
Neural-Augmented Static Analysis of
Android Communication

Presented by Joshua Learn

Jinman Zhao
University of Wisconsin-Madison

jz@cs.wisc.edu

Aws Albarghouthi
University of Wisconsin-Madison

aws@cs.wisc.edu

Vaibhav Rastogi
University of Wisconsin-Madison

vrastogi@cs.wisc.edu

Somesh Jha
University of Wisconsin-Madison

jha@cs.wisc.edu

Damien Octeau
Google

docteau@google.com

Android App Communication Link Discovery
● Applications on the mobile Android platform have the ability to communicate

○ Ex: use external messaging app to send SMS message from within your app

● These communication links can cause huge security vulnerabilities through
taking advantage of the user privileges granted to an application

● Problem: detect if communication is possible between two application via
static analysis

● Static analysis of large, complex applications is difficult and leads to many
reported false positives

Inter-Component Communication (ICC)
● Android Apps communicate with a message system called Inter-Component

Communication
● ICC Abuse causes many security vulnerabilities

○ Ex: Bus application broadcasting GPS location to all other applications
○ Ex: SMS spying app disguised as tip calculator

● We want to answer the question: Can component c communicate with
component d?

● Process is called link inference

ICC Overview: Intents and Filters
● Intent used to initiate messages

○ Explicit
■ Target component specified

○ Implicit
■ Functionality specified

● Action string: action to be performed
● Set of category strings: additional info about what to do with the intent (ex:

“BROWSABLE” - app handling action can open request in a web browser)
● Set of data fields: data to be acted upon

● Filter used to convey willingness to receive intents
○ Actions: set of strings of accepted intent actions
○ Categories: set of strings of accepted intent categories
○ Data descriptors: descriptions of accepted data fields

Link Inference
● IC3 is a tool created for Android ICC analysis
● Uses static analysis to infer values of intents and filters
● Inferred values can be used to detect potential links (PRIMO)
● Three possible results:

○ Definite yes: confirmed link between two apps
○ Definite no: confirmed NO link between two apps
○ Maybe: possibility of link exists

● Complex applications yield a high rate of “maybe”s
● Disambiguating “maybe”s is the goal

Relevant Research: PRIMO
● Octeau et al. published probabilistic models for analysing false positives
● Models are handcrafted
● Model creation is months long
● Required deep domain knowledge
● Specific to current Android programming framework
● Includes matching procedure for detecting links between abstract

intents/filters

Example

Vulnerability Example

Formalized Intents and Filters
● Intents

○ Pair (act, cats) where
■ act ∈ ∑* ∪ {NULL}
■ cats ∈ 2∑*

○ act is a string or null representing the action
○ cats is the set of strings representing the categories

■ Given no category, cats is just the singleton set {“DEFAULT”}

● Filters
○ Pair (acts, cats) where

■ acts ∈ 2∑*

■ cats ∈ 2∑*

○ acts is the set of strings representing the actions
○ cats is the set of strings representing the categories

Abstract Intents and Filters
● Static analysis techniques used yield abstract intents and abstract filters

○ Programmatic creation of intents and filters can lead to many different possibilities at runtime
○ Represent a potentially infinite set of intents/filters through regular expressions

● Abstract versions have same representation structure
○ All strings are regular expressions
○ Ex act: (“(.*)SEND”, {“DEFAULT”}) is intent where action has suffix “SEND”

● For every intent/filter in an application, there will be an abstract intent that
matches it

Abstract Matching Function
● PRIMO paper offers procedure that infers links:

match#: I# x F# → {0, 1, ⊤}

● Takes an abstract intent and filter
● Yields yes, no, or maybe
● Goal: disambiguate the maybes

Link Inference as a Classification Problem
● Classifier function:

h: I# x F# → [0, 1]

● Indicates the probability that a link exists (h(i#, f#) = p(y | i#, f#))
● Created using Link Inference Neural Network (LINN)

○ Training data: non-maybe labels gathered from static analysis
■ D = {⟨(i1

#, f1
#), y1⟩, …, ⟨(in

#, fn
#), yn⟩}

Link-Inference Neural Network

Type-Directed Encoders
● Need some sort of input representation for abstract intents/filters
● Intents/Filters can be seen as compound data types (sets of strings, unions of

strings and null, etc.)
● Type-Directed Encoders recursively encode compound data types
● Encoder of type 𝜏 to an n dimensional vector:

g: 𝜏 →ℝn

● Encoding functions are Neural Networks jointly trained with the classifier

Encoding Base Types
● Real Numbers

○ already a real number, no encoding needed
● Categories

○ Finite number of possible values (characters, booleans, etc.)
○ Encode k categories into n-dim vector by lookup table w ∈ ℝnxk

