
Fuzzing	

Suman	Jana	
	

*Acknowledgements:	Dawn	Song,	Kostya	Serebryany,	
Peter	Collingbourne		

Techniques	for	bug	finding	

Automa'c	test	
case	genera'on	

Lower	coverage		
Lower	false	posi0ves		
Higher	false	nega0ves	

Fuzzing		 Dynamic		
symbolic	execuFon	

StaFc	analysis	 Program	verificaFon	

Higher	coverage		
Higher	false	posi0ves		
Lower	false	nega0ves	

Blackbox	fuzzing	

Test	program	

Random	
input		

Miller	et	al.	‘89	

Blackbox	fuzzing	

•  Given	a	program	simply	feed	random	inputs	and	see	
whether	it	exhibits	incorrect	behavior	(e.g.,	crashes)	

•  Advantage:	easy,	low	programmer	cost	
•  Disadvantage:	inefficient	

–  Inputs	oUen	require	structures,	random	inputs	are	likely	to	
be	malformed		

–  Inputs	that	trigger	an	incorrect	behavior	is	a	a	very	small	
fracFon,	probably	of	geVng	lucky	is	very	low		

Fuzzing	

•  AutomaFcally	generate	test	cases	
•  Many	slightly	anomalous	test	cases	are	input	into	a	
target	

•  ApplicaFon	is	monitored	for	errors	
•  Inputs	are	generally	either	file	based	
(.pdf,	.png,	.wav,	etc.)	or	network	based	(hWp,	SNMP,	
etc.)			

Input	generator	

Monitor	

Test	applicaFon	

Problem	detecFon	

•  See	if	program	crashed	
–  Type	of	crash	can	tell	a	lot	(SEGV	vs.	assert	fail)	

•  Run	program	under	dynamic	memory	error	detector	
(valgrind/purify/AddressSaniFzer)	
–  Catch	more	bugs,	but	more	expensive	per	run.	

•  See	if	program	locks	up	
•  Roll	your	own	dynamic	checker	e.g.	valgrind	skins	

Regression	vs.	Fuzzing	
Regrssion	 Fuzzing	

DefiniFon		 Run	program	on	many	
normal	inputs,	look	for	
badness			

Run	program	on	many	
abnormal	inputs,	look	
for	badness	

Goals	 Prevent	normal	users	
from	encountering	
errors	(e.g.,	asserFon	
failures	are	bad)	

Prevent	aWackers	from	
encountering	
exploitable	errors	(e.g.,	
asserFon	failures	are	
oUen	ok)	

Enhancement	1:		
MutaFon-Based	fuzzing	

•  Take	a	well-formed	input,	randomly	perturb	
(flipping	bit,	etc.)	

•  LiWle	or	no	knowledge	of	the	structure	of	the	
inputs	is	assumed		

•  Anomalies	are	added	to	exisFng	valid	inputs		
– Anomalies	may	be	completely	random	or	follow	some	
heurisFcs	(e.g.,	remove	NULL,	shiU	character	forward)	

•  Examples:	ZZUF,	Taof,	GPF,	ProxyFuzz,	FileFuzz,	
Filep,	etc.		

Seed	input	 Mutated	input	 Run	test	program	

?	

Example:	fuzzing	a	PDF	viewer	

•  Google	for	.pdf	(about	1	billion	results)		
•  Crawl	pages	to	build	a	corpus		
•  Use	fuzzing	tool	(or	script)		

–  	Collect	seed	PDF	files		
–  	Mutate	that	file	
–  	Feed	it	to	the	program		
–  	Record	if	it	crashed	(and	input	that	crashed	it)		

MutaFon-based	fuzzing	

•  Super	easy		to	setup	and	automate	
•  LiWle	or	no	file	format	knowledge	is	required	
•  Limited	by	iniFal	corpus	
•  May	fail	for	protocols	with	checksums,	those	
which	depend	on	challenge	

Enhancement	II:		
GeneraFon-Based	Fuzzing	

	•  Test	cases	are	generated	from	some	descripFon	of	
the	input	format:	RFC,	documentaFon,	etc.	
–		Using	specified	protocols/file	format	info	
–		E.g.,	SPIKE	by	Immunity	

•  Anomalies	are	added	to	each	possible	spot	in	the	
inputs	

•  Knowledge	of	protocol	should	give	beWer	results	
than	random	fuzzing	

Input	spec	 Generated	inputs	 Run	test	program	

?	RFC	

Enhancement	II:		
GeneraFon-Based	Fuzzing	

	

Sample	PNG	spec		

MutaFon-based	vs.	GeneraFon-based	

•  MutaFon-based	fuzzer	
– Pros:	Easy	to	set	up	and	automate,	liWle	to	no	
knowledge	of	input	format	required	

– Cons:	Limited	by	iniFal	corpus,	may	fall	for	
protocols	with	checksums	and	other	hard	checks	

•  GeneraFon-based	fuzzers	
– Pros:	Completeness,	can	deal	with	complex	
dependncies	(e.g,	checksum)	

– Cons:	wriFng	generators	is	hard,	performance	
depends	on	the	quality	of	the	spec	

How	much	fuzzing	is	enough?	

•  MutaFon-based-fuzzers	may	generate	an	
infinite	number	of	test	cases.	When	has	the	
fuzzer	run	long	enough?		

•  GeneraFon-based	fuzzers	may	generate	a	
finite	number	of	test	cases.	What	happens	
when	they’re	all	run	and	no	bugs	are	found?		

