
AppFlow: Using Machine Learning to 
Synthesize Robust, Reusable UI Tests

Authors: Gang Hu, Linjie Zhu, Junfeng Yang
Dept. of Computer Science, Columbia University

Presentation by: Noah Gallant
for COMS W6998 (Formal Logic, Security and ML)



Background
- UI Testing is very challenging

- Largely relies on scripting
- High initial development cost
- “Testing bugs”

- “application UIs are designed for human 
intelligence but test scripts are low level 
click-by-click scripts”

- Test re-use is difficult
- Despite flow similarity-- designs are always 

different so recognition is difficult
- Even similar apps in the same category have 

different flows

2



Introducing …. AppFlow
● “AppFlow provides ‘smoke tests’ or build verification testing for each source 

code change, requiring little or no manual work”
● Learns a classifier from a training dataset of screens and widgets labeled with 

their intents
○ texts, widget sizes, image recognition results of graphical icons, optical character recognition 

(OCR)

● Training dataset comes from a developer community for an app category 
○ AppFlow provides utilities to simplify data collection
○ Map variant screens and widgets to canonical ones. 

■ “Your Email” or “example@email.com” on sign-in screens to signin.username

3



AppFlow research at a higher level
● Initial Benefits

○ UI can be updated without rewriting unit tests
○ Multiple screen sizes supported without re-writing tests

● Flow-based testing
○ Pre-condition
○ Post-condition
○ User steps

● Android-based
● Tested on widely used apps

4



An example test

5



An example test

6

pre-condition

user steps

post-condition



An example test

7

User-defined
“abstract property”



8

“Abstract properties are intended to 
keep track of the invisible portions of 
app states, which can often be crucial 
for writing robust tests.”



An example test

9

User-defined
“abstract property”



An example test

10

“Add to Cart” 
Button

User defined 
action



AppFlow Workflow

11



AppFlow Workflow

12

Phase 1
mostly one-time, 
prepares 
AppFlow for 
testing a new 
category of 
apps



AppFlow Workflow

13

Phase 2
applies AppFlow 
to test each new 
app in the 
category



Phase 1: Preparing a new category

14

1. Create a test library in AppFlow that 
contains common flows for category

2. Define canonical screens and widgets
3. Use AppFlow utilities to capture and label 

a dataset of screens and widgets
4. Add samples from other app categories*
5. AppFlow extracts key features from each 

sample and learns classifiers to 
recognize screens and widgets based on 
them

*Sometimes apps in different categories share similar 
screens



Phase 2: Adding a new app

15

1. Customize library for app
a. Use AppFlow GUI to detect and fix errors in 

UI detection
b. Add custom test flows to accommodate 

app
2. Run test cases

a. AppFlow uses the flows in the test library to 
synthesize full tests 

b. At first, only the “start app” flow is active, 
discovers more flows

c. Process terminates when no more flows 
need to be tested



UI Recognition

16

- Feature selection includes description text, size, whether it 
is clickable; the UI layout of the object; and the graphics.

- Classifying Screens
- Inputs: UI screenshot, code class-naming
- Output: canonical screen

- Classifying Widgets (“interactables”)
- Inputs: Widget text, widget context, widget metadata, 

neighbour information, OCR, graphical features
- Output: canonical widget or “not a widget”



17

AppFlow GUI



Writing flows
● Follows ‘Gherkin’s syntax’ (Behavior-Driven Development)

○ “Unlike in Gherkin which use natural languages for the conditions and step, AppFlow uses 
visible and abstract properties”

○ Pre-condition → Given
○ Steps → When
○ Post-condition → Then

● Verbs are common operations and checks, such as “see”, “click”, and 
“text”

● Widgets can be canonical (assigned) ones or real (defined in library)
○ Canonical ones are referenced with @<canonical widget name>

18



Examples

19



AppFlow Best Practices
1. Flows should be modular for re-use
2. Test-flows should only refer to canonical screens and widgets

a. Avoids string checking-- if you are looking for a screen refer to that screen

3. Reduce rare flows in library
a. Avoids test-debugging for future developers

4. Keep flows simple
a. More properties increases test-time
b. (User-centered!)

20



Results
● Six main metrics for evaluation centered 

around usability and impact
● For 40 and 20 top apps in shopping and 

news respectively
○ 55.2%, 53% (test re-use)
○ 90.2%, 81.5% (screen detection)
○ 88.7%, 85.9% (widget detection)
○ 5.7, 4.5 (# of average flow lines)

● JackThreads
○ 46.6% of the test cases can be created 

automatically

21



Discussion
- AppFlow market impact
- AppFlow for prototyping and building
- Your thoughts???

22


