Security Kernel
	Secure Communications Processor
	Scomp Architecture
	Scomp Hardware
	Scomp Trusted Operating Program
	Scomp Kernel Interface Package
	Scomp Applications
	Scomp Evaluation

	Gemini Secure Operating System
	Summary

	Securing Commercial Operating Systems
	Retrofitting Security into a Commercial OS
	History of Retrofitting Commercial OS's
	Commercial Era
	Microkernel Era
	UNIX Era
	IX
	Domain and Type Enforcement
	Recent UNIX Systems

	Summary

	Case Study: Solaris Trusted Extensions
	Trusted Extensions Access Control
	Solaris Compatibility
	Trusted Extensions Mediation
	Process Rights Management (Privileges)
	Privilege Bracketing and Relinquishing
	Controlling Privilege Escalation
	Assigned Privileges and Safeguards

	Role-based Access Control (RBAC)
	RBAC Authorizations
	Rights Profiles
	Users and Roles
	Converting the Superuser to a Role

	Trusted Extensions Networking
	Trusted Extensions Multilevel Services
	Trusted Extensions Administration
	Summary

	Case Study: Building a Secure Operating System for Linux
	Linux Security Modules
	LSM History
	LSM Implementation

	Security-Enhanced Linux
	SELinux Reference Monitor
	SELinux Protection State
	SELinux Labeling State
	SELinux Transition State
	SELinux Administration
	SELinux Trusted Programs
	SELinux Security Evaluation

	Summary

	Secure Capability Systems
	Capability System Fundamentals
	Capability Security
	Challenges in Secure Capability Systems
	Capabilities and the -Property
	Capabilities and Confinement
	Capabilities and Policy Changes

	Building Secure Capability Systems
	Enforcing the -Property
	Enforcing Confinement
	Revoking Capabilities

	Summary

	Secure Virtual Machine Systems
	Separation Kernels
	VAX VMM Security Kernel
	VAX VMM Design
	VAX VMM Evaluation
	VAX VMM Result

	Security in Other Virtual Machine Systems
	Summary

	System Assurance
	Orange Book
	Common Criteria
	Common Criteria Concepts
	Common Criteria In Action

	Summary

	Bibliography
	Biographies
	Index

