Internet Security: How the Internet works and some basic vulnerabilities

*Slides borrowed from Dan Boneh

Internet Infrastructure

Local and interdomain routing

- TCP/IP for routing and messaging
- BGP for routing announcements
- Domain Name System

Find IP address from symbolic name (www.cs.columbia.edu)

TCP Protocol Stack

Data Formats

Internet Protocol

Connectionless
 Unreliable
 Best effort

Notes:

 src and dest **ports** not parts of IP hdr

Typical route uses several hops
 IP: no ordering or delivery guarantees

IP Protocol Functions (Summary)

Routing

- IP host knows location of router (gateway)
- IP gateway must know route to other networks

Fragmentation and reassembly

If max-packet-size less than the user-data-size

Error reporting

- ICMP packet to source if packet is dropped
- TTL field: decremented after every hop
 - Packet dropped if TTL=0. Prevents infinite loops.

Problem: no src IP authentication

Client is trusted to embed correct source IP

- Easy to override using raw sockets
- Libnet: a library for formatting raw packets with arbitrary IP headers

 Anyone who owns their machine can send packets with arbitrary source IP

- ... response will be sent back to forged source IP
- Implications:
 - Anonymous DoS attacks;
 - Anonymous infection attacks (e.g. slammer worm)

Transmission Control Protocol (TCP)

Connection-oriented, preserves order

- Sender
 - Break data into packets
 - Attach packet numbers
- Receiver
 - Acknowledge receipt; lost packets are resent
 - Reassemble packets in correct order

TCP Header (protocol=6)

Received packets with SN too far out of window are dropped

Basic Security Problems

- 1. Network packets pass by untrusted hosts
 - Eavesdropping, packet sniffing
 - Especially easy when attacker controls a machine close to victim (e.g. WiFi routers)
- 2. TCP state easily obtained by eavesdroppingEnables spoofing and session hijacking
- 3. Denial of Service (DoS) vulnerabilities

Why random initial sequence numbers?

Suppose initial seq. numbers (SN_c, SN_s) are predictable:

- Attacker can create TCP session on behalf of forged source IP
- Breaks IP-based authentication (e.g. SPF, /etc/hosts)
 - Random seq. num. do not prevent attack, but make it harder

Routing Security

ARP, OSPF, BGP

Routing Protocols

- ◆ ARP (addr resolution protocol): IP addr → eth addr Security issues: (local network attacks)
 - Node A can confuse gateway into sending it traffic for Node B
 - By proxying traffic, node A can read/inject packets into B's session (e.g. WiFi networks)
- OSPF: used for routing within an AS
- BGP: routing between Autonomous Systems
 Security issues: unauthenticated route updates
 - Anyone can cause entire Internet to send traffic for a victim IP to attacker's address
 - Example: Youtube-Pakistan mishap
 - Anyone can hijack route to victim (next slides)

Security Issues

BGP path attestations are un-authenticated

- Anyone can inject advertisements for arbitrary routes
- Advertisement will propagate everywhere
- Used for DoS, spam, and eavesdropping (details in DDoS lecture)
- Often a result of human error

Solutions:

- RPKI: AS obtains a certificate (ROA) from regional authority (RIR) and attaches ROA to path advertisement. Advertisements without a valid ROA are ignored. Defends against a malicious AS (but not a network attacker)
- SBGP: sign every hop of a path advertisement

Example path hijack (source: Renesys 2013)

Feb 2013: Guadalajara \rightarrow Washington DC via Belarus

Normally: Alestra (Mexico) \rightarrow PCCW (Texas) \rightarrow Qwest (DC)

Reverse route (DC \rightarrow Guadalajara) is unaffected:

 Person browsing the Web in DC cannot tell by *traceroute* that HTTP responses are routed through Moscow

OSPF: routing inside an AS

Link State Advertisements (LSA):

- Flooded throughout AS so that all routers in the AS have a complete view of the AS topology
- Transmission: IP datagrams, protocol = 89

Neighbor discovery:

- Routers dynamically discover direct neighbors on attached links --- sets up an "adjacenty"
- Once setup, they exchange their LSA databases

