
Using	Frankencerts	for	Automated	
Adversarial	Tes7ng	of	Cer7ficate	

Valida7on	in	SSL/TLS	Implementa7ons	

University	of	Texas	at	Aus7n		
University	of	California	at	Davis	

Internet	security	=	SSL/TLS	

SSL/TLS	security	objec7ves	

•  End-to-end	security	even	if	the	network	is	
insecure	
– Authen7ca7on		=	cer&ficate	valida&on!!	
– Confiden7ality	
–  Integrity	

Cer7ficate	valida7on	in	SSL/TLS	
implementa7ons	

How	to	check	if	implementa7ons	are	
correct?	

bool is_cert_valid (cert_t *cert)
{

 return true;
}

How	do	people	test	SSL/TLS	implementa7ons?	

Current	state	of	the	art	

Implementa&on	 Test	cer&ficate	
count	

NSS	 54	
GnuTLS	 51	
OpenSSL	 44	
PolarSSL	 18	
CyaSSL	 9	

MatrixSSL	 9	
Most	of	these	are	just	well-formed	cer7ficates!	

•  Test	input	genera7on	
– Fuzzing	-	huge	input	space,	a	fuzzed	string	won't	
even	parse	as	an	X.509	cert		

– Symbolic	analysis	-	does	not	scale	to	the	
complexity	and	depth	of	cer7ficate	valida7on	
code,	false	posi7ves	

	

Tes7ng	cer7ficate	valida7on	code	

Interpre7ng	test	results		

test	
cer7ficate	

SSL/TLS	
implementa7on	

accept/reject	

How	do	you	know	that	the	result	is	correct?	

Tes7ng	SSL/TLS	cert	
valida7on	code	

Test	cer7ficate	
genera7on	

Test	result	
interpreta7on	

We	tackle	both	of	
these	problems	in	

this	work	

How	to	generate	test	cer7ficates?	
X.509	standards…ugh!	

How	to	generate	test	cer7ficates?	

•  Requirements	
– Must	generate	“seman7cally	bad”	cer7ficates		
– Should	be	syntac7cally	correct,	otherwise	won’t	
exercise	most	of	the	cert	valida7on	code	

– Must	scale	to	millions	of	certs	

•  Idea	
– X.509	certs	contain	structured	data,	can	we	
exploit	that?			

X.509	cer7ficate	structure	

•  Mul7layered	structured	data	
•  Syntac7c	constraints	for	each	
piece	
–  Ex:	Version	must	be	an	integer	

•  Seman7c	constraints	for	
individual	piece	or	across	mul7ple	
pieces	
–  Ex:	Version	must	be	0,	1,	or	2	
–  Ex:	if	version!=2,	extensions	must	
be	NULL	

Version	
Serial	Number	

Signature	Algorithm	
Iden7fier	

Issuer	Name	
Validity	Period	
Subject	Name	
Public	Key	
Informa7on	

Issuer	Unique	ID	
Subject	Unique	ID	

Extensions	

How	to	generate	test	cer7ficates?	

Create	X.509	certs	using	randomly	picked	
syntac7cally	valid	pieces	

	

Likely	to	violate	some	seman7c	
constraints	i.e.	will	generate	“bad”	

test	certs	just	as	we	wanted		

Wait,	but	how	can	we	generate	a	large	set		
of	such	syntac7cally	valid	pieces	without		

reading	X.509	specs?			

Scan	the	internet	for	cer7ficates	
Collect	243,246		X.509	server	cer7ficates	

Extract	syntac7cally	valid	pieces	

version	
from	cert	1	

keyUsage	extension	
from	cert3	

keyUsage	extension	
from	cert2	

ExtendedkeyUsage	
extension	from	cert4	

Generate	8	million	frankencerts	from	
random	combina7ons	of	cer7ficate	pieces	

Interpret	frankencert	test	results	

•  Differen7al	tes7ng	of	SSL/TLS	
implementa7ons	

•  Mul7ple	implementa7ons	of	SSL/TLS	should	
implement	the	same	cer7ficate	valida7on	
logic	

•  If	a	cer7ficate	is	accepted	by	some	and	
rejected	by	others,	what	does	this	mean?	

