
*Slides borrowed from Vitaly Shmatikov 

How crypto fails in practice? 
CSS and WEP 
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Stream Ciphers 

◆ One-time pad: 
   Ciphertext(Key,Message)=Message⊕Key 

•  Key must be a random bit sequence as long as message 

◆ Idea: replace “random” with “pseudo-random” 
•  Use a pseudo-random number generator (PRNG) 
•  PRNG takes a short, truly random secret seed and 

expands it into a long “random-looking” sequence 
–  E.g., 128-bit seed into a 106-bit  
   pseudo-random sequence 

◆ Ciphertext(Key,Msg)=IV, Msg⊕PRNG(IV,Key) 
•  Message processed bit by bit (unlike block cipher) 

No efficient algorithm can tell 
this sequence from truly random 
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Stream Cipher Terminology 

◆ The seed of a pseudo-random generator typically 
consists of initialization vector (IV) and key  
•  The key is a secret known only to the sender and the 

recipient, not sent with the ciphertext 
•  IV is usually sent with the ciphertext 

◆ The pseudo-random bit stream produced by 
PRNG(IV,key) is referred to as the keystream 

◆ Encrypt message by XORing with keystream 
•  ciphertext = message ⊕ keystream 
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Properties of Stream Ciphers 

◆ Usually very fast (faster than block ciphers) 
•  Used where speed is important: WiFi, DVD, RFID, VoIP 

◆ Unlike one-time pad, stream ciphers do not provide 
perfect secrecy 
•  Only as secure as the underlying PRNG 
•  If used properly, can be as secure as block ciphers 

◆ PRNG must be cryptographically secure 
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Using Stream Ciphers 

◆ No integrity 
•  Associativity & commutativity: 
   (M1⊕PRNG(seed)) ⊕ M2 = (M1⊕M2) ⊕ PRNG(seed) 
•  Need an additional integrity protection mechanism  

◆ Known-plaintext attack is very dangerous if 
keystream is ever repeated 
•  Self-cancellation property of XOR: X⊕X=0 
•  (M1⊕PRNG(seed)) ⊕ (M2⊕PRNG(seed)) = M1⊕M2 
•  If attacker knows M1, then easily recovers M2  …  
   also, most plaintexts contain enough redundancy that 

can recover parts of both messages from M1⊕M2  
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How Random is “Random”? 
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Cryptographically Secure PRNG 

◆ Next-bit test: given N bits of the pseudo-random 
sequence, predict (N+1)st bit 
•  Probability of correct prediction should be very close to 

1/2 for any efficient adversarial algorithm  
   (means what?) 

◆ PRNG state compromise 
•  Even if the attacker learns the complete or partial state 

of the PRNG, he should not be able to reproduce the 
previously generated sequence 

– … or future sequence, if there’ll be future random seed(s) 

◆ Common PRNGs are not cryptographically secure  
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LFSR: Linear Feedback Shift Register 

b0 

Example: 
4-bit LFSR b1 b2 b3 

⊕ 

◆ For example, if the seed is 1001, the generated 
sequence is 1001101011110001001… 

◆ Repeats after 15 bits (24-1) 

add to pseudo-random sequence 
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Each DVD is encrypted with 
a disk-specific 40-bit DISK KEY 

Each player has its own PLAYER KEY 
(409 player manufacturers, 
each has its player key) 

Content Scrambling System (CSS) 

◆ DVD encryption scheme from Matsushita and Toshiba 

KEY DATA BLOCK contains disk key encrypted 
with 409 different player keys: 
•  EncryptDiskKey(DiskKey) 
•  EncryptPlayerKey1(DiskKey) … EncryptPlayerKey409(DiskKey) 

This helps attacker 
verify his guess of disk key 

What happens if even a single 
player key is compromised? 
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Attack on CSS Decryption Scheme 

