
*Slides borrowed from Vitaly Shmatikov 

Cryptographic Hash Functions 



slide 2 

Hash Functions: Main Idea 

bit strings of any length n-bit strings 

. . 

. 
. 
. 

x’ 
x’’ 

x 

y’ 
y 

hash function H 

◆ Hash function H is a lossy compression function 
•  Collision: H(x)=H(x’) for some inputs x≠x’ 

◆ H(x) should look “random” 
•  Every bit (almost) equally likely to be 0 or 1 

◆  A cryptographic hash function must have certain properties 

“message  
digest” 

message 



slide 3 

One-Way 

◆ Intuition: hash should be hard to invert 
•  “Preimage resistance” 
•  Given a random, it should be hard to find any x such 

that h(x)=y 
–  y is an n-bit string randomly chosen from the output space 

of the hash function, ie, y=h(x’) for some x’ 

◆ How hard? 
•  Brute-force: try every possible x, see if h(x)=y 
•  SHA-1 (a common hash function) has 160-bit output 

–  Suppose we have hardware that can do 230 trials a pop 
–  Assuming 234 trials per second, can do 289 trials per year 
– Will take 271 years to invert SHA-1 on a random image 



Birthday Paradox 

◆ T people 
◆ Suppose each birthday is a random number taken 

from K days (K=365) – how many possibilities? 
•  KT   - samples with replacement 

◆ How many possibilities that are all different? 
•  (K)T = K(K-1)…(K-T+1)  - samples without replacement 

◆ Probability of no repetition? 
•  (K)T/KT ≈ 1 - T(T-1)/2K 

◆ Probability of repetition? 
•  O(T2) 



slide 5 

Collision Resistance 

◆ Should be hard to find x≠x’ such that h(x)=h(x’) 
◆ Birthday paradox 

•  Let T be the number of values x,x’,x’’… we need to 
look at before finding the first pair x≠x’ s.t. h(x)=h(x’) 

•  Assuming h is random, what is the probability that we 
find a repetition after looking at T values?  

•  Total number of pairs? 
–  n = number of bits in the output of hash function 

•  Conclusion: 

◆ Brute-force collision search is O(2n/2), not O(2n) 
•  For SHA-1, this means O(280) vs. O(2160)  

O(T2) 
O(2n) 

T ≈ O(2n/2) 



slide 6 

One-Way vs. Collision Resistance 

◆ One-wayness does not imply collision resistance 
•  Suppose g() is one-way 
•  Define h(x) as g(x’) where x’ is x except the last bit 

–  h is one-way (cannot invert h without inverting g) 
–  Collisions for h are easy to find: for any x, h(x0)=h(x1) 

◆ Collision resistance does not imply one-wayness 
•  Suppose g() is collision-resistant 
•  Define h(x) to be 0x if x is (n-1)-bit long, else 1g(x) 

–  Collisions for h are hard to find: if y starts with 0, then there are 
no collisions; if y starts with 1, then must find collisions in g 

–  h is not one way: half of all y’s (those whose first bit is 0) are 
easy to invert (how?), thus random y is invertible with prob. 1/2  



slide 7 

Weak Collision Resistance 

◆ Given a randomly chosen x, hard to find x’ 
such that h(x)=h(x’) 
•  Attacker must find collision for a specific x… by 

contrast, to break collision resistance, enough to 
find any collision 

•  Brute-force attack requires O(2n) time 

◆ Weak collision resistance does not imply 
collision resistance (why?) 



slide 8 

Hashing vs. Encryption 

◆ Hashing is one-way. There is no “uh-hashing”! 
•  A ciphertext can be decrypted with a decryption key…  

hashes have no equivalent of “decryption” 

◆ Hash(x) looks “random”, but can be compared 
for equality with Hash(x’) 
•  Hash the same input twice → same hash value 
•  Encrypt the same input twice → different ciphertexts 

◆ Cryptographic hashes are also known as 
“cryptographic checksums” or “message 
digests” 



slide 9 

Application: Password Hashing 

◆ Instead of user password, store hash(password) 
◆ When user enters a password, compute its hash 

and compare with the entry in the password file 
•  System does not store actual passwords! 
•  Cannot go from hash to password! 

