Secure Architecture
Principles

* |solation and Least Privilege
e Access Control Concepts
* Operating Systems

* Browser Isolation and Least Privilege

Original slides were created by Prof. John Mitchel

Secure Architecture
Principles

Isolation and
Least Privilege

“* Every battle is won

’& BEFORE

= it is fought. 77

f'Vlcmriiou'..s rrrrrrrrrr in
t and t o to war,
while dfotgwa riors SU"TZU
gotow r first and then
eek to win.”

-Sun Tzu

Principles of Secure Design

 Compartmentalization
— |Isolation
— Principle of least privilege
 Defense in depth
— Use more than one security mechanism
— Secure the weakest link

— Fail securely
 Keep it simple

Principle of Least Privilege

e What’s a privilege?
— Ability to access or modify a resource

 Assume compartmentalization and isolation
— Separate the system into isolated compartments
— Limit interaction between compartments

* Principle of Least Privilege

— A system module should only have the minimal
privileges needed for its intended purposes

Monolithic design

Network Network

User input System User device

File system File system

Monolithic design

¥ W

- ;‘4 L
" " Network Network
User input System User device

File system File system

Monolithic design

Network 4 Network
»
. A .
User input - > <« User display
. P W _
File system < File system

Component design

Network Network
User input ; § User display

File system File system

Component design

» 4
~>‘é'

-

Network Network
User input ; § User device

File system File system

>
4 L

10

Network

User input

File system

Component design

- . .z -4

) = Network
; § User device

File system

» /4
'y
r

11

Principle of Least Privilege

 What’s a privilege?
— Ability to access or modify a resource

 Assume compartmentalization and isolation
— Separate the system into isolated compartments
— Limit interaction between compartments

* Principle of Least Privilege

— A system module should only have the minimal
privileges needed for its intended purposes

12

Example: Mail Agent

Requirements

— Receive and send email over external network
— Place incoming email into local user inbox files
Sendmail

— Traditional Unix

— Monolithic design

— Historical source of many vulnerabilities
Qmail

— Compartmentalized design

13

* |solation between processes
— Each process has a UID
* Two processes with same UID have same permissions
— A process may access files, network sockets,
* Permission granted according to UID
* Relation to previous terminology
— Compartment defined by UID
— Privileges defined by actions allowed on system resources

Qmail design

Isolation based on OS isolation
— Separate modules run as separate “users”
— Each user only has access to specific resources
Least privilege
— Minimal privileges for each UID
— Only one “setuid” program
 setuid allows a program to run as different users
— Only one “root” program
* root program has all privileges

15

Structure of gmail

gmail-smtpd >

Incoming external mail Incoming internal mail

gmail-queue

gmail-send

gmail-rspawn gmail-Ispawn

@ gmail-local
16

Isolation by Unix UIDs

gmailg — user who is allowed to read/write mail queue
gmaild

user
gmail-smtpd gmailg

gmails

gmailr

root

gmail-rspawn gmail-Ispawn

setuid user

gmaj user
gmail-remote gmail-local

17

Structure of gmail

gmail-smtpd

gmail-queue

Reads incoming mail directories
Splits message into header, body
Signals gmail-send

gmail-send

gmail-rspawn gmail-Ispawn

@ gmail-local
18

Structure of gmail

gmail-smtpd

gmail-send signals
e gmail-Ispawn if local
e gmail-remote if remote

gmail-rspawn

gmail-queue

gmail-send

gmail-inject

gmail-Ispawn

gmail-local

19

Structure of gmail

gmail-smtpd

gmail-queue

gmail-send

gmail-lspawn gmail-Ispawn

e Spawns gmail-local
e gmail-local runs with ID of user

receiving local mail gmail-local
20

Structure of gmail

gmail-smtpd

gmail-queue

gmail-send

gmail-inject

gmail-local
e Handles alias expansion
e Delivers local mail
e Calls gmail-queue if needed

gmail-Ispawn

mem)' _ gmail-local

21

Structure of gmail

gmail-smtpd

gmail-rspawn

gmail-queue

gmail-inject

gmail-send

gmail-remote
e Delivers message to remote MTA

22

Isolation by Unix UIDs

gmailg — user who is allowed to read/write mail queue
gmaild

user
gmail-smtpd gmailg

setuid == gmail-queue

gmails

gmailr

4= o0t

gmail-rspawn gmail-Ispawn

setuid user

gmaj user
gmail-remote gmail-local

23

Least privilege

gmail-smtpd

setuid =)

gmail-queue

gmail-send

gmail-rspawn gmail-Ispawn

@ gmail-local

24

Qmail summary

e Security goal?

