
Secure	Architecture	
Principles	

•  Isola3on	and	Least	Privilege	
•  Access	Control	Concepts	
•  Opera3ng	Systems	
•  Browser	Isola3on	and	Least	Privilege	

Original	slides	were	created	by	Prof.	John	Mitchel		

1	

Secure	Architecture	
Principles	

Isola3on	and	
Least	Privilege	

2	

3	

Principles	of	Secure	Design	

Principles	of	Secure	Design	
•  Compartmentaliza3on	

–  Isola3on	
–  Principle	of	least	privilege	

•  Defense	in	depth	
–  Use	more	than	one	security	mechanism	
–  Secure	the	weakest	link	
–  Fail	securely	

•  Keep	it	simple	

4	

Principle	of	Least	Privilege	
•  What’s	a	privilege?	

–  Ability	to	access	or	modify	a	resource	
•  Assume	compartmentaliza3on	and	isola3on	

–  Separate	the	system	into	isolated	compartments	
–  Limit	interac3on	between	compartments	

•  Principle	of	Least	Privilege	
–  A	system	module	should	only	have	the	minimal	
privileges	needed	for	its	intended	purposes	

5	

Monolithic	design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

6	

Monolithic	design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

7	

Monolithic	design	

System	

Network	

User	input	

File	system	

Network	

User	display	

File	system	

8	

Component	design	

Network	

User	input	

File	system	

Network	

User	display	

File	system	

9	

Component	design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

10	

Component	design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

11	

Principle	of	Least	Privilege	
•  What’s	a	privilege?	

–  Ability	to	access	or	modify	a	resource	
•  Assume	compartmentaliza3on	and	isola3on	

–  Separate	the	system	into	isolated	compartments	
–  Limit	interac3on	between	compartments	

•  Principle	of	Least	Privilege	
–  A	system	module	should	only	have	the	minimal	
privileges	needed	for	its	intended	purposes	

12	

Example:	Mail	Agent	
•  Requirements	

–  Receive	and	send	email	over	external	network	
–  Place	incoming	email	into	local	user	inbox	files	

•  Sendmail	
–  Tradi3onal	Unix		
– Monolithic	design	
–  Historical	source	of	many	vulnerabili3es	

•  Qmail	
–  Compartmentalized	design	 13	

OS	Basics	(before	examples)	

•  Isola3on	between	processes	
–  Each	process	has	a	UID	

•  Two	processes	with	same	UID	have	same	permissions	
–  A	process	may	access	files,	network	sockets,	….	

•  Permission	granted	according	to	UID	
•  Rela3on	to	previous	terminology	

–  Compartment	defined	by	UID		
–  Privileges	defined	by	ac3ons	allowed	on	system	resources	

14	

Qmail	design	
•  Isola3on	based	on	OS	isola3on	

–  Separate	modules	run	as	separate	“users”	
–  Each	user	only	has	access	to	specific	resources	

•  Least	privilege	
– Minimal	privileges	for	each	UID	
–  Only	one	“setuid”	program	

•  setuid	allows	a	program	to	run	as	different	users	
–  Only	one	“root”	program	

•  root	program	has	all	privileges	
15	

Structure	of	qmail	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

Incoming external mail Incoming internal mail

16	

Isola3on	by	Unix	UIDs	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmaild
user

qmailq

qmails qmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

17	

Structure	of	qmail	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	Reads	incoming	mail	directories	
Splits	message	into	header,	body	
Signals	qmail-send	

18	

Structure	of	qmail	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	
		qmail-send	signals	

•  qmail-lspawn	if	local	
•  qmail-remote	if	remote	

19	

Structure	of	qmail	

qmail-smtpd	

qmail-local	

qmail-lspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmail-lspawn	
•  Spawns	qmail-local		
•  qmail-local	runs	with	ID	of	user	
receiving	local	mail	

20	

Structure	of	qmail	

qmail-smtpd	

qmail-local	

qmail-lspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmail-local	
•  Handles	alias	expansion	
•  Delivers	local	mail	
•  Calls	qmail-queue	if	needed	

21	

Structure	of	qmail	

qmail-smtpd	

qmail-remote	

qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmail-remote	
•  Delivers	message	to	remote	MTA	