Example: LSA from Ra and Rb

Security features

- OSPF message integrity (unlike BGP)
 Every link can have its own shared secret
 Unfortunately, OSPF uses an insecure MAC: MAC(k,m) = MD5(data II key II pad II len)
- Every LSA is flooded throughout the AS
 - If a single malicious router, valid LSAs may still reach dest.
- The "fight back" mechanism
 - If a router receives its own LSA with a newer timestamp than the latest it sent, it immediately floods a new LSA
- Links must be advertised by both ends

Still some attacks possible [NKGB'12]

Threat model:

single malicious router wants to disrupt all AS traffic
 Example problem: adjacency setup need no peer feedback

Domain Name System

DNS Root Name Servers

Hierarchical service

- Root name servers for top-level domains
- Authoritative name servers for subdomains
- Local name resolvers contact authoritative servers when they do not know a name

1 Feb 98 **DNS Root Servers** Designation, Responsibility, and Locations I-NORDU Stockholm E-NASA Moffet Field CA F-ISC Woodside CA M-WIDE Keio K-LINX/RIPE London A-NSF-NSI Herndon VA C-PSI Herndon VA D-UMD College Pk MD G-DISA-Boeing Vienna VA B-DISA-USC Marina delRey CA H-USArmy Aberdeen MD L-DISA-USC Marina delRey CA J-NSF-NSI Herndon VA

DNS record types (partial list):

- NS: name server (points to other server)
- A: address record (contains IP address)
- MX: address in charge of handling email
- TXT: generic text (e.g. used to distribute site public keys (DKIM))

Caching

DNS responses are cached

- Quick response for repeated translations
- Note: NS records for domains also cached

DNS negative queries are cached

Save time for nonexistent sites, e.g. misspelling

Cached data periodically times out

- Lifetime (TTL) of data controlled by owner of data
- TTL passed with every record

DNS Packet

Query ID:

16 bit random valueLinks response to query

← 32 bits								
ver	ver hlen TOS		pkt len					
identification			flg	fragment offse	ŧ			
TTL		protocol	header cksum			≻IP	Header	
		Source I	P ad	dress				
Destination IP address								
Source port			Destination port					
UDP length			UDP cksum				r neauer	
	Quer	y ID	Q R Opc	ode 🗛 T R R Z rc	ode:			
Question count			Answer count					
Authority count			Addl. Record count		t		C Data	
		DNS qu or answ	est: er (ion data			5 Dala	

(from Steve Friedl)

Resolver to NS request

Response to resolver

Response contains IP addr of next NS server (called "glue")

Response ignored if unrecognized QueryID

Authoritative response to resolver

bailiwick checking: response is cached if it is within the same domain of query (i.e. **a.com** cannot set NS for **b.com**)

final answer

Basic DNS Vulnerabilities

- Users/hosts trust the host-address mapping provided by DNS:
 - Used as basis for many security policies:
 - Browser same origin policy, URL address bar

Obvious problems

- Interception of requests or compromise of DNS servers can result in incorrect or malicious responses
 - e.g.: malicious access point in a Cafe
- Solution authenticated requests/responses
 Provided by DNSsec ... but few use DNSsec

DNS cache poisoning (a la Kaminsky' 08)

Victim machine visits attacker's web site, downloads Javascript

If at first you don't succeed ...

Victim machine visits attackers web site, downloads Javascript

success after \approx 256 tries (few minutes)

Defenses

- Increase Query ID size. How?
- Randomize src port, additional 11 bits
 Now attack takes several hours
- Ask every DNS query twice:
 - Attacker has to guess QueryID correctly twice (32 bits)
 - ... but Apparently DNS system cannot handle the load

[DWF' 96, R' 01] DNS Rebinding Attack

DNS Rebinding Defenses

Browser mitigation: DNS Pinning

- Refuse to switch to a new IP
- Interacts poorly with proxies, VPN, dynamic DNS, ...
- Not consistently implemented in any browser

Server-side defenses

- Check Host header for unrecognized domains
- Authenticate users with something other than IP
- Firewall defenses
 - External names can't resolve to internal addresses
 - Protects browsers inside the organization

Summary

- Core protocols not designed for security
 - Eavesdropping, Packet injection, Route stealing, DNS poisoning
 - Patched over time to prevent basic attacks

(e.g. random TCP SN)

♦ More secure variants exist (next lecture) :
IP → IPsec
DNS → DNSsec
BGP → SBGP