* Threat model?

* Mechanisms
— Least privilege
— Separation

25

Android process isolation

Android application sandbox
— Isolation: Each application runs with its own UID in own VM
* Provides memory protection
 Communication limited to using Unix domain sockets
* Only ping, zygote (spawn another process) run as root

— Interaction: reference monitor checks permissions on inter-
component communication

— Least Privilege: Applications announces permission
e User grants access at install time

26

Contacts

APPLICATIONS

Phone

Browser

Activity
Manager

Package
Manager

APPLICATION FRAMEWORK

Window
Manager

Telephony
Manager

Content
Providers

Resource
Manager

\[o]u}jfer-Yulo]y]

View
Manager

System

XMPP

Location
Service

Manager

Surface
Manager

OpenGL|ES

LIBRARIES

Media
Framework

FreeType

SQLite

WebKit

libc

ANDROID RUNTIME

Core
Libraries

Display
Driver

USB
Driver

Camera
Driver

Keypad
Driver

LINUX KERNEL

Bluetooth
Driver

WiFi
Driver

Binder (IPC)

Flash Memory
Driver

Driver

Power

Audio
Management

Drivers

APPLICATIONS APPLICATIONS

Contacts Phone Browser

Contacts Phone Browser

APPLICATION FRAMEWORK APPLICATION FRAMEWORK
View Notification Activity Window Content View Notification
Manager Manager Providers System Manager

Activity Window Content
Manager Manager Providers System Manager
Resource Location XMPP

Package Telephony
Manager Manager Service

Telephony Resource Location XMPP
Manager Manager

Manager Service

Package
Manager Manager Manager

ANDROID RUNTIME

LIBRARIES ANDROID RUNTIME
Core

Surface Media . Core
SQLite Libraries Libraries

Manager Framework

OpenGL|ES FreeType WebKit

LINUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

UsB Keypad WiFi Audio Power
Management

Driver Driver Driver Drivers

28

Secure Architecture
Principles

Access Control
Concepts

Access control

* Assumptions

— System knows who the user is
* Authentication via name and password, other credential

— Access requests pass through gatekeeper (reference monitor)
e System must not allow monitor to be bypassed

Reference N
monitor ~_
User
> Resource
process access request

~_

policy

Subjects

Access control matrix [Lampson]
Objects
File 1 File 2 File 3 File n
User 1 read write - - read
User 2 write write write - -
User 3 - - - read read
User m read write read write read

31

Implementation concepts

File 1 File 2
* Access control list (ACL) User 1 | read write _
— Store column of matrix . :
. User 2 write write -
with the resource
 Capability User 3 - - read
— User holds a “ticket” for
each resource Userm |Read |write | write

— Two variations
* store row of matrix with user, under OS control
* unforgeable ticket in user space

Access control lists are widely used, often with groups

Some aspects of capability concept are used in many systems

32

ACL vs Capabilities

Access control list
— Associate list with each object
— Check user/group against list
— Relies on authentication: need to know user
Capabilities
— Capability is unforgeable ticket
 Random bit sequence, or managed by OS
e Can be passed from one process to another
— Reference monitor checks ticket
* Does not need to know identify of user/process

33

ACL vs Capabilities

User U

Process P

,

Capabilty c,d,e

User U

Proces

sQ

User U

Process R

Process P ‘l

Capabilty c,e

Process Q 1

Capabilty c

Process R

34

ACL vs Capabilities

Delegation
— Cap: Process can pass capability at run time
— ACL: Try to get owner to add permission to list?
* More common: let other process act under current user
Revocation
— ACL: Remove user or group from list
— Cap: Try to get capability back from process?