22	

root

Isola3on	by	Unix	UIDs	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmaild
user

qmailq

qmails qmailr

qmailr user
setuid user

qmailq – user who is allowed to read/write mail queue

setuid

root

23	

Least	privilege	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

root

setuid

24	

Qmail	summary	

25	

•  Security	goal?	
•  Threat	model?	
•  Mechanisms	

–  Least	privilege	
–  Separa3on	

Android	process	isola3on	

•  Android	applica3on	sandbox	
–  Isola3on:	Each	applica3on	runs	with	its	own	UID	in	own	VM	

•  Provides	memory	protec3on	
•  Communica3on	limited	to	using	Unix	domain	sockets	
•  Only	ping,	zygote	(spawn	another	process)	run	as	root	

–  Interac3on:	reference	monitor	checks	permissions	on	inter-
component	communica3on		

–  Least	Privilege:	Applica3ons	announces	permission		
•  User	grants	access	at	install	3me	

26	

27	

28	

Secure	Architecture	
Principles	

Access	Control	
Concepts	

29	

Access	control		
•  Assump3ons	

–  System	knows	who	the	user	is	
•  Authen3ca3on	via	name	and	password,	other	creden3al		

–  Access	requests	pass	through	gatekeeper	(reference	monitor)	
•  System	must	not	allow	monitor	to	be	bypassed	

Resource	
User	
process	

Reference	
monitor	

access	request	

policy	

?	

30	

Access	control	matrix				[Lampson]	

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subjects	

Objects	

31	

Implementa3on	concepts	
•  Access	control	list	(ACL)	

–  Store	column	of	matrix		
			with	the	resource	

•  Capability	
–  User	holds	a	“3cket”	for		
			each	resource	
–  Two	varia3ons	

•  store	row	of	matrix	with	user,	under	OS	control	
•  unforgeable	3cket	in	user	space	

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access	control	lists	are	widely	used,	omen	with	groups	
Some	aspects	of	capability	concept	are	used	in	many	systems	 32	

ACL	vs	Capabili3es	
•  Access	control	list	

–  Associate	list	with	each	object	
–  Check	user/group	against	list	
–  Relies	on	authen3ca3on:	need	to	know	user	

•  Capabili3es	
–  Capability	is	unforgeable	3cket	

•  Random	bit	sequence,	or	managed	by	OS	
•  Can	be	passed	from	one	process	to	another	

–  Reference	monitor	checks	3cket	
•  Does	not	need	to	know	iden3fy	of	user/process	 33	

ACL	vs	Capabili3es	

	
Process	P	
User	U	

	
Process	Q	
User	U	

	
Process	R	
User	U	

	
Process	P	
Capabilty	c,d,e	

	
Process	Q	

	
Process	R	
Capabilty	c	

Capabilty	c,e	

34	

ACL	vs	Capabili3es	
•  Delega3on	

–  Cap:	Process	can	pass	capability	at	run	3me	
–  ACL:	Try	to	get	owner	to	add	permission	to	list?	

•  More	common:	let	other	process	act	under	current	user	
•  Revoca3on	

–  ACL:	Remove	user	or	group	from	list	
–  Cap:	Try	to	get	capability	back	from	process?	

•  Possible	in	some	systems	if	appropriate	bookkeeping	
–  OS	knows	which	data	is	capability	
–  If	capability	is	used	for	mul3ple	resources,	have	to	revoke	all	or	none	…	

•  Indirec3on:	capability	points	to	pointer	to	resource	
–  If	C	→	P	→	R,	then	revoke	capability	C	by	seong	P=0	

35	

Roles		(aka	Groups)	
•  Role	=	set	of	users	

–  Administrator,	PowerUser,	User,	Guest	
–  Assign	permissions	to	roles;	each	user	gets	permission	

•  Role	hierarchy	
–  Par3al	order	of	roles	
–  Each	role	gets	
	permissions	of	roles	below	

–  List	only	new	permissions	
			given	to	each	role	

Administrator	

Guest	

PowerUser	

User	

36	

Role-Based	Access	Control	
Individuals	 Roles	 Resources	

engineering	

marke3ng	

human	res	

Server	1	

Server	3	

Server	2	

Advantage:	users	change	more	frequently	than	roles	 37	

Access	control	summary	
•  Access	control	involves	reference	monitor	

–  Check	permissions:	〈user	info,	ac3on〉→	yes/no	
–  Important:	no	way	around	this	check	

