Using Frankencerts for Automated
Adversarial Testing of Certificate
Validation in SSL/TLS Implementations

Chad Brubaker! Suman Jana! Baishakhi Ray?
Sarfraz Khurshid® Vitaly Shmatikov?!
1University of Texas at Austin
2University of California at Davis

Internet security = SSL/TLS

SN

g D
7 o o
s I,

~ SSL),

&

y

SSL/TLS security objectives

* End-to-end security even if the network is
Insecure

— Authentication = certificate validation!!
— Confidentiality
— Integrity

Certificate validation in SSL/TLS
implementations

MatrixSSL" -
OpenSSL ya

g ‘L\S/ PDLAR SSL

How to check if implementations are
correct?

bool is_cert_valid (cert_t *cert)

{

return true;

}

How do people test SSL/TLS implementations?

Current state of the art

Implementation Test certificate
count

NSS 54

GnuTLS 51

OpenSSL 44

PolarSSL 18

CyaSSL

MatrixSSL

Most of these are just well-formed certificates!

Testing certificate validation code

* Test input generation

— Fuzzing - huge input space, a fuzzed string won't
even parse as an X.509 cert

Interpreting test results

test —> SSL/TLS . —> accept/reject
certificate implementation

Now What 7|

£

How do you know that the result is correct?

Testing SSL/TLS cert
validation code

We tackle both of
these problems in
this work

Test result

./, interpretation
[o

\ Test certificate
generation

How to generate test certificates?

X.509 standards...ugh!

How to generate test certificates?

* Requirements
— Must generate “semantically bad” certificates

— Should be syntactically correct, otherwise won’t
exercise most of the cert validation code

— Must scale to millions of certs

v !

* |dea @

— X.509 certs contain structured data, can we
exploit that?

X.509 certificate structure

Version

* Multilayered structured data

] . Serial Number
¢ Svntactlc constraints for each

3 Signature Algorithm
plece Identifier
— Ex: Version must be an integer Issuer Name
* Semantic constraints for Validity Period
individual piece or across multiple = Subject Name
pieces Public Kfay
Information

— Ex: Version must be 0, 1, or 2 Issuer Unique ID

— Ex: if versionl=2, extensions must Subject Unique ID
be NULL

Extensions

How to generate test certificates?

Create X.509 certs using randomly picked
syntactically valid pieces

Likely to violate some semantic
constraints i.e. will generate “bad”
test certs just as we wanted

Wait, but how can we generate a large set
of such syntactically valid pieces without
reading X.509 specs?

Scan the internet for certificates

Collect 243,246 X.509 server certificates

Extract syntactically valid pieces

keyUsage extension
keyUsage extension from cert2

from cert3

‘..’.

version

ExtendedkeyU
fromcert 1 XLENUECREYHSagE

extension from cert4

Generate 8 million frankencerts from
random combinations of certificate pieces

SIGNED |

Interpret frankencert test results

 Differential testing of SSL/TLS
implementations

* Multiple implementations of SSL/TLS should
implement the same certificate validation
logic

* |f a certificate is accepted by some and
rejected by others, what does this mean?

Which one is rotten ?

No false positives though some instances might be
different interpretations of X.509

Test results summary

* Tested 14 different SSL/TLS implementations
e 208 discrepancies due to 15 root causes
 Multiple bugs

— Accepting fake and unauthorized intermediate

Certificate Authorities (CAs) ,
———_, attacker can impersonate

any website!

ome test results

Problem Certificates OpenSSL | PolarSSL | GnuTLS | CyaSSL | MatrixSSL NSS OpenDK, Browsers

triggering Bouncy

the problem Castle

oceur in

the original

corpus
Untrusted version 1 intermediate CA | No reject reject accept reject accept | reject reject reject
certificate
Untrusted version 2 intermediate CA | No reject reject reject reject accept | reject reject reject
certificate
Version 1 certificate with valid basic No accept reject accept accept accept reject reject Firefox: reject
constraints Opera, Chrome: accept
Intermediate CA not authorized to is- | No reject reject reject reject accept reject reject reject
sue further intermediate CA certifi-

cates, but followed in the chain by an
intermediate CA certificate

.. .Tollowed by a leaf CA certificate No reject reject Taccept | reject accept reject reject reject
Intermediate CA not authorized to is- | No reject reject accept accept accept reject reject reject
sue certificates for server’s hostname