* Possible in some systems if appropriate bookkeeping
— OS knows which data is capability

— If capability is used for multiple resources, have to revoke all or none ...

* Indirection: capability points to pointer to resource
— If C— P — R, then revoke capability C by setting P=0

35

Roles (aka Groups)

* Role = set of users
— Administrator, PowerUser, User, Guest
— Assign permissions to roles; each user gets permission
* Role hierarchy
— Partial order of roles Administrator
— Each role gets |
permissions of roles below PowerUser
— List only new permissions User

given to each role |
Guest

Role-Based Access Control

Individuals Roles Resources
/ engineering > _f Server1
__, marketing 7 Server 2

N -

Inl » human res —

Server 3

Advantage: users change more frequently than roles -

Access control summary

Access control involves reference monitor
— Check permissions: {(user info, action)— yes/no
— Important: no way around this check
Access control matrix
— Access control lists vs capabilities
— Advantages and disadvantages of each
Role-based access control
— Use group as “user info”; use group hierarchies

38

Secure Architecture
Principles

Operating Systems

39

Unix access control

File 1 File 2
User 1 read write
e P h id
FOCESS has user | User 2 write write
— Inherit from creating process Usor 3 —
— Process can change id
e Restricted set of options
- w) - User m Read write write
— Special “root” id

e All access allowed
* File has access control list (ACL)
— Grants permission to user ids
— Owner, group, other

40

Unix file access control list

Each file has owner and group
Permissions set by owner setid
— Read, write, execute v
- \I’WX) \I’WX“ I’WX}
— Owner, group, other Y Y Y
— Represented by vector of

ownr grp othr

four octal values
Only owner, root can change permissions
— This privilege cannot be delegated or shared
Setid bits — Discuss in a few slides

41

Process effective user id (EUID)

Each process has three Ids (+ more under Linux)
— RealuserID (RUID)
e same as the user ID of parent (unless changed)
e used to determine which user started the process
— Effective user ID (EUID)
* from set user ID bit on the file being executed, or sys call

e determines the permissions for process
— file access and port binding

— Saved user ID (SUID)
* So previous EUID can be restored

Real group ID, effective group ID, used similarly

42

Process Operations and IDs

Root
— |D=0 for superuser root; can access any file

Fork and Exec
— Inherit three IDs, except exec of file with setuid bit

Setuid system call

— seteuid(newid) can set EUID to
e Real ID or saved ID, regardless of current EUID
* Any ID, if EUID=0

Details are actually more complicated
— Several different calls: setuid, seteuid, setreuid

43

Setid bits on executable Unix file

Three setid bits
— Setuid — set EUID of process to ID of file owner
— Setgid — set EGID of process to GID of file
— Sticky
e Off: if user has write permission on directory, can
rename or remove files, even if not owner

* On: only file owner, directory owner, and root can
rename or remove file in the directory

44

Example

RUID 25

;;ec();/

Owner 18
.| -SetUID
/ program
Owner 18 l
~-FW-r--r-- o
file _read/write "
i=getruid()
Owner 25 setuid(i);
WEP=I==) read/write |«
file ‘ "l .

RUID 25
EUID 18

RUID 25
EUID 25

45

Another example

* Why do we need the setuid bit?

— Some programs need to do privileged operations on behalf
of unprivileged users

 /usr/bin/ping should be able to create raw sockets
(needs root)

* An unprivileged user should be able to run ping

 Solution: /usr/bin/ping in Linux is owned by root with
setuid bit set

46

SetUID for least privilege: OpenSSH

privileged

OpenSS - Network connection
Listen *:22
fork unprivileged child
P eged Request Auth |/ ee “Key Exchange
OpenSS e OpenSS y 9>
Auth Result Network o
Monitor | ~~"""""--- > | Processing Authenticatiog_
g
Srale Bxp°
fork user child
privileged user privileged
OpenSS Request PTY OpenSS =
R User Request User Network Data
=
Monitor = _P_a..s_s -F:-.'.—Y - Procesging

suljawI |

47

Unix summary

Good things

— Some protection from most users

— Flexible enough to make things possible
Main limitation

— Too tempting to use root privileges

— No way to assume some root privileges without all root
privileges

48

Weakness in isolation, privileges

Network-facing Daemons

— Root processes with network ports open to all remote parties, e.g.,
sshd, ftpd, sendmail, ...