•  Access	control	matrix	
–  Access	control	lists	vs	capabili3es	
–  Advantages	and	disadvantages	of	each	

•  Role-based	access	control	
–  Use	group	as	“user	info”;		use	group	hierarchies		

38	

Secure	Architecture	
Principles	

Opera3ng	Systems	

39	

Unix	access	control	

•  Process	has	user	id	
–  Inherit	from	crea3ng	process	
–  Process	can	change	id	

•  Restricted	set	of	op3ons	
–  Special	“root”	id		

•  All	access	allowed	
•  File	has	access	control	list	(ACL)	

–  Grants	permission	to	user	ids	
–  Owner,	group,	other	

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

40	

Unix	file	access	control	list	
•  Each	file	has	owner	and	group	
•  Permissions	set	by	owner	

–  Read,	write,	execute	
–  Owner,	group,	other	
–  Represented	by	vector	of	
					four	octal	values	

•  Only	owner,	root	can	change	permissions	
–  This	privilege	cannot	be	delegated	or	shared	

•  Se3d	bits	–	Discuss	in	a	few	slides	

rwx	 rwx	rwx	-	
ownr	 grp	 othr	

se3d	

41	

Process	effec3ve	user	id	(EUID)	
•  Each	process	has	three	Ids		(+	more	under	Linux)	

–  Real	user	ID							(RUID)	
•  same	as	the	user	ID	of	parent	(unless	changed)	
•  used	to	determine	which	user	started	the	process		

–  Effec3ve	user	ID		(EUID)	
•  from	set	user	ID	bit	on	the	file	being	executed,	or	sys	call	
•  determines	the	permissions	for	process	

–  file	access	and	port	binding	
–  Saved	user	ID					(SUID)	

•  So	previous	EUID	can	be	restored	

•  Real	group	ID,	effec3ve	group	ID,	used	similarly		
42	

Process	Opera3ons	and	IDs	
•  Root	

–  ID=0	for	superuser	root;	can	access	any	file	
•  Fork	and	Exec	

–  Inherit	three	IDs,	except	exec	of	file	with	setuid	bit	
•  Setuid	system	call		

–  seteuid(newid)	can	set	EUID	to	
•  Real	ID	or	saved	ID,	regardless	of	current	EUID	
•  Any	ID,	if	EUID=0	
	

•  Details	are	actually	more	complicated	
–  Several	different	calls:	setuid,	seteuid,	setreuid	

43	

Se3d	bits	on	executable	Unix	file	
•  Three	se3d	bits	

–  Setuid	–	set	EUID	of	process	to	ID	of	file	owner	
–  Setgid	–	set	EGID	of	process	to	GID	of	file	
–  S3cky	

•  Off:	if	user	has	write	permission	on	directory,	can	
rename	or	remove	files,	even	if	not	owner	

•  On:	only	file	owner,	directory	owner,	and	root	can	
rename	or	remove	file	in	the	directory	

44	

Example	

…;	
…;	
exec();	

RUID	25	 SetUID	

program	

…;	
…;	
i=getruid()	
setuid(i);	
…;	
…;	

RUID	25	
EUID	18	

RUID	25	
EUID	25	

-rw-r--r--	
file	

-rw-r--r--	
file	

Owner	18	

Owner	25	

read/write	

read/write	

Owner	18	

45	

Another	example	
•  Why	do	we	need	the	setuid	bit?	

–  Some	programs	need	to	do	privileged	opera3ons	on	behalf	
of	unprivileged	users	

•  /usr/bin/ping	should	be	able	to	create	raw	sockets	
(needs	root)	

•  An	unprivileged	user	should	be	able	to	run	ping		
•  Solu3on:	/usr/bin/ping	in	Linux	is	owned	by	root	with	
setuid	bit	set	

46	

SetUID	for	least	privilege:	OpenSSH		

47	

Unix	summary	
•  Good	things	

–  Some	protec3on	from	most	users	
–  Flexible	enough	to	make	things	possible	

•  Main	limita3on	
–  Too	temp3ng	to	use	root	privileges	
–  No	way	to	assume	some	root	privileges	without	all	root	
privileges	

48	

Weakness	in	isola3on,	privileges	
•  Network-facing	Daemons		

–  Root	processes	with	network	ports	open	to	all	remote	par3es,	e.g.,	
sshd,	mpd,	sendmail,	…	