� Given known 40-bit plaintext, repeat the following 5 times (once for each plaintext byte):  
    guess the byte output by the sum of the two LFSRs; use known ciphertext to verify 
    – this takes O(28)    
� For each guessed output byte, guess 16 bits contained in LFSR-17 – this takes O(216) 
� Clock out 24 bits out of LFSR-17, use subtraction to determine the corresponding 
    output bits of LFSR-25 – this reveals all of LFSR-25 except the highest bit 
� “Roll back” 24 bits, try both possibilities – this takes O(2) 
� Clock out 16 more bits out of both LFSRs, verify the key 

… 

… 

LFSR-17 

disk key 

LFSR-25 
24 key bits 

16 key bits 

“1” seeded in 4th bit 

“1” seeded in 1st bit 

invert 

+mod 256 

carry 

Encrypted title key 
Table-based 
“mangling” 

Decrypted title key ⊕ � 
� 

� 

� 

EncryptDiskKey(DiskKey) 
stored on disk � 

This attack takes O(225)  

[Frank Stevenson] 
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DeCSS 

◆ In CSS, disk key is encrypted under hundreds of 
different player keys… including Xing, a 
software DVD player 

◆ Reverse engineering the object code of Xing 
revealed its player key 
•  Every CSS disk contains the master disk key 

encrypted under Xing’s key 
•  One bad player ⇒ entire system is broken! 

◆ Easy-to-use DeCSS software 
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DeCSS Aftermath 

◆ DVD CCA sued Jon Lech Johansen 
   (“DVD Jon”), one of DeCSS authors -  
   eventually dropped 
◆ Publishing DeCSS code violates copyright 

•  Underground distribution as haikus and T-shirts 
•  “Court to address DeCSS T-Shirt: When can a T-shirt 

become a trade secret? When it tells you how to copy 
a DVD.”     - Wired News 
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RC4 

◆ Designed by Ron Rivest for RSA in 1987 
◆ Simple, fast, widely used 

•  SSL/TLS for Web security, WEP for wireless 
 
Byte array S[256] contains a permutation of numbers from 0 to 255 
i = j := 0 

loop 

 i := (i+1) mod 256 

 j := (j+S[i]) mod 256 

 swap(S[i],S[j]) 
 output (S[i]+S[j]) mod 256 

end loop 
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RC4 Initialization 

Divide key K into L bytes 

for i = 0 to 255 do 
     S[i] := i 

j := 0 

for i = 0 to 255 do 

 j := (j+S[i]+K[i mod L]) mod 256 

 swap(S[i],S[j]) 

Key can be any length 
up to 2048 bits 

Generate initial permutation 
from key K  

◆  To use RC4, usually prepend initialization vector (IV) to the key 
•  IV can be random or a counter 

◆  RC4 is not random enough… First byte of generated sequence depends 
only on 3 cells of state array S - this can be used to extract the key! 
•  To use RC4 securely, RSA suggests discarding first 256 bytes Fluhrer-Mantin-

Shamir attack 
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802.11b Overview 

◆ Standard for wireless networks (IEEE 1999) 
◆ Two modes: infrastructure and ad hoc 

IBSS (ad hoc) mode BSS (infrastructure) mode 
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Access Point SSID 

◆ Service Set Identifier (SSID) is the “name” of the 
access point 
•  By default, access point broadcasts its SSID in 

plaintext “beacon frames” every few seconds 

◆ Default SSIDs are easily guessable 
•  Manufacturer’s defaults: “linksys”, “tsunami”, etc. 
•  This gives away the fact that access point is active 

◆ Access point settings can be changed to prevent 
it from announcing its presence in beacon frames 
and from using an easily guessable SSID 
•  But then every user must know SSID in advance 
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WEP: Wired Equivalent Privacy 

◆ Special-purpose protocol for 802.11b 
◆ Goals: confidentiality, integrity, authentication 