◆ Why is hashing better than encryption here? 
◆ Does hashing protect weak, easily guessable 

passwords? 



slide 10 

Application: Software Integrity 

goodFile 

Software manufacturer wants to ensure that the executable file 
      is received by users without modification… 
Sends out the file to users and publishes its hash in the NY Times 
The goal is integrity, not secrecy 

Idea: given goodFile and hash(goodFile),  
         very hard to find badFile such that hash(goodFile)=hash(badFile) 

BigFirm™ User 

VIRUS 

badFile 

The Times 

hash(goodFile) 



slide 11 

Which Property Is Needed? 

◆ Passwords stored as hash(password) 
•  One-wayness: hard to recover entire password 
•  Passwords are not random and thus guessable 

◆ Integrity of software distribution 
•  Weak collision resistance? 
•  But software images are not random… maybe need full 

collision resistance 

◆ Auctions: to bid B, send H(B), later reveal B 
•  One-wayness… but does not protect B from guessing 
•  Collision resistance: bidder should not be able to find 

two bids B and B’ such that H(B)=H(B’) 



slide 12 

Common Hash Functions  

◆ MD5 
•  Completely broken by now 

◆ RIPEMD-160 
•  160-bit variant of MD-5 

◆ SHA-1 (Secure Hash Algorithm) 
•  Widely used 
•  US government (NIST) standard as of 1993-95 

–  Also the hash algorithm for Digital Signature Standard (DSS) 



Overview of MD5 

◆ Designed in 1991 by Ron Rivest 
◆ Iterative design using compression function 

 

 

M1 M2 M3 M4 IHV0 

Com- 
press 

Com- 
press 

Com- 
press 

Com- 
press 

IHV4 

slide 13 



slide 14 

History of MD5 Collisions 

◆ 2004: first collision attack 
•  The only difference between colliding messages is 

128 random-looking bytes 

◆ 2007: chosen-prefix collisions 
•  For any prefix, can find colliding messages that have 

this prefix and differ up to 716 random-looking bytes 

◆ 2008: rogue SSL certificates 
•  Talk about this in more detail when discussing PKI 

◆ 2012: MD5 collisions used in cyberwarfare 
•  Flame malware uses an MD5 prefix collision to fake a 

Microsoft digital code signature  



slide 15 

Basic Structure of SHA-1 
Against padding attacks 

Split message into 512-bit blocks 

Compression function 
•  Applied to each 512-bit block 
  and current 160-bit buffer  
•  This is the heart of SHA-1 

160-bit buffer (5 registers) 
initialized with magic values 



slide 16 

SHA-1 Compression Function 

Current message block 
Current buffer (five 32-bit registers A,B,C,D,E) 

Buffer contains final hash value 

Similar to a block cipher, 
with message itself used 
as the key for each round  

Four rounds, 20 steps in each 

Let’s look at each 
step 
in more detail… 

Fifth round adds the original 
buffer to the result of 4 rounds 



slide 17 

A E B C D 

A E B C D 

+ 

+ 
ft 

5 bitwise 
left-rotate 

Wt 

Kt 

One Step of SHA-1 (80 steps total) 

Special constant added 
(same value in each 20-step round, 
4 different constants altogether) 

Logic function   for steps 
•  (B∧C)∨(¬B∧D)           0..19 
•  B⊕C⊕D                    20..39 
•  (B∧C)∨(B∧D)∨(C∧D)  40..59 
•  B⊕C⊕D                    60..79 

Current message block mixed in 
•  For steps 0..15, W0..15=message block 
•  For steps 16..79,  
                 Wt=Wt-16⊕Wt-14⊕Wt-8⊕Wt-3 

+ 

+ 

Multi-level shifting of message blocks 

30 bitwise 
left-rotate 



slide 18 

How Strong Is SHA-1? 

◆ Every bit of output depends on every bit of input 
•  Very important property for collision-resistance 

◆ Brute-force inversion requires 2160 ops, birthday 
attack on collision resistance requires 280 ops 

◆ Some weaknesses discovered in 2005 
•  Collisions can be found in 263 ops 



slide 19 

NIST Competition 

◆ A public competition to develop a new 
cryptographic hash algorithm 
•  Organized by NIST (read: NSA) 

◆ 64 entries into the competition (Oct 2008) 
◆ 5 finalists in 3rd round (Dec 2010) 
◆ Winner: Keccak (Oct 2012) 

•  standardized as SHA-3 



slide 20 

Integrity and Authentication 

Integrity and authentication: only someone who knows KEY can 
                                          compute correct MAC for a given message 

Alice Bob 

KEY 
KEY 

message 

MAC 
(message authentication code) 

message, MAC(KEY,message) 

= 
? 