Code	coverage	

•  Some	of	the	answers	to	these	quesFons	lie	in	
code	coverage		

•  Code	coverage	is	a	metric	that	can	be	used	to	
determine	how	much	code	has	been	
executed.		

•  Data	can	be	obtained	using	a	variety	of	
profiling	tools.	e.g.	gcov,	lcov		

Line	coverage	

•  Line/block	coverage:	Measures	
how	many	lines	of	source	code	
have	been	executed.		

•  For	the	code	on	the	right,	how	
many	test	cases	(values	of	pair	
(a,b))	needed	for	full(100%)	line	
coverage?		

if(a > 2) 	
						a = 2;
if(b >2) 	
						b = 2;

Branch	coverage	

•  Branch	coverage:	Measures	
how	many	branches	in	code	
have	been	taken	
(condiFonal	jmps)		

•  For	the	code	on	the	right,	
how	many	test	cases	
needed	for	full	branch	
coverage?		

if(a > 2) 	
						a = 2;
if(b >2) 	
						b = 2;

Path	coverage	

•  Path	coverage:	Measures	how	
many	paths	have	been	taken	

		
•  For	the	code	on	the	right,	how	
many	test	cases	needed	for	
full	path	coverage?		

if(a > 2) 	
						a = 2;
if(b >2) 	
						b = 2;

Benefits	of	Code	coverage	

•  Can	answer	the	following	quesFons	
–	How	good	is	an	iniFal	file?		
–	Am	I	geVng	stuck	somewhere?		
		 if (packet[0x10] < 7) { //hot path�
 } else { //cold path }

– How	good	is	fuzzerX	vs.	fuzzerY	
– Am	I	geVng	benefits	by	running	mulFple	
fuzzers?		

Problems	of	code	coverage	

•  For:		
mySafeCopy(char *dst, char* src) {

 if(dst && src)

 strcpy(dst, src); }

•  Does	full	line	coverage	guarantee	finding	the	
bug?				

•  Does	full	branch	coverage	guarantee	finding	
the	bug?						

Enhancement	III:		
Coverage-guided	gray-box	fuzzing	

•  Special	type	of	mutaFon-based	fuzzing	
–  	Run	mutated	inputs	on	instrumented	program	
and	measure	code	coverage	

– Search	for	mutants	that	result	in	coverage	
increase	

– OUen	use	geneFc	algorithms,	i.e.,	try	random	
mutaFons	on	test	corpus	and	only	add	mutants		
to	the	corpus	if	coverage	increases	

– Examples:		AFL,	libfuzzer	

American	Fuzzy	Lop	(AFL)	

Input		
queue	

Seed		
inputs	

Next	input	

MutaFon	

Execute	
against	

instrumented	
target	

branch/
edge	

coverage	
increased?	

Add	mutant		
to	the	queue	

Periodically	culls	the	
queue	without		

affecFng	total	coverage			

AFL		

•  Instrument	the	binary	at	compile-Fme	
•  Regular	mode:	instrument	assembly	
•  Recent	addiFon:	LLVM	compiler	instrumentaFon	mode	
•  Provide	64K	counters	represenFng	all	edges	in	the	app	
•  Hashtable	keeps	track	of	#	of	execuFon	of	edges	

–  8	bits	per	edge	(#	of	execuFons:	1,	2,	3,	4-7,	8-15,	16-31,	
32-127,	128+)	

–  Imprecise	(edges	may	collide)	but	very	efficient	
•  AFL-fuzz	is	the	driver	process,	the	target	app	runs	as	

separate	process(es)		

Data-flow-guided	fuzzing	

•  Intercept	the	data	flow,	analyze	the	inputs	of	
comparisons	
–  Incurs	extra	overhead	

•  Modify	the	test	inputs,	observe	the	effect	on	
comparisons	

•  Prototype	implementaFons	in	libFuzzer	and	
go-fuzz	

Fuzzing	challenges	

•  How	to	seed	a	fuzzer?	
– Seed	inputs	must	cover	different	branches	
– Remove	duplicate	seeds	covering	the	same	
branches	

– Small	seeds	are	beWer	(Why?)	

•  Some	branches	might	be	very	hard	to	get	past	as	the	
#	of	inputs	staFsfying	the	condiFons	are	very	small	
– Manually/automaFcally	transform/remove	those	branches			

Hard	to	fuzz	code	

void test (int n) {

 if (n==0x12345678)

 crash();

}

	

needs	2^32	or	4	billion	aWempts	
In	the	worst	case	

Make	it	easier	to	fuzz	

void test (int n) {

 int dummy = 0;

 char *p = (char *)&n;

 if (p[3]==0x12) dummy++;

 if (p[2]==0x34) dummy++;

 if (p[1]==0x56) dummy++;

 if (p[0]==0x56) dummy++;

 if (dummy==4)

 crash();

}

	

needs	around	2^10	aWempts	

Fuzzing	rules	of	thumb		
•  Input-format	knowledge	is	very	helpful	
•  GeneraFonal	tends	to	beat	random,	beWer	specs	make	
beWer	fuzzers	

•  Each	implementaFon	will	vary,	different	fuzzers	find	
different	bugs	
– More	fuzzing	with	is	beWer	

•  The	longer	you	run,	the	more	bugs	you	may	find	
–  But	it	reaches	a	plateau	and	saturates	aUer	a	while	

•  Best	results	come	from	guiding	the	process	
•  NoFce	where	you	are	geVng	stuck,	use	profiling	(gcov,	
lcov)!	

