
Basic Program Analysis
Suman	Jana	

	
*some	slides	are	borrowed	from	Baishakhi	Ray	and	Ras	Bodik	

Our Goal

Program		
Analyzer		

Source	code	
Security	bugs	

Program	analyzer	must	be	able	to	
understand	program	proper?es	
(e.g.,	can	a	variable	be	NULL	at	a	

par?cular	program	point?)	

Must	perform	
control	and	data	
flow	analysis	

Do we need to implement control and data
flow analysis from scratch?

• Most	modern	compilers	already	perform	several	types	of	such	
analysis	for	code	op?miza?on	
• We	can	hook	into	different	layers	of	analysis	and	customize	them	
• We	s?ll	need	to	understand	the	details	
	

•  LLVM	(hNp://llvm.org/)	is	a	highly	customizable	and	modular	
compiler	framework	
•  Users	can	write	LLVM	passes	to	perform	different	types	of	analysis	
•  Clang	sta?c	analyzer	can	find	several	types	of	bugs	
•  Can	instrument	code	for	dynamic	analysis		

Compiler Overview

• Abstract	Syntax	Tree	:	Source	code	parsed	to	produce	AST	
	
• Control	Flow	Graph:	AST	is	transformed	to	CFG	
	
• Data	Flow	Analysis:	operates	on	CFG	
	

The Structure of a Compiler

5	

scanner	

parser	

checker	

code	gen	

Source	code	(stream	of	characters)	

stream	of	tokens	

Abstract	Syntax	Tree	(AST)		

AST	with	annota?ons	(types,	declara?ons)	

Machine/byte	code	

SyntacBc Analysis

•  Input:	sequence	of	tokens	from	scanner	
• Output:	abstract	syntax	tree	
• Actually,	

•  parser	first	builds	a	parse	tree	
•  AST	is	then	built	by	transla?ng	the	parse	tree	
•  parse	tree	rarely	built	explicitly;	only	determined	by,	say,	how	parser	pushes	
stuff	to	stack	

6		
Adopted	From	UC	Berkeley:	Prof.	Bodik		CS	164		Lecture	5	

Example

•  Source	Code	
	 	 	4*(2+3)	

• Parser	input	
NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR	

• Parser	output	(AST):	

	
Adopted	From	UC	Berkeley:	Prof.	Bodik		CS	164		Lecture	5	 7	

*

NUM(4)
+

NUM(2) NUM(3)

Parse tree for the example: 4*(2+3)

	
Adopted	From	UC	Berkeley:	Prof.	Bodik		CS	164		Lecture	5	 8	

leaves	are	tokens	

NUM(4)		TIMES		LPAR		NUM(2)		PLUS		NUM(3)		RPAR	

																	EXPR																									

																	EXPR																										

																	EXPR																										

Another example
•  Source	Code	

if	(x	==	y)	{	a=1;	}	
• Parser	input	

IF LPAR ID EQ ID RPAR LBR ID AS INT SEMI RBR

• Parser	output	(AST):	

	
Adopted	From	UC	Berkeley:	Prof.	Bodik		CS	164		Lecture	5	 9	

IF-THEN

==

ID ID

=

ID INT

Parse tree for example: if (x==y) {a=1;}

	
Adopted	From	UC	Berkeley:	Prof.	Bodik		CS	164		Lecture	5	 10	

IF	LPAR	ID	==	ID	RPAR	LBR	ID	=	INT	SEMI	RBR	

																	EXPR																											EXPR	

																																											STMT	

																																											BLOCK	

																	STMT	

leaves	are	tokens	

Parse Tree

• Representa?on	of	grammars	in	a	tree-like	form.		

	

•  Is	a	one-to-one	mapping	from	the	grammar	to	a	tree-form.	

A	parse	tree	pictorially	shows	how	the	start	
symbol	of	a	grammar	derives	a	string	in	the	

language.	…	Dragon	Book	

C	Statement:	return	a	+	2	

a	very	formal	representa?on	that	
strictly	shows	how	the	parser	

understands	the	statement	return	a	+	2;	

Abstract Syntax Tree (AST)

•  Simplified	syntac?c	representa?ons	of	the	source	code,	and	they're	
most	open	expressed	by	the	data	structures	of	the	language	used	for	
implementa?on	

	

	

• Without	showing	the	whole	syntac?c	cluNer,	represents	the	parsed	
string	in	a	structured	way,	discarding	all	informa?on	that	may	be	
important	for	parsing	the	string,	but	isn't	needed	for	analyzing	it.	

	ASTs	differ	from	parse	trees	because	superficial	
dis?nc?ons	of	form,	unimportant	for	transla?on,	
do	not	appear	in	syntax	trees..	…	Dragon	Book	

C	Statement:	return	a	+	2	

AST	

Disadvantages of ASTs

• AST	has	many	similar	forms	
•  E.g.,	for,	while,	repeat...un?l	
•  E.g.,	if,	?:,	switch	

•  Expressions	in	AST	may	be	complex,	nested	
•  (x	*	y)	+	(z	>	5	?	12	*	z	:	z	+	20)	

• Want	simpler	representa?on	for	analysis	
•  ...at	least,	for	dataflow	analysis	

15	

int	x	=	1	//	what’s	the	value	of	x	?		
														//	AST	traversal	can	give	the	answer,	right?	
	