Recomputes MAC and verifies whether it is 
equal to the MAC attached to the message 



slide 21 

HMAC 

◆ Construct MAC from a cryptographic hash function 
•  Invented by Bellare, Canetti, and Krawczyk (1996) 
•  Used in SSL/TLS, mandatory for IPsec 

◆ Why not encryption? 
•  Hashing is faster than encryption 
•  Library code for hash functions widely available 
•  Can easily replace one hash function with another 
•  There used to be US export restrictions on encryption 

 



slide 22 

Structure of HMAC 

Embedded hash function 

“Black box”: can use this HMAC 
construction with any hash function 
(why is this important?) 

Block size of embedded hash function 

Secret key padded 
to block size 

magic value (flips half of key bits) 

another magic value 
(flips different key bits) 

hash(key,hash(key,message)) 



Overview of Symmetric Encryption 



slide 24 

Basic Problem 

? 
----- ----- ----- 

Given: both parties already know the same secret  

How is this achieved in practice? Goal: send a message confidentially 

Any communication system that aims to guarantee 
confidentiality must solve this problem 



slide 25 

Kerckhoffs's Principle 

◆ An encryption scheme should be 
secure even if enemy knows 
everything about it except the key 
•  Attacker knows all algorithms 
•  Attacker does not know random numbers 

◆ Do not rely on secrecy of the 
algorithms (“security by obscurity”) 

 Full name:  
Jean-Guillaume-Hubert-Victor-
François-Alexandre-Auguste 
Kerckhoffs von Nieuwenhof 

Easy lesson: 
use a good random number 
generator! 



slide 26 

Randomness Matters! 



slide 27 

One-Time Pad (Vernam Cipher) 

= 10111101… 
----- ----- ----- 

= 00110010… 
 10001111…  ⊕ 

00110010… = 
 ⊕ 

   10111101… 

Key is a random bit sequence 
as long as the plaintext 

Encrypt by bitwise XOR of 
plaintext and key: 
ciphertext = plaintext ⊕ key 

Decrypt by bitwise XOR of 
ciphertext and key: 
ciphertext ⊕ key =  
(plaintext ⊕ key) ⊕ key = 
plaintext ⊕ (key ⊕ key) = 
plaintext  

Cipher achieves perfect secrecy if and only if  
there are as many possible keys as possible plaintexts, and 
every key is equally likely   (Claude Shannon, 1949) 



slide 28 

Advantages of One-Time Pad 

◆ Easy to compute 
•  Encryption and decryption are the same operation 
•  Bitwise XOR is very cheap to compute 

◆ As secure as theoretically possible 
•  Given a ciphertext, all plaintexts are equally likely, 

regardless of attacker’s computational resources 
•  …if and only if  the key sequence is truly random 

–  True randomness is expensive to obtain in large quantities 

•  …if and only if  each key is as long as the plaintext 
–  But how do the sender and the receiver communicate the key 

to each other?  Where do they store the key? 



slide 29 

Problems with One-Time Pad 

◆ Key must be as long as the plaintext 
•  Impractical in most realistic scenarios 
•  Still used for diplomatic and intelligence traffic 

◆ Does not guarantee integrity 
•  One-time pad only guarantees confidentiality 
•  Attacker cannot recover plaintext, but can easily 

change it to something else 

◆ Insecure if keys are reused 
•  Attacker can obtain XOR of plaintexts 



slide 30 

No Integrity 

= 10111101… 
----- ----- ----- 

= 00110010… 
 10001111…  ⊕ 

00110010… = 
 ⊕ 

   10111101… 

Key is a random bit sequence 
as long as the plaintext 

Encrypt by bitwise XOR of 
plaintext and key: 
ciphertext = plaintext ⊕ key 

Decrypt by bitwise XOR of 
ciphertext and key: 
ciphertext ⊕ key =  
(plaintext ⊕ key) ⊕ key = 
plaintext ⊕ (key ⊕ key) = 
plaintext  

0 

0 



slide 31 

Dangers of Reuse 

= 00000000… 
----- ----- ----- 

= 00110010… 
 00110010…  ⊕ 

00110010… = 
 ⊕ 

   00000000… 
P1 

C1 

= 11111111… 
----- ----- ----- 

= 00110010… 
 11001101…  ⊕ 

P2 
C2 

Learn relationship between plaintexts 
C1⊕C2 = (P1⊕K)⊕(P2⊕K) =  
(P1⊕P2)⊕(K⊕K) = P1⊕P2 



slide 32 

Reducing Key Size 

◆ What to do when it is infeasible to pre-share huge 
random keys? 

