

Secure Software Development:
Theory and Practice

Suman Jana
MW 2:40-3:55pm

415 Schapiro [SCEP]

*Some slides are borrowed from Dan Boneh and John Mitchell

Software Security is a major problem!

Why writing secure code is hard?

 Software bugs cost US economy
$59.5 billion annually (NIST)

Not all bugs are equal!

VS.

Security bugs

Why are security bugs more dangerous than other bugs?

Benign functional bugs

Why security bugs are more
dangerous?

● Security bugs allow attackers to cause serious
damages: take over machines remotely, steal
secrets, etc.

malicious
input

attacker

victim
computer

Get root shell

How do we deal with security bugs?

● Automatically find and fix bugs

● Monitor a system at runtime to detect and prevent
exploits of bugs

● Accept that programs will have bugs and design the
system to minimize damages
– Example: Sandboxes, privilege separation

Topics of this class

Theory of bug finding

Finding bugs with Program analyzers

Code Report Type Line

1 mem leak 324

2 buffer oflow 4,353,245

3 sql injection 23,212

4 stack oflow 86,923

5 dang ptr 8,491

… … …

10,502 info leak 10,921

Program
Analyzer

Spec/
Invariants

Descriptions of different
classes of bugs

 int main (int x, int y)
{
 if (2*y!=x)
 return -1;
 if (x>y+10)
 Return -1;
 ….
 … /* buggy code*/
}

What values of x and y will cause
the program to reach here

1. Too many paths (may be infinite)
2. How will program analyzer find inputs that will reach

different parts of code to be tested?

Automated bug detection:
 main challenges

Automated bug detection:
two options

• Static analysis
– Inspect code or run automated method to find errors or

gain confidence about their absence
– Try to aggregate the program behavior over a large

number of paths without enumerating them explicitly

• Dynamic analysis
– Run code, possibly under instrumented conditions, to

see if there are likely problems
– Enumerate paths but avoid redundant ones

Static vs dynamic analysis

• Static
– Can consider all possible inputs
– Find bugs and vulnerabilities
– Can prove absence of bugs, in some cases

• Dynamic
– Need to choose sample test input
– Can find bugs and vulnerabilities
– Cannot prove their absence

Soundness & Completeness
Property Definition

Soundness “Sound for reporting correctness”
Analysis says no bugs  No bugs
or equivalently
There is a bug  Analysis finds a bug

Completeness “Complete for reporting correctness”
No bugs  Analysis says no bugs

Recall: A  B is equivalent to (B)  (A)

Complete Incomplete

So
un

d
U

ns
ou

nd

Reports all errors
Reports no false alarms

Reports all errors
May report false alarms

Undecidable Decidable

Decidable

May not report all errors
May report false alarms

Decidable

May not report all errors
Reports no false alarms

Soundness & Completeness

When to find bugs?

Credit: Andy Chou, Coverity

Cost of bug finding

Practice of bug finding

Popular classes of security bugs

Memory corruption attacks

Memory corruption attacks

• Attacker’s goal:

– Take over target machine (e.g., web server)
• Execute arbitrary code on target by

hijacking application control flow leveraging memory
corruption

• Examples.

– Buffer overflow attacks
– Integer overflow attacks
– Format string vulnerabilities

What is needed
• Understanding C functions, the stack, and the heap.
• Know how system calls are made
• The exec() system call

• Attacker needs to know which CPU and OS used on the target
machine:
– Our examples are for x86 running Linux or Windows
– Details vary slightly between CPUs and OSs:
• Little endian vs. big endian (x86 vs. Motorola)
• Stack Frame structure (Unix vs. Windows)

exception handlers

Stack Frame

arguments

return address

stack frame pointer

local variables

SP

Stack
Growth

high

low

Linux process memory layout

unused
0x08048000

run time heap

shared libraries

user stack

0x40000000

0xC0000000

%esp

brk

Loaded
from exec

0

What are buffer overflows?

void func(char *str) {
 char buf[128];

 strcpy(buf, str);
do-something(buf);

}

Suppose a web server contains a function:

When func() is called stack looks like:

argument: str

return address

stack frame pointer

char buf[128]

SP

What happens if str is
larger than 128?

char buf[128]

return address

Basic stack exploit

Suppose *str is such that
 after strcpy stack looks like:

Program P: exec(“/bin/sh”)

When func() exits, the user gets shell!
Note: attack code P runs in stack.

Program PProgram P

low

high

The NOP slide

Problem: how does attacker
 determine ret-address?

Solution: NOP slide
• Guess approximate stack state

when func() is called

• Insert many NOPs before program P:
nop , xor eax,eax , inc ax

char buf[128]

return address

NOP SlideNOP Slide

Program PProgram P

low

high

How to avoid buffer overflows?

● Rewrite software in a type safe language (Java, Rust)
● Difficult for existing (legacy) code …

● Use safer functions like strncpy instead of strcpy
● Developer may make mistakes
● Confusing semantics for terminating NULL characters

● Automatically find them
● Static analysis tools: Coverity, CodeSoner...
● Dynamic analysis tools: AFL, libfuzzer...

More details about detection techniques later in the semester

 Structure of the class

1. Control & data flow analysis
2. Symbolic Execution
3. Fuzzing

Program analysis
Fundamentals

Different classes of security bugs

Memory corruption
attacks

Web Attacks:
XSS, SQL injection, and CSRF

Semantic/logic bugs

 Side channel leaks

 DOS attack vectorsBuild tools for detecting
classes of bugs

Logistics

Class webpage
http://sumanj.info/secure_sw_devel.html

TAs: Eugene Ang and Plaban Mohanty)

Reading
 No text book, slides, and one/two papers per class

Grading :
Quizzes/programming assignments - 35%
Midterm - 30%
Group Project (3-4 students) - 30%
Class participation - 5%

http://sumanj.info/secure_sw_devel.html

 Summary

In this class you will learn about:

1. Different classes of security bugs and their implications
2. State-of-the art of bug finding techniques
3. Using and customizing existing bug finding tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Program Analyzers
	Slide 10
	Slide 11
	Static vs Dynamic Analysis
	Soundness, Completeness
	Slide 14
	Cost of Fixing a Defect
	Slide 16
	Slide 17
	Memory corruption attacks
	What is needed
	Stack Frame
	Linux process memory layout
	Slide 22
	Basic stack exploit
	The NOP slide
	Preventing hijacking attacks
	Slide 27
	Slide 28