* How can you solve this?
Rootkits
— System extension via dynamically loaded kernel modules
Environment Variables

— System variables such as LD _LIBRARY_PATH that are shared state
across applications. An attacker can change LD_LIBRARY_PATH to load
an attacker-provided file as a dynamic library

49

Weakness in isolation, privileges

Shared Resources

— Since any process can create files in /tmp directory, an untrusted
process may create files that are used by arbitrary system processes

Time-of-Check-to-Time-of-Use (TOCTTOU)

— Typically, a root process uses system call to determine if initiating user
has permission to a particular file, e.g. /tmp/X.

— After access is authorized and before the file open, user may change
the file /tmp/X to a symbolic link to a target file /etc/shadow.

50

Access control in Windows

* Some basic functionality similar to Unix

— Specify access for groups and users
* Read, modify, change owner, delete

 Some additional concepts
— Tokens
— Security attributes

* Generally

— More flexible than Unix
e Can define new permissions
e Can give some but not all administrator privileges

51

Secured

Object Tabhle Object

Process

Handle

Security DACL
Descriptor
* Lt ACE ACE
’_hl
" 1,] I v 1w
A — Object

ceossroven Access Read Execute
Assigned when user Assigned when Denied Write Access
logs on object is created Access Rights

Rights

52

ldentify subject using SID

Security ID (SID)
— ldentity (replaces UID)
* SID revision number
e 48-bit authority value

e variable number of
Relative Identifiers
(RIDs), for uniqueness

— Users, groups, computers,

domains, domain members
all have SIDs

New Folder Properties

| General || Shamng | Securty |Customize|

Group or user names
| € Administrators (PAULWEST\Administrators) i
! € Paul West (DOMAIN\paulwest) !
| €% sYsTEM !
| |
l
-]
[Add] [Remove]
Pemissions for SYSTEM Allow Deny
Full Control] 25
Modify ()
Read & Execute]
List Folder Contents 1
Read O
Vinte D ~
For special pemmissions or for advanced settings. | TR T I
click Advanced. -

Lok J[cees J1 2w

Process has set of tokens

* Security context

— Privileges, accounts, and groups associated with the
process or thread

— Presented as set of tokens
* Impersonation token

— Used temporarily to adopt a different security context,
usually of another user

* Security Reference Monitor

— Uses tokens to identify the security context of a process or
thread

54

Object has security descriptor

Security descriptor associated with an object
— Specifies who can perform what actions on the object
Several fields
— Header
* Descriptor revision number

e Control flags, attributes of the descriptor
— E.g., memory layout of the descriptor

— SID of the object's owner

— SID of the primary group of the object

— Two attached optional lists:
* Discretionary Access Control List (DACL) — users, groups, ...
» System Access Control List (SACL) — system logs, ..

55

Access token {

Security
descriptor

.

{

Example access request

User: Mark

Groupl: Administrators

Group?2: Writers

Revision Number

Control flags

Owner SID

Group SID

DACL Pointer

SACL Pointer

Deny

Writers

Read, Write

Allow

Mark

Read, Write

Access request: write
Action: denied

« User Mark requests write permission
« Descriptor denies permission to group

» Reference Monitor denies request
(DACL for access, SACL for audit and logging)

Priority:
Explicit Deny
Explicit Allow
Inherited Deny
Inherited Allow 56

Secured

Object Tabhle Object

Process

Handle

Security DACL
Descriptor
* Lt ACE ACE
’_hl
" 1,] I v 1w
A — Object

ceossroven Access Read Execute
Assigned when user Assigned when Denied Write Access
logs on object is created Access Rights

Rights

57

Impersonation Tokens
(compare to setuid)

* Process adopts security attributes of another
— Client passes impersonation token to server
e Client specifies impersonation level of server
— Anonymous
* Token has no information about the client
— ldentification

* Obtain the SIDs of client and client's privileges, but server
cannot impersonate the client