◆ Use special cryptographic primitives: 
    block ciphers, stream ciphers 

•  Single key can be re-used (with some restrictions) 
•  Not as theoretically secure as one-time pad 



slide 33 

Block Ciphers 

◆ Operates on a single chunk (“block”) of plaintext 
•  For example, 64 bits for DES, 128 bits for AES 
•  Same key is reused for each block (can use short keys) 

◆ Result should look like a random permutation 
◆ Not impossible to break, just very expensive 

•  If there is no more efficient algorithm (unproven 
assumption!), can only break the cipher by brute-force, 
try-every-possible-key search 

•  Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information 



slide 34 

Permutation 

1 
2 
3 
4 

1 
2 
3 
4 

CODE becomes DCEO 

◆ For N-bit input, N! possible permutations 
◆ Idea: split plaintext into blocks, for each block use 

secret key to pick a permutation, rinse and repeat 
•  Without the key, permutation should “look random” 



slide 35 

A Bit of Block Cipher History 

◆ Playfair and variants (from 1854 until WWII) 
◆ Feistel structure 

•  “Ladder” structure: split input in half, put one half 
through the round and XOR with the other half 

•  After 3 random rounds, ciphertext indistinguishable 
from a random permutation 

◆ DES: Data Encryption Standard 
•  Invented by IBM, issued as federal standard in 1977 
•  64-bit blocks, 56-bit key + 8 bits for parity 
•  Very widely used (usually as 3DES) until recently 

–  3DES: DES + inverse DES + DES (with 2 or 3 different keys) 

Textbook 

Textbook 



slide 36 

DES Operation (Simplified) 

Block of plaintext 

S S S S 

S S S S 

S S S S 

Key 

Add some secret key bits 
to provide confusion 

Each S-box transforms  
its input bits in a  
“random-looking” way  
to provide diffusion  
(spread plaintext bits  
throughout ciphertext) 

repeat for several rounds 

Block of ciphertext 
Procedure must be reversible  

(for decryption) 



slide 37 

Remember SHA-1? 

Current message block 
Constant value 

Buffer contains final hash value 

Very similar to a block cipher, 
with message itself used 
as the key for each round  



slide 38 

Advanced Encryption Standard (AES) 

◆ US federal standard as of 2001 
◆ Based on the Rijndael algorithm 
◆ 128-bit blocks, keys can be 128, 192 or 256 bits 
◆ Unlike DES, does not use Feistel structure 

•  The entire block is processed during each round 

◆ Design uses some clever math 
•  See section 8.5 of the textbook for a concise summary 



slide 39 

Basic Structure of Rijndael 

128-bit plaintext 
(arranged as 4x4 array of 8-bit bytes) 

128-bit key 

⊕ 
S shuffle the array (16x16 substitution table) 

Shift rows shift array rows  
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3) 

add key for this round 
⊕ 

Expand key 

repeat 10 times 

Mix columns 
mix 4 bytes in each column  
(each new byte depends on all bytes in old column) 



slide 40 

Encrypting a Large Message 

◆ So, we’ve got a good block cipher, but our 
plaintext is larger than 128-bit block size 

◆ Electronic Code Book (ECB) mode 
•  Split plaintext into blocks, encrypt each one separately 

using the block cipher 

◆ Cipher Block Chaining (CBC) mode 
•  Split plaintext into blocks, XOR each block with the 

result of encrypting previous blocks 

◆ Also various counter modes, feedback modes, etc. 



slide 41 

ECB Mode 

◆  Identical blocks of plaintext produce identical 
blocks of ciphertext 

◆ No integrity checks: can mix and match blocks 

plaintext 

ciphertext 

block 
cipher 

block 
cipher 

block 
cipher 

block 
cipher 

block 
cipher 

key key key key key 



slide 42 

Information Leakage in ECB Mode 
[Wikipedia] 

Encrypt in ECB mode 



slide 43 

Adobe Passwords Stolen (2013) 

◆ 153 million account passwords 
•  56 million of them unique 

◆ Encrypted using 3DES in ECB mode rather than 
hashed 

Password hints 



Sent with ciphertext 
(preferably encrypted) 

slide 44 

CBC Mode: Encryption 

◆  Identical blocks of plaintext encrypted differently 
◆  Last cipherblock depends on entire plaintext 

•  Still does not guarantee integrity 

plaintext 

ciphertext 

block 
cipher 

block 
cipher 

block 
cipher 

block 
cipher 

⊕ 
Initialization 
vector 
(random) ⊕ ⊕ ⊕ key key key key 



slide 45 

CBC Mode: Decryption 

plaintext 

ciphertext 

decrypt decrypt decrypt decrypt 

⊕ 
Initialization 
vector ⊕ ⊕ ⊕ key key key key 



slide 46 

ECB vs. CBC 

AES in ECB mode AES in CBC mode 

Similar plaintext 
blocks produce 
similar ciphertext 
blocks (not good!) 