•  How	can	you	solve	this?	
•  Rootkits		

–  System	extension	via		dynamically	loaded	kernel	modules	
•  Environment	Variables		

–  System	variables	such	as	LD_LIBRARY_PATH	that	are	shared	state	
across	applica3ons.	An	awacker	can	change	LD_LIBRARY_PATH	to	load	
an	awacker-provided	file	as	a	dynamic	library	

49	

Weakness	in	isola3on,	privileges	
•  Shared	Resources		

–  Since	any	process	can	create	files	in	/tmp	directory,	an	untrusted	
process	may	create	files	that	are	used	by	arbitrary	system	processes	

•  Time-of-Check-to-Time-of-Use	(TOCTTOU)	
–  Typically,	a	root	process	uses	system	call	to	determine	if	ini3a3ng	user	

has	permission	to	a	par3cular	file,	e.g.	/tmp/X.	
–  Amer	access	is	authorized	and	before	the	file	open,	user	may	change	

the	file	/tmp/X	to	a	symbolic	link	to	a	target	file	/etc/shadow.	

50	

Access	control	in	Windows	
•  Some	basic	func3onality	similar	to	Unix	

–  Specify	access	for	groups	and	users	
•  Read,	modify,	change	owner,	delete		

•  Some	addi3onal	concepts	
–  Tokens	
–  Security	awributes	

•  Generally 		
– More	flexible	than	Unix	

•  Can	define	new	permissions	
•  Can	give	some	but	not	all	administrator	privileges	

51	

52	

Iden3fy	subject	using	SID	
•  Security	ID	(SID)	

–  Iden3ty	(replaces	UID)	
•  SID	revision	number	
•  48-bit	authority	value	
•  variable	number	of	
Rela3ve	Iden3fiers	
(RIDs),	for	uniqueness	

–  Users,	groups,	computers,	
domains,	domain	members	
all	have	SIDs	

53	

Process	has	set	of	tokens	
•  Security	context	

–  Privileges,	accounts,	and	groups	associated	with	the	
process	or	thread	

–  Presented	as	set	of	tokens	
•  Impersona3on	token		

–  Used	temporarily	to	adopt	a	different	security	context,	
usually	of	another	user	

•  Security	Reference	Monitor		
–  Uses	tokens	to	iden3fy	the	security	context	of	a	process	or	
thread	

54	

Object	has	security	descriptor	
•  Security	descriptor	associated	with	an	object	

–  Specifies	who	can	perform	what	ac3ons	on	the	object	
•  Several	fields	

–  Header		
•  Descriptor	revision	number		
•  Control	flags,	awributes	of	the	descriptor	

–  E.g.,	memory	layout	of	the	descriptor	
–  SID	of	the	object's	owner	
–  SID	of	the	primary	group	of	the	object		
–  Two	awached	op3onal	lists:		

•  Discre3onary	Access	Control	List	(DACL)	–	users,	groups,	…	
•  System	Access	Control	List	(SACL)	–	system	logs,	..		

55	

Example	access	request	

Group1:	Administrators	
Group2:	Writers	

Control	flags 		

Group	SID	
DACL	Pointer	
SACL	Pointer	
					Deny	
					Writers	
					Read,	Write	
					Allow	
					Mark	
					Read,	Write	

Owner	SID	

Revision	Number	

Access	token	

Security	
descriptor	

Access	request:	write	
Ac3on:	denied	

•  User Mark requests write permission
•  Descriptor denies permission to group
•  Reference Monitor denies request
(DACL for access, SACL for audit and logging)	

Priority:	
Explicit	Deny	
Explicit	Allow	
Inherited	Deny	
Inherited	Allow	

User:				Mark	

56	

57	

Impersona3on	Tokens			
(compare	to	setuid)	

•  Process	adopts	security	awributes	of	another	
–  Client	passes	impersona3on	token	to	server	

•  Client	specifies	impersona3on	level	of	server	
–  Anonymous	

•  Token	has	no	informa3on	about	the	client	
–  Iden3fica3on	

•  Obtain	the	SIDs	of	client	and	client's	privileges,	but	server	
cannot	impersonate	the	client	

–  Impersona3on	
•  Impersonate	the	client	

–  Delega3on	
•  Lets	server	impersonate	client	on	local,	remote	systems	 58	

Weakness	in	isola3on,	privileges	
•  Similar	problems	to	Unix	

–  E.g.,	Rootkits	leveraging	dynamically	loaded	kernel	modules	
•  Windows	Registry		