What	about	int	x;	x	=	1;	or	int	x=	0;	x	+=	1;		?	

Control Flow Graph & Analysis

RepresenBng Control Flow

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

High-level representation
– Control flow is implicit in an AST

Low-level representation:
– Use a Control-flow graph (CFG)

– Nodes represent statements (low-level linear IR)
– Edges represent explicit flow of control

What Is Control-Flow Analysis?

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

 a := 0
 b := a * b

e := b / c
f : e + 1

g	:=	f	
h	:=	t	–	g	
If	e	>	0	?			

goto	 return	

c := b / d
c < x?

1	

3	

5	

7	

11	10	

Yes	 No	

Basic Blocks

•  A basic block is a sequence of straight line code that can be entered
only at the beginning and exited only at the end

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

g	:=	f	
h	:=	t	–	g	
If	e	>	0	?			

Building basic blocks
– Identify leaders

– The first instruction in a procedure, or
– The target of any branch, or
– An instruction immediately following a
branch (implicit target)

– Gobble all subsequent instructions until the next leader

Basic Block Example

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

Leaders?
– {1, 3, 5, 7, 10, 11}

Blocks?
– {1, 2}
– {3, 4}
– {5, 6}
– {7, 8, 9}
– {10}
– {11}

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Building a CFG From Basic Block

 a := 0
 b := a * b

e := b / c
f : e + 1

g	:=	f	
h	:=	t	–	g	
If	e	>	0	?			

goto	 return	

c := b / d
c < x?

1	

3	

5	

7	

11	10	

Yes	 No	

	
Construc=on	
– Each	CFG	node	represents	a	basic	block	
– There	is	an	edge	from	node	i	to	j	if	
– Last	statement	of	block	i	branches	to	
the	first	statement	of	j,	or	
– Block	i	does	not	end	with	an	
uncondi?onal	branch	and	is	
immediately	followed	in	program	order	
by	block	j	(fall	through)	

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Looping

preheader	

head	

tail	 exit	edge	

Exit	edge	

backedge	

entry	edge	

Loop	

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Why?	
backedges	indicate	that	we	
might	need	to	traverse	the	
CFG	more	than	once	for	data	
flow	analysis			

Looping

preheader	

head	

tail	 exit	edge	

Exit	edge	

backedge	

entry	edge	

Loop	

Not	all	loops	have	preheaders	
–		Some?mes	it	is	useful	to	create	
them	

Without	preheader	
node	
–		There	can	be	
mul?ple	entry	edges	

With	single	preheader	
node	
–		There	is	only	one	
entry	edge	

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Dominators

•  d dom i if all paths from entry to node i include d

• Strict Dominator (d sdom i)
•  If d dom i, but d != i

•  Immediate dominator (a idom b)
•  a sdom b and there does not exist any node c such that a != c, c != b, a dom c,

c dom b

• Post dominator (p pdom i)
•  If every possible path from i to exit includes p

	

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

IdenBfying Natural Loops and Dominators

• Back	Edge	
•  A back edge of a natural loop is one whose target dominates its source

• Natural	Loop	
•  The natural loop of a back edge (m→n), where n dominates m, is the set of

nodes x such that n dominates x and there is a path from x to m not
containing n

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Reducibility
	•  A	CFG	is	reducible	(well-structured)	if	we	can	par??on	its	edges	into		two		
disjoint	sets,	the	forward	edges		and	the	back	edges,	such	that		 – The	forward	edges	form	an	acyclic	graph	in	which	every	node	can	be		reached			from	the	entry	node	
– The	back	edges	consist	only	of	edges	whose	targets	dominate	their		sources		

•  Structured	control-flow	constructs	give	rise	to	reducible	CFGs		
				Value	of	reducibility:	
– Dominance	useful	in	iden?fying	loops	
– Simplifies	code	transforma?ons	(every	loop	has	a	single	header)	
– Permits interval analysis

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Handling Irreducible CFG’s

• Node	splivng	
•  Can	turn	irreducible	CFGs	into	reducible	CFGs	

a	

b	

c	 d	

e	

b	

c	

a	

d	

dʹ	 e	

General	idea	
– Reduce	graph	(itera?vely	remove	self	edges,	merge	nodes	with	single	pred)	
– More	than	one	node	=>	irreducible	
–		Split	any	mul?-parent	node	and	start	over	

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

Why go through all this trouble?
• Modern	languages	provide	structured	control	flow	
– Shouldn’t	the	compiler	remember	this	informa?on	rather	than	throw	it		away	
and	then	re-compute	it?	

•  Answers?	
– We	may	want	to	work	on	the	binary	code		
– Most	modern	languages	s?ll	provide	a	goto	statement	
– Languages	 typically	 provide	mul?ple	 types	 of	 loops.	 This	 analysis	 lets	us	 	 treat	
them	all	uniformly	
– We	may	want	a	compiler	with	mul?ple	front	ends	for	mul?ple	languages;		rather	
than	transla?ng	each	language	to	a	CFG,	translate	each	language	to	a	canonical	IR	
and	then	to	a	CFG	

	
Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa?on	(Autumn	2006)	

	