[Picture due to Bart Preneel] 



slide 47 

Choosing the Initialization Vector 

◆ Key used only once 
•  No IV needed (can use IV=0) 

◆ Key used multiple times 
•  Best: fresh, random IV for every message 
•  Can also use unique IV (eg, counter), but then the first 

step in CBC mode must be IV’ ← E(k, IV) 
–  Example: Windows BitLocker 
– May not need to transmit IV with the ciphertext 

◆ Multi-use key, unique messages 
•  Synthetic IV: IV ← F(k’, message) 

–  F is a cryptographically secure keyed pseudorandom function 



slide 48 

CBC and Electronic Voting 

Initialization 
vector 
(supposed to 
 be random) 

plaintext 

ciphertext 

DES DES DES DES 

⊕ ⊕ ⊕ ⊕ 

Found in the source code for Diebold voting machines: 
 
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, 
             totalSize, DESKEY, NULL, DES_ENCRYPT) 

[Kohno, Stubblefield, Rubin, Wallach] 

key key key key 



slide 49 

CTR (Counter Mode) 

◆ Still does not guarantee integrity 
◆ Fragile if counter repeats 

plaintext 

ciphertext 

Enc(IV) Enc(IV+1) Enc(IV+2) Enc(IV+3) 

⊕ 

Random IV 

⊕ ⊕ ⊕ 

IV 

key key key key 



slide 50 

When Is a Cipher “Secure”? 

◆ Hard to recover plaintext from ciphertext? 
•  What if attacker learns only some bits of the plaintext? 

Some function of the bits?  Some partial information 
about the plaintext? 

◆ Fixed mapping from plaintexts to ciphertexts? 
•  What if attacker sees two identical ciphertexts and 

infers that the corresponding plaintexts are identical? 
•  What if attacker guesses the plaintext – can he verify 

his guess? 
•  Implication: encryption must be randomized or stateful 



slide 51 

How Can a Cipher Be Attacked? 

◆ Attackers knows ciphertext and encryption algthm 
•  What else does the attacker know? Depends on the 

application in which the cipher is used! 

◆ Known-plaintext attack (stronger) 
•  Knows some plaintext-ciphertext pairs 

◆ Chosen-plaintext attack (even stronger) 
•  Can obtain ciphertext for any plaintext of his choice 

◆ Chosen-ciphertext attack (very strong) 
•  Can decrypt any ciphertext except the target 
•  Sometimes very realistic 



slide 52 

Known-Plaintext Attack 

Extracting password from an encrypted PKZIP file … 
◆ “… I opened the ZIP file and found a `logo.tif’ file, 

so I went to their main Web site and looked at all 
the files named `logo.tif.’ I downloaded them and 
zipped them all up and found one that matched 
the same checksum as the one in the protected 
ZIP file” 

◆ With known plaintext, PkCrack took 5 minutes to 
extract the key 
•  Biham-Kocher attack on PKZIP stream cipher  

[From “The Art of Intrusion”] 



slide 53 

Chosen-Plaintext Attack 

Crook #1 changes 
his PIN to a number 
of his choice 

cipher(key,PIN) 

PIN is encrypted and 
transmitted to bank 

Crook #2 eavesdrops 
on the wire and learns 
ciphertext corresponding 
to chosen plaintext PIN 

… repeat for any PIN value 



slide 54 

Very Informal Intuition 

◆ Security against chosen-plaintext attack 
•  Ciphertext leaks no information about the plaintext 
•  Even if the attacker correctly guesses the plaintext, he 

cannot verify his guess 
•  Every ciphertext is unique, encrypting same message 

twice produces completely different ciphertexts 

◆ Security against chosen-ciphertext attack 
•  Integrity protection – it is not possible to change the 

plaintext by modifying the ciphertext 

Minimum security  
requirement for a  
modern encryption scheme 



slide 55 

The Chosen-Plaintext Game  

◆ Attacker does not know the key 
◆ He chooses as many plaintexts as he wants, and 

receives the corresponding ciphertexts 
◆ When ready, he picks two plaintexts M0 and M1 

•  He is even allowed to pick plaintexts for which he 
previously learned ciphertexts! 