Which	one	is	rojen	?		

No	false	posi7ves	though	some	instances	might	be	
different	interpreta7ons	of	X.509	

	

Test	results	summary	

•  Tested	14	different	SSL/TLS	implementa7ons	
•  208	discrepancies	due	to	15	root	causes		
•  Mul7ple	bugs		
– Accep7ng	fake	and	unauthorized	intermediate	
Cer7ficate	Authori7es	(CAs)	

– Accep7ng	cer7ficates	not	authorized	for	use	in	SSL	
or	not	valid	for	server	authen7ca7on	

– Several	other	issues				

ajacker	can	impersonate	
any	website!	

Some	test	results	

Exhibits	

Version	1	CA	cer7ficates		

If	an	SSL/TLS	implementa0on	encounters	a	
version	1	(v1)	CA	cer0ficate	that	cannot	be	
validated	out	of	band,	it	must	reject	it	

																																RFC	5280	Sec7on	6.1.4(k)	

v1	CA	certs	do	not	support	the	CA	bit:	
anybody	with	a	valid	v1	cer7ficate	can	

pretend	to	be	a	CA	

Exhibit	1:	GnuTLS	
			/*	Disable	V1	CA	flag	to	prevent	version	1	cer7ficates	in	a	supplied	
chain.	*/	
			flags	&=	˜(GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT);	
			ret	=	_gnutls_verify_cer7ficate2	(flags,..))	
	
int	_gnutls_verify_cer7ficate2(flags,	..)	
{	
			if	(!(flags	&	GNUTLS_VERIFY_DISABLE_CA_SIGN)	&&	
									((flags	&GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT)	
											||	issuer_version	!=	1))	
			{	
						/*check	the	CA	bit	*/	
			}	
}	

Exhibit	2:	Google	Chrome	

OK	to	click	through?	

Exhibit	2:	Google	Chrome	

untrusted	CA	

Exhibit	2:	underlying	cause	

•  Chrome	uses	a	modified	version	of	NSS	for	SSL	
cer7ficate	valida7on		

•  If	a	cer7ficate	is	issued	by	a	untrusted	CA	and		
is	expired,	the	valida7on	code	only	returns	the	
expired	error	

•  Firefox	uses	a	glue	layer	called	Personal	
Security	Manager	(PSM)	over	NSS	and	thus	is	
not	affected	

Check	the	paper	for	more	such	
goodies!!	

	

Conclusions	

•  Differen7al	tes7ng	with	frankencerts	is	an	
effec7ve	technique	for	finding	flaws	in	SSL/TLS	
implementa7ons	

•  Start	integra7ng	frankencerts	with	the	test	
harness	of	your	SSL/TLS	implementa7on.	The	
code	is	available	at:																																																								
hjps://github.com/sumanj/frankencert		

Backup	Slides	

Frankencert	features	

•  Frankencerts	are	random,	yet	syntac7cally	
correct	X.509	cer7ficates	with	…	
– Unusual	extensions	
– Rare	and	malformed	values	for																									
these	extensions	

– Strange	key	usage	constraints	
– Rare	combina7on	of	extensions		
–  ...	and	many	other	unusual	features	

Mutate	a	few	pieces	randomly	

Exhibit	2:	MatrixSSL	

/*	Cer7ficate	authority	constraint	only	available	in	
version	3	certs	*/	
if	((ic->version	>	1)	&&	(ic->extensions.bc.ca<=	0))	{	
			psTraceCrypto(“no	CA	permissions\n");	
			sc->authStatus	=	PS_CERT_AUTH_FAIL_BC;	
			return	PS_CERT_AUTH_FAIL_BC;	
}	