•  Intended to make wireless as secure as wired network 

◆ Assumes that a secret key is shared between 
access point and client 

◆ Uses RC4 stream cipher seeded with 24-bit 
initialization vector and 40-bit key 
•  Terrible design choice for wireless environment 
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Shared-Key Authentication 

beacon 

Prior to communicating data, access point may require client to authenticate 

Access Point Client 

association 
request 

association 
response 

probe request 
OR 

challenge 

IV, challenge⊕RC4(IV,K) 

unauthenticated & 
unassociated 

authenticated & 
unassociated 

authenticated & 
associated 

Passive eavesdropper recovers RC4(IV,K),  
can respond to any subsequent challenge  
without knowing K 
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How WEP Works 

24 bits 40 bits 

(IV, shared key) used as RC4 seed 
•  Must never be repeated (why?) 
•  There is no key update protocol, so 
   security relies on never repeating IV 

IV sent in the clear 
Worse: changing IV with 
each packet is optional! 

CRC-32 checksum is linear in ⊕:  
if attacker flips some plaintext bits, he knows which 
bits of CRC to flip to produce the same checksum 

no integrity! 
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RC4 Is a Bad Choice for Wireless 

◆ Stream ciphers require sender and receiver to be 
at the same place in the keystream 
•  Not suitable when packet losses are common 

◆ WEP solution: a separate keystream for each 
packet (requires a separate seed for each packet) 
•  Can decrypt a packet even if a previous packet was lost 

◆ But there aren’t enough possible seeds! 
•  RC4 seed = 24-bit initialization vector + fixed key 
•  Assuming 1500-byte packets at 11 Mbps,  
   224 possible IVs will be exhausted in about 5 hours 

◆ Seed reuse is deadly for stream ciphers 
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Recovering the Keystream 

◆ Get access point to encrypt a known plaintext 
•  Send spam, access point will encrypt and forward it 
•  Get victim to send an email with known content 

◆ With known plaintext, easy to recover keystream 
•  C ⊕ M = (M⊕RC4(IV,key)) ⊕ M = RC4(IV,key) 

◆ Even without knowing the plaintext, can exploit 
plaintext regularities to recover partial keystream 
•  Plaintexts are not random: for example, IP packet 

structure is very regular 

◆ Not a problem if the keystream is not re-used 
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Keystream Will Be Re-Used 

◆ In WEP, repeated IV means repeated keystream 
◆ Busy network will repeat IVs often 

•  Many cards reset IV to 0 when re-booted, then 
increment by 1 ⇒ expect re-use of low-value IVs 

•  If IVs are chosen randomly, expect repetition in O(212) 
due to birthday paradox 

◆ Recover keystream for each IV, store in a table 
•  (KnownM ⊕ RC4(IV,key)) ⊕ KnownM = RC4(IV,key) 

◆ Wait for IV to repeat, decrypt, enjoy plaintext 
•  (M’ ⊕ RC4(IV,key)) ⊕ RC4(IV,key) = M’ 
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It Gets Worse 

◆ Misuse of RC4 in WEP is a design flaw with no fix 
•  Longer keys do not help! 

–  The problem is re-use of IVs, their size is fixed (24 bits) 

•  Attacks are passive and very difficult to detect 

◆ Perfect target for the Fluhrer et al. attack on RC4 
•  Attack requires known IVs of a special form 
•  WEP sends IVs in plaintext 
•  Generating IVs as counters or random numbers will 

produce enough “special” IVs in a matter of hours 

◆ This results in key recovery (not just keystream) 
•  Can decrypt even ciphertexts whose IV is unique 
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Fixing the Problem 

◆ Extensible Authentication Protocol (EAP) 
•  Developers can choose their own authentication method 

–  Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft 
EAP-TLS), passwords OR certificates (PEAP), etc. 

◆ 802.11i standard fixes 802.11b problems 
•  Patch (TKIP): still RC4, but encrypts IVs and establishes 

new shared keys for every 10 KBytes transmitted 
–  Use same network card, only upgrade firmware 
–  Deprecated by the Wi-Fi alliance  

•  Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs 
–  Block cipher in a stream cipher-like mode 