◆ He receives either a ciphertext of M0, or a 
ciphertext of M1 

◆ He wins if he guesses correctly which one it is 



slide 56 

 
Meaning of “Leaks No Information” 

◆ Idea: given a ciphertext, attacker should not be 
able to learn even a single bit of useful 
information about the plaintext 

◆ Let Enc(M0,M1,b) be a “magic box” that returns 
encrypted Mb 
•  Given two plaintexts, the box always returns the 

ciphertext of the left plaintext or right plaintext 
•  Attacker can use this box to obtain the ciphertext of 

any plaintext M by submitting M0=M1=M, or he can try 
to learn even more by submitting M0≠M1 

◆ Attacker’s goal is to learn just this one bit b 

0 or 1 



slide 57 

Chosen-Plaintext Security 

◆ Consider two experiments (A is the attacker) 
 Experiment 0    Experiment 1 

       A interacts with Enc(-,-,0)      A interacts with Enc(-,-,1) 
       and outputs his guess of bit b     and outputs his guess of bit b 

•  Identical except for the value of the secret bit 
•  b is attacker’s guess of the secret bit 

◆ Attacker’s advantage is defined as 
| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) | 
◆ Encryption scheme is chosen-plaintext secure if 

this advantage is negligible for any efficient A 



slide 58 

Simple Example 

◆ Any deterministic, stateless symmetric encryption 
scheme is insecure  
•  Attacker can easily distinguish encryptions of different 

plaintexts from encryptions of identical plaintexts 
•  This includes ECB mode of common block ciphers! 

 Attacker A interacts with Enc(-,-,b) 
    Let X,Y be any two different plaintexts 

       C1 ← Enc(X,X,b);   C2 ← Enc(X,Y,b); 
       If C1=C2 then b=0 else b=1 

◆ The advantage of this attacker A is 1 
Prob(A outputs 1 if b=0)=0    Prob(A outputs 1 if b=1)=1 



slide 59 

Encrypt + MAC 

Goal: confidentiality + integrity + authentication 

Alice Bob 

K1, K2 
K1, K2 

msg 

MAC=HMAC(K2,msg) 

encrypt(msg), MAC(msg) 

= 
? 

Encrypt(K1,msg) 

Decrypt 

Verify MAC 

encrypt(msg2), MAC(msg2) 

Can tell if messages 
are the same! 

MAC is deterministic: messages are equal ⇒ their MACs are equal 

Solution: Encrypt, then MAC    (or MAC, then encrypt) 

Breaks chosen-
plaintext security 



slide 60 

CS 361S 

Overview of 
Public-Key Cryptography 



slide 61 

Public-Key Cryptography 

? 

Given: Everybody knows Bob’s public key 
  - How is this achieved in practice? 

          Only Bob knows the corresponding private key 

private key 

Goals: 1. Alice wants to send a message that  
              only Bob can read 
          2. Bob wants to send a message that 
              only Bob could have written 

public key 

public key 

Alice 
Bob 



slide 62 

Applications of Public-Key Crypto 

◆ Encryption for confidentiality 
•  Anyone can encrypt a message 

– With symmetric crypto, must know the secret key to encrypt 

•  Only someone who knows the private key can decrypt 
•  Secret keys are only stored in one place 

◆ Digital signatures for authentication 
•  Only someone who knows the private key can sign 

◆ Session key establishment 
•  Exchange messages to create a secret session key 
•  Then switch to symmetric cryptography (why?) 



slide 63 

Public-Key Encryption 

◆ Key generation: computationally easy to generate 
a pair (public key PK, private key SK) 

◆ Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M) 

◆ Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M 
•  Infeasible to learn anything about M from C without SK 
•  Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M 



slide 64 

Some Number Theory Facts 

◆ Euler totient function ϕ(n) where n≥1 is the 
number of integers in the [1,n] interval that are 
relatively prime to n 
•  Two numbers are relatively prime if their  
    greatest common divisor (gcd) is 1 

◆ Euler’s theorem:  
   if a∈Zn*, then aϕ(n) ≡ 1 mod n 
◆ Special case: Fermat’s Little Theorem 
   if p is prime and gcd(a,p)=1, then ap-1 ≡ 1 mod p 



slide 65 

RSA Cryptosystem 

◆ Key generation: 
•  Generate large primes p, q 

–  At least 2048 bits each… need primality testing! 