–  Global	hierarchical	database	to	store	data	for	all	programs		
–  Registry	entry	can	be	associated	with	a	security	context	that	
limits	access;	common	to	be	able	to	write	sensi3ve	entry	

•  Enabled	By	Default	
–  Historically,	many	Windows	deployments	also	came	with	full	
permissions	and	func3onality	enabled	

59	

Secure	Architecture	
Principles	

Browser	Isola3on	
and	Least	Privilege	

60	

Web	browser:	an	analogy	

Opera&ng	system	
•  Subject:	Processes	

–  Has	User	ID	(UID,	SID)	
–  Discre3onary	access	control	

•  Objects	
–  File	
–  Network	
–  …	

•  Vulnerabili3es	
–  Untrusted	programs	
–  Buffer	overflow	
–  …	

Web	browser	
•  Subject:	web	content	(JavaScript)	

–  Has	“Origin”	
–  Mandatory	access	control	

•  Objects	
–  Document	object	model	
–  Frames	
–  Cookies	/	localStorage	

•  Vulnerabili3es	
–  Cross-site	scrip3ng	
–  Implementa3on	bugs	
–  …	

The	web	browser	enforces	its	own	internal	policy.	If	the	browser	
implementa3on	is	corrupted,	this	mechanism	becomes	unreliable.	 61	

Components	of	security	policy	
•  Frame-Frame	rela3onships	

–  canScript(A,B)	
•  Can	Frame	A	execute	a	script	that	manipulates	
arbitrary/nontrivial	DOM	elements	of	Frame	B?	

–  canNavigate(A,B)	
•  Can	Frame	A	change	the	origin	of	content	for	Frame	B?	

•  Frame-principal	rela3onships	
–  readCookie(A,S),	writeCookie(A,S)	

•  Can	Frame	A	read/write	cookies	from	site	S?	
62	

Chromium	Security	Architecture	

•  Browser	("kernel")	
–  Full	privileges	(file	system,	
networking)	

•  Rendering	engine	
–  Up	to	20	processes		
–  Sandboxed	

•  One	process	per	plugin	
–  Full	privileges	of	browser 		

63	

Chromium	

Communica3ng	sandboxed	
components	

See:	hwp://dev.chromium.org/developers/design-documents/sandbox/	 64	

Design	Decisions	
•  Compa3bility	

–  Sites	rely	on	the	exis3ng	browser	security	policy	
–  Browser	is	only	as	useful	as	the	sites	it	can	render	
–  Rules	out	more	“clean	slate”	approaches	

•  Black	Box		
–  Only	renderer	may	parse	HTML,	JavaScript,	etc.	
–  Kernel	enforces	coarse-grained	security	policy	
–  Renderer	to	enforces	finer-grained	policy	decisions	

•  Minimize	User	Decisions	 65	

Task	Alloca3on	

66	

Leverage	OS	Isola3on	
•  Sandbox	based	on	four	OS	mechanisms	

–  A	restricted	token	
–  The	Windows	job	object	
–  The	Windows	desktop	object	
–  Windows	Vista	only:	integrity	levels	

•  Specifically,	the	rendering	engine		
–  adjusts	security	token	by	conver3ng	SIDS	to	DENY_ONLY,	adding	

restricted	SID,	and	calling	AdjustTokenPrivileges	
–  runs	in	a	Windows	Job	Object,	restric3ng	ability	to	create	new	

processes,	read	or	write	clipboard,	..	
–  runs	on	a	separate	desktop,	mi3ga3ng	lax	security	checking	of	some	

Windows	APIs		
See:	hwp://dev.chromium.org/developers/design-documents/sandbox/	 67	

Evalua3on:	CVE	count	

•  Total	CVEs:	

•  Arbitrary	code	execu3on	vulnerabili3es:	

	
68	

Summary	
•  Security	principles	

–  Isola3on	
–  Principle	of	Least	Privilege	
–  Qmail	example	

•  Access	Control	Concepts	
–  Matrix,	ACL,	Capabili3es	

•  OS	Mechanisms	
–  Unix	

•  File	system,	Setuid	
–  Windows	

•  File	system,	Tokens,	EFS	
•  Browser	security	architecture	

–  Isola3on	and	least	privilege	example	 69	