Certificate not yet valid Yes reject accept reject reject reject reject reject reject
Certificate expired in its timezone Yes reject accept reject reject accept reject reject reject
CA certificate not authorized for sign- | No reject reject accept accept reject reject reject
ing other certificates

Server certificate not authorized for | Yes reject accept accep! accept al reject reject reject
use in SSL/TLS handshake

Server certificate not authorized for | Yes reject accept accept accept reject reject reject
server authentication

Certificate with unknown critical ex- | No reject reject accep acce reject reject reject
tension

Certificate with malformed extension | No accept reject accept accept accept reject reject reject
value

Certificate with the same issuer and | No reject reject accept reject accept reject reject reject
subject and a valid chain of trust

Issuer name does not match AKI No reject accept accept accept accept reject reject reject
Issuer serial number does not match | No reject accept reject accept accept reject reject reject
AKI

Exhibits

€ =
¢

g OGN

. -
v — —

ot € gy
TN AN _
._Q QQ ot.f!w o

‘o6 € A

Version 1 CA certificates

If an SSL/TLS implementation encounters a
version 1 (v1) CA certificate that cannot be
validated out of band, it must reject it

RFC 5280 Section 6.1.4(k)

vl CA certs do not support the CA bit:
anybody with a valid v1 certificate can
pretend to be a CA

Exhibit 1: GnuTLS

/* Disable V1 CA flag to prevent version 1 certificates in a supplied
chain. */

flags &= ~(GNUTLS_VERIFY_ALLOW X509 V1 CA_CRT);
ret = gnutls_verify certificate2 (flags,..))

Exhibit 2: Google Chrome

[heepss://www.google.com

/ 1 The site's security certificate has expired!
.

You attempted to reach www.google.com, but the server presented an expired certificate. No information is
available to indicate whether that certificate has been compromised since its expiration. This means Google
Chrome cannot guarantee that you are communicating with www.google.com and not an attacker. Your

computer's clock is currently set to Wednesday, May 7, 2014 8:33:18 PM. Does that look right? If not, you
should correct the error and refresh this page.

You should not proceed, especially if you have never seen this warning before for this site.

| Proceed anyway | | Back to safety |

P Help me understand

OK to click through?

Exhibit 2: Google Chrome

{ heeps://www.google.com

da

The sit

You attempte
available to i
Chrome canry
computer's ¢
should correq

You should n

| Proceed an

P Help me un

General|| Details

This certificate has been verified for the following usages:

Issued To
Common Name (CN) www.google.com
Organization (O) Google Inc.
Organizational Unit (OU) <Not Part Of Certificate>
Serial Number 00:BC:BA:57:5A:51:B4:D5:31
Issued By

untrusted CA

Common Name (CN)
Organization (O) 3 2
Organizational Unit (OU) <Not Part Of Certificate>

www.foobar.com

FooDb

Validity Period
Issued On 2/5/12
Expires On 2/5/14

Fingerprints

B9 4B 94 80 9F 99 B3 90 CD DC CD BA FF 4F E4 06

Szl s 8B OE AC 26 81 A9 A2 04 15 0C 18 22 71 TEEB AD

o Certificate Viewer: www.google.com

ormation is
ns Google
r. Your

If not, you

Exhibit 2: underlying cause

e Chrome uses a modified version of NSS for SSL
certificate validation

 |f a certificate is issued by a untrusted CA and
is expired, the validation code only returns the
expired error

* Firefox uses a glue layer called Personal
Security Manager (PSM) over NSS and thus is
not affected

Check the paper for more such
goodies!!

Conclusions

e Differential testing with frankencerts is an

effective technique for finding flaws in SSL/TLS
implementations

e Start integrating frankencerts with the test

harness of your SSL/TLS implementation. The
code is available at:

https://github.com/sumanj/frankencert

Backup Slides

Frankencert features

* Frankencerts are random, yet syntactically
correct X.509 certificates with ...

— Unusual extensions

— Rare and malformed values for
these extensions

— Strange key usage constraints
— Rare combination of extensions

— ... and many other unusual features

Mutate a few pieces randomly

7%

))

iy

Exhibit 2: MatrixSSL

/* Certificate authority constraint only available in
version 3 certs */

if ((ic->version > 1) && (ic->extensions.bc.ca<= 0)) {
psTraceCrypto(“no CA permissions\n");
sc->authStatus = PS_CERT_AUTH_FAIL BC;
return PS_CERT_AUTH_FAIL BC;

}