•  Compute n=pq  
–  Note that ϕ(n)=(p-1)(q-1) 

•  Choose small e, relatively prime to ϕ(n) 
–  Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?) 

•  Compute unique d such that ed ≡ 1 mod ϕ(n) 
•  Public key = (e,n);  private key = d 

◆ Encryption of m:  c = me mod n 
◆ Decryption of c:   cd mod n = (me)d mod n = m 

[Rivest, Shamir, Adleman 1977] 



slide 66 

Why RSA Decryption Works 

◆ e⋅d ≡ 1 mod ϕ(n) 
◆ Thus e⋅d = 1+k⋅ϕ(n) = 1+k(p-1)(q-1) for some k 
◆ If gcd(m,p)=1, then by Fermat’s Little Theorem, 

mp-1 ≡ 1 mod p 
◆ Raise both sides to the power k(q-1) and multiply 

by m, obtaining m1+k(p-1)(q-1) ≡ m mod p 
◆ Thus med ≡ m mod p 
◆ By the same argument, med ≡ m mod q 
◆ Since p and q are distinct primes and p⋅q=n,  
   med ≡ m mod n 



slide 67 

Why Is RSA Secure? 

◆ RSA problem: given c, n=pq, and  
 e such that gcd(e,(p-1)(q-1))=1,  
 find m such that me=c mod n 

•  In other words, recover m from ciphertext c and public 
key (n,e) by taking eth root of c modulo n 

•  There is no known efficient algorithm for doing this 

◆ Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek 
◆ If factoring is easy, then RSA problem is easy, but 

may be possible to break RSA without factoring n 



“Textbook” RSA Is Bad Encryption 

◆ Deterministic 
•  Attacker can guess plaintext, compute ciphertext, and 

compare for equality 
•  If messages are from a small set (for example, yes/no), 

can build a table of corresponding ciphertexts 

◆ Can tamper with encrypted messages 
•  Take an encrypted auction bid c and submit  
   c(101/100)e mod n  instead 

◆ Does not provide semantic security (security 
against chosen-plaintext attacks) 

slide 68 



slide 69 

Integrity in RSA Encryption 

◆ “Textbook” RSA does not provide integrity 
•  Given encryptions of m1 and m2, attacker can create 

encryption of m1⋅m2 
–  (m1

e) ⋅ (m2
e) mod n ≡ (m1⋅m2)e mod n 

•  Attacker can convert m into mk without decrypting 
–  (me)k mod n ≡ (mk)e mod n 

◆ In practice, OAEP is used: instead of encrypting 
M, encrypt M⊕G(r) ; r⊕H(M⊕G(r)) 
•  r is random and fresh, G and H are hash functions 
•  Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext 
– … if hash functions are “good” and RSA problem is hard 



slide 70 

Digital Signatures: Basic Idea 

? 

Given: Everybody knows Bob’s public key 

          Only Bob knows the corresponding private key 

private key 

Goal: Bob sends a “digitally signed” message 
1.  To compute a signature, must know the private key 
2.  To verify a signature, only the public key is needed 

public key 

public key 

Alice Bob 



slide 71 

RSA Signatures 

◆ Public key is (n,e), private key is d 
◆ To sign message m:  s = hash(m)d mod n 

•  Signing and decryption are the same mathematical 
operation in RSA 

◆ To verify signature s on message m:    
    se mod n = (hash(m)d)e mod n = hash(m) 

•  Verification and encryption are the same mathematical 
operation in RSA 

◆ Message must be hashed and padded (why?) 



slide 72 

Digital Signature Algorithm (DSA) 

◆ U.S. government standard (1991-94) 
•  Modification of the ElGamal signature scheme (1985) 

◆ Key generation: 
•  Generate large primes p, q such that q divides p-1 

–  2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8 

•  Select h∈Zp* and compute g=h(p-1)/q mod p 
•  Select random x such 1≤x≤q-1, compute y=gx mod p 

◆ Public key: (p, q, g, gx mod p), private key: x 
◆ Security of DSA requires hardness of discrete log 

•  If one can take discrete logarithms, then can extract x 
(private key) from gx mod p (public key) 



slide 73 

DSA: Signing a Message 

Message 

Hash function 
(SHA-1) 