— Impersonation
* Impersonate the client
— Delegation
* Lets server impersonate client on local, remote systems -

Weakness in isolation, privileges

Similar problems to Unix
— E.g., Rootkits leveraging dynamically loaded kernel modules

Windows Registry
— Global hierarchical database to store data for all programs
— Registry entry can be associated with a security context that
limits access; common to be able to write sensitive entry
Enabled By Default

— Historically, many Windows deployments also came with full
permissions and functionality enabled

59

Secure Architecture
Principles

Browser Isolation
and Least Privilege

60

Web browser: an analogy

Operating system Web browser
* Subject: Processes * Subject: web content (JavaScript)
— Has User ID (UID, SID) — Has “Origin”
— Discretionary access control — Mandatory access control
* Objects * Objects
— File — Document object model
— Network — Frames
- . — Cookies / localStorage
* Vulnerabilities * Vulnerabilities
— Untrusted programs — Cross-site scripting
— Buffer overflow — Implementation bugs

The web browser enforces its own internal policy. If the browser
implementation is corrupted, this mechanism becomes unreliable. 61

Components of security policy

Frame-Frame relationships
— canScript(A,B)

e Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

— canNavigate(A,B)

* Can Frame A change the origin of content for Frame B?
Frame-principal relationships
— readCookie(A,S), writeCookie(A,S)

e Can Frame A read/write cookies from site S?

62

Chromium Security Architecture

Sandbox
 Browser ("kernel")
Engine
— Full privileges (file system,

networking)

* Rendering engine
GOL)SIC

— Up to 20 processes

=T -

HTML, JS, ... Rendered Bitmap

- SandbOXEd Browser Kernel

* One process per plugin
— Full privileges of browser

Chromium

Communicating sandbox

components

IPC Client —|

—

Client

Interceptions |

Broker
Manager
IPC Service |— Policy Engine |— Policy
§§ ...
Target

IPC Client —|

——

| Interceptions |

Policy Engine
Client

See: http://dev.chromium.org/developers/design-documents/sandbox/

Xogpues

Xoqpues

64

Design Decisions

Compatibility

— Sites rely on the existing browser security policy

— Browser is only as useful as the sites it can render
— Rules out more “clean slate” approaches

Black Box

— Only renderer may parse HTML, JavaScript, etc.

— Kernel enforces coarse-grained security policy

— Renderer to enforces finer-grained policy decisions
Minimize User Decisions

65

Task Allocation

Rendering Engine

Browser Kernel

HTML parsing
CSS parsing
Image decoding
JavaScript interpreter
Regular expressions
Layout
Document Object Model
Rendering
SVG
XML parsing
XSLT

Cookie database
History database
Password database
Window management
Location bar
Safe Browsing blacklist
Network stack
SSL/TLS
Disk cache
Download manager
Clipboard

Both

URL parsing
Unicode parsing

66

Leverage OS Isolation

* Sandbox based on four OS mechanisms
— Arrestricted token
— The Windows job object
— The Windows desktop object
— Windows Vista only: integrity levels

* Specifically, the rendering engine

— adjusts security token by converting SIDS to DENY_ONLY, adding
restricted SID, and calling AdjustTokenPrivileges

— runsin a Windows Job Object, restricting ability to create new
processes, read or write clipboard, ..

— runs on a separate desktop, mitigating lax security checking of some
Windows APIs

See: http://dev.chromium.org/developers/design-documents/sandbox/ o7

Evaluation: CVE count

 Total CVEs:
Browser | Renderer | Unclassified
Internet Explorer 4 10 5
Firefox 17 40 3
Safari 12 37 1
* Arbitrary code execution vulnerabilities:
Browser | Renderer | Unclassified
Internet Explorer 1 9 5%
Firefox 5 19 0
Safari 5 10 0

68

Summary

Security principles
— lIsolation
— Principle of Least Privilege
— Qmail example
Access Control Concepts
— Matrix, ACL, Capabilities
OS Mechanisms
— Unix
* File system, Setuid
— Windows
* File system, Tokens, EFS
Browser security architecture
— Isolation and least privilege example

69

