Taint tracking

Suman Jana

Dynamic Taint Analysis

Track information flow through a program at
runtime
|dentify sources of taint — “TaintSeed”
— What are you tracking?
* Untrusted input
* Sensitive data
Taint Policy — “TaintTracker”
— Propagation of taint

Identify taint sinks — “TaintAssert”

— Taint checking
* Special calls: Jump statements, Format strings, etc.
* Outside network

TaintCheck (Newsome et al.)

Performed on x86 binary
— No need for source

Implemented using Valgrind skin

— X86 -> Valgrind’ s Ucode
— Taint instrumentation added
— Ucode -> x86

Sources -> TaintSeed

Taint Policy -> TaintTracker
Sinks -> TaintAssert

Add on “Exploit Analyzer”

TaintCheck (Newsome et al.)

TaintSeed TaintTracker TaintAssert
Copy
T _ via double—free)
Add Use as Attack
Data from _ Fn Pointer Detected!
Socket
Malloc’d _
Buffer |Untainted Data

e TaintSeed: Mark untrusted data as tainted

* TaintTracker: Track each instruction, propagate taint

* TaintAssert: Check is tainted data is used dangerously

* Marks any data from untrusted sources as
“tainted”

— Each byte of memory has a four-byte shadow

memory that stores a pointer to a Taint data
structure if that location is tainted

— Else store a NULL pointer

* Tracks each instruction that manipulates data
in order to determine whether the result is
tainted.

— When the result of an instruction is tainted by one
of the operands, TaintTracker sets the shadow
memory of the result to point to the same Taint
data structure as the tainted operand.

TaintAssert & Exploit Analyzer

e TaintAssert

— Checks whether tainted data is used in ways that
its policy defines as illegitimate

* Exploit Analyzer

— Backtrace chain of taint structures: provides
useful information about how the exploit
happened, and what the exploit attempts to do

— Useful to generate exploit fingerprints
— Transfer control to sandbox for analysis

{
Y
P

Automatic Signature Generation

Find value used to override return address — typically fixed value in
the exploit code
N
ST
Internet \ Y

I'x’/ i

Firewall / Filter
Y
'ﬁ:tf - "o

Internal

Content Pattern Extractor TamntCheck

Taint Analysis in Action

‘ tainted

. untainted

bém © A
— ‘= get_input 3 A Var V3|
y = X + 42
X 7/
Input is tainted
goto vy
. 4
Var | Taintec
t = IsUntrusted(src) X T

Input

get_input(src)d t

‘ tainted ‘ untainted A

% Var | Val
‘= get_input(238

- 9-0+@ .,

Y 49
Data derived from
goto v user input is tainted

i
Var | Taintec

t1 = 7[x1] , t2 = t[x2} . T
X1+x2 t1vi2 v T

BinOp

‘ tainted . untainted

Var

Val

®- get_input(&

O-0-@
goto‘

Policy Violation

Detected

49

T

TaintAssert Var

Tainted

Pgoto(ta) =-1a

(Must be true to execute) \

T
T

Jumping to
overwritten
return address

strcpy(buffer,argv[1]) ;

return ;

Policy Considerations?

Memory Load

Variables Memory
A L
Var Val Addr | Val
X 7 7 42
U [
Var | Tainted Addr | Tainted
X T 7 F/T?

Problem: Memory Addresses

Var Val
A
X 7
Addr | Val
LL
All values derived 7 42
from user input
are tainted?? Addr | Tainted
T 5
7/ F

Policy 1: Taint depends only on the memory cell

- A

= get_u
=) = load

= goto §)

Undertainting

Failing to identify tainted values
- e.g., missing exploits

Taint Propagation

Load

V =

Alx],t=w[v] T,

load(x) J t

Var Val
X /
Addr | Val
7 42
Addr | Tainted
7 F

If either the address or the memory
cell is tainted, then the value is tainted

Policy 2:

-

Address

Overtaint ng expression

is tainted

Unaffected values are tainted

printa
- e.g., exploits on safe inputs [\ orintb

Taint Propagation

v =A[x], t = tulv], ta = T[x]

Load
- load(x) { tvta

General Challenge:
State-of-the-Art is not perfect for all
programs

Overtainting:
Policy may wrongly
detect taint

Undertainting:
Policy may miss taint

TaintCheck Evaluation

Effectiveness of TaintCheck

* False Negatives

— Use control flow to change value without gathering taint
* Example: if (x ==0) y=0; else if (x == 1) y=1;
— Equivalent to x=y;

— Tainted index into a hardcoded table
* Policy — value translation is not tainted

— Enumerating all sources of taint

e False Positives
— Vulnerable code?

— Sanity Checks not removing taint
* Requires fine-tuning
* Taint sanitization problem

Effectiveness of TaintCheck

* Does TaintCheck raise false alerts for existing code?
— network programs: apache, ATPhttpd, bftpd, cfingerd, and
named
— client programs: ssh and firebird
— non-network programs: gcc, Is, bzip2, make, latex, vim,
emacs, and bash
 Networked programs: 158K+ DNS queries
— No false +ves
e All client and non-network programs (tainted data is
stdin):
— Only vim and firebird caused false +ves (data from config
files used as offset to jump address)

TaintCheck - Attack Detection

e Synthetic Exploits
— Buffer overflow -> function pointer
— Buffer overflow -> format string

— Format string -> info leak

e Actual Exploits

— 3 real world examples

TaintCheck Performance

30

Performance Overhead Factor

25

20

15

1o

B No Valgrind
B Nullgrind

Memcheck
] TaintCheck

LTI ILISL I IL I IE AT AT TE SIS I I I II I A)

AT AT AT I E SIS

A
iié
N
- ‘

N

N
.A
N

)

-

CGI IKB __10KB 100KB 1MB
6.63ms 987 ms 205ms 9.79ms 86.4ms

Performance overhead for Apache

10 MB
851 ms