Random secret 
between 0 and q 

r = (gk mod p) mod q 

Private key 

s = k-1⋅(H(M)+x⋅r) mod q 

(r,s) is the 
signature on M 



slide 74 

DSA: Verifying a Signature 

Message 

Signature 

w = s’-1 mod q 

Compute  
(gH(M’)w ⋅ yr’w mod q  mod p) mod 

q 

Public key 

If they match, signature is valid 



slide 75 

Why DSA Verification Works 

◆ If (r,s) is a valid signature, then  
   r ≡ (gk mod p) mod q  ;  s ≡ k-1⋅(H(M)+x⋅r) mod q 

◆ Thus H(M) ≡ -x⋅r+k⋅s mod q 

◆ Multiply both sides by w=s-1 mod q 

◆ H(M)⋅w + x⋅r⋅w ≡ k mod q 

◆ Exponentiate g to both sides 
◆ (gH(M)⋅w + x⋅r⋅w ≡ gk) mod p mod q 

◆ In a valid signature, gk mod p mod q = r, gx mod p = y 
◆ Verify gH(M)⋅w⋅yr⋅w ≡ r mod p mod q 

 



slide 76 

Security of DSA 

◆ Can’t create a valid signature without private key 
◆ Can’t change or tamper with signed message 
◆ If the same message is signed twice, signatures 

are different 
•  Each signature is based in part on random secret k 

◆ Secret k must be different for each signature! 
•  If k is leaked or if two messages re-use the same k, 

attacker can recover secret key x and forge any 
signature from then on 



slide 77 

PS3 Epic Fail 

◆ Sony uses ECDSA algorithm to sign authorized 
software for Playstation 3 
•  Basically, DSA based on elliptic curves 
   … with the same random value in every signature 

◆ Trivial to extract master signing key and sign any 
homebrew software – perfect “jailbreak” for PS3 

◆ Announced by George “Geohot” Hotz 
   and Fail0verflow team in Dec 2010 
 

Q: Why didn’t Sony just revoke the key? 



slide 78 

Diffie-Hellman Protocol 

◆ Alice and Bob never met and share no secrets 
◆ Public info: p and g 

•  p is a large prime number, g is a generator of Zp* 
–  Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p 

Alice Bob 

Pick secret, random X Pick secret, random Y 

gy mod p 

gx mod p 

Compute k=(gy)x=gxy mod p 
 

Compute k=(gx)y=gxy mod p 
 



slide 79 

Why Is Diffie-Hellman Secure? 

◆ Discrete Logarithm (DL) problem:  
   given gx mod p, it’s hard to extract x 

•  There is no known efficient algorithm for doing this 
•  This is not enough for Diffie-Hellman to be secure! 

◆ Computational Diffie-Hellman (CDH) problem: 
   given gx and gy, it’s hard to compute gxy mod p 

•  … unless you know x or y, in which case it’s easy 

◆ Decisional Diffie-Hellman (DDH) problem:  
   given gx and gy, it’s hard to tell the difference 

between gxy mod p and gr mod p where r is random 



slide 80 

Properties of Diffie-Hellman 

◆ Assuming DDH problem is hard, Diffie-Hellman 
protocol is a secure key establishment protocol 
against passive attackers 
•  Eavesdropper can’t tell the difference between the 

established key and a random value 
•  Can use the new key for symmetric cryptography 

◆ Basic Diffie-Hellman protocol does not provide 
authentication 
•  IPsec combines Diffie-Hellman with signatures, anti-DoS 

cookies, etc. 



slide 81 

Advantages of Public-Key Crypto 

◆ Confidentiality without shared secrets 
•  Very useful in open environments 
•  Can use this for key establishment, avoiding the 

“chicken-or-egg” problem 
– With symmetric crypto, two parties must share a secret before 

they can exchange secret messages 

◆ Authentication without shared secrets 
◆ Encryption keys are public, but must be sure that 

Alice’s public key is really her public key 
•  This is a hard problem… Often solved using public-key 

certificates 



slide 82 

Disadvantages of Public-Key Crypto 

◆ Calculations are 2-3 orders of magnitude slower 
•  Modular exponentiation is an expensive computation 
•  Typical usage: use public-key cryptography to establish 

a shared secret, then switch to symmetric crypto 
–  SSL, IPsec, most other systems based on public crypto 

◆ Keys are longer 
•  2048 bits (RSA) rather than 128 bits (AES) 

◆ Relies on unproven number-theoretic assumptions 
•  Factoring, RSA problem, discrete logarithm problem, 

decisional Diffie-Hellman problem… 