○ Encoding for jth category is the jth column of w
○ Achieved using an embedding layer in the neural net
○ Allows us to choose dimensionality of output vector and capture meaning between categories

Encoding Compound Types
● Lists

○ flat function
■ trained as CNN or LSTM

● Sets
○ aggr function

■ Sum of vectors or Child-sum tree-LSTM
■ No ordering so treated differently than lists

● Products
○ comb function

■ MLP or Tree-LSTM unit
● Sums

○ Chooses which encoder to use based on type

Encoding functions

Encoding functions

Tree-LSTM

Intents

(L(∑) + 𝜴) x S(L(∑))

Intents

(L(∑) + 𝜴) x S(L(∑))

enumEnc

flat

Action: “view”

enumEncenumEncenumEnc

Intents

(L(∑) + 𝜴) x S(L(∑))

enumEnc

flat

Action: “view”

enumEncenumEncenumEnc

Intents

(L(∑) + 𝜴) x S(L(∑))

enumEnc

flat

Action: “view”

enumEncenumEncenumEnc

Intents

(L(∑) + 𝜴) x S(L(∑))

enumEnc

flat

Action: “view”

enumEncenumEncenumEnc

Intents

(L(∑) + 𝜴) x S(L(∑))

aggr

Categories: {“BROWSABLE”, “OTHER”}

flat(enumEnc) flat(enumEnc)

Intents

(L(∑) + 𝜴) x S(L(∑))

aggr

Categories: {“BROWSABLE”, “OTHER”}

flat(enumEnc) flat(enumEnc)

Intents

(L(∑) + 𝜴) x S(L(∑))

aggr

Categories: {“BROWSABLE”, “OTHER”}

flat(enumEnc) flat(enumEnc)

Intents

(L(∑) + 𝜴) x S(L(∑))

aggr

Categories: {“BROWSABLE”, “OTHER”}

flat(enumEnc) flat(enumEnc)

Intents

(L(∑) + 𝜴) x S(L(∑))

aggrflat

comb

Filters

(S(L(∑)) x S(L(∑)))

aggrflat

comb

aggr

flat

Different Implementations

Hyperparameters

Implementation Details
● Python with Keras (TensorFlow backend)
● Cross Entropy loss function (model outputs a probability)
● RMSprop variation of stochastic gradient descent
● Relu used for all activation functions
● LINN trained on GPU

Experimental Setup
● PRIMO corpus used for dataset

○ 10,500 Android Apps from Google Play

● IC3 + PRIMO abstract matching for static analysis
○ Provides dataset with must/may link labels

● Synthetic may links used for training and testing the model
● Model trained on a sampled subset of links

○ Using all available data too costly
○ Number of links inferred quadratic to the number of intents/filters
○ Sampling balanced between positive and negative labels

● Testing done only on may links

Simulating Imprecision
● Ground truth of may labels is unknown
● Synthetic may labels created by introducing imprecision to must links

○ Ex: add “(.*)” to the beginning of a string
○ Technique used by Octeau et al. when creating PRIMO

● First study empirical distribution of imprecision from corpus
○ Add imprecisions guided by the distribution of imprecision observed

Evaluation Metrics Used
● F1 Score

○ Measure of predictor’s false-negative and false-positive rates
○ Perfect precision/recall has F1 score of 1

● ROC Curve
○ Plot of true positive against true negative rate
○ Perfect model has area under curve of 1

● Kruskal’s 𝛾
○ Correlation between ranking computed by model and ground truth
○ Useful because we want to use model to present results in order of likelihood for programmers

to observe

Results

Observations
● Typed-tree yields the best overall results
● Typed-simple is still slightly better than Str-CNN
● str-CNN has the fastest inference time and best probability of true-positive

among highly ranked links
● str-CNN may be preferable but market scale analysis would benefit from slight

increases in accuracy
● 10 epochs of training take <20 minutes for all except str-RNN

○ Average computer used
■ Intel i7-6700 (3.4 GHz)
■ 32GB RAM
■ 1TB SSD
■ Nvidia GeForce GTX 970 GPU

● Most complex model has only 5.6MB storage cost

Str-CNN Characteristics

Str-CNN Characteristics
● Tested input strings to see what patterns kernels are picking up
● Important segments seem to be picked up

○ conv1d_size5:14 kernel activated on “.*”
○ conv1d_size5:3 kernel activated on “null”
○ conv1d_size7:0 kernel activated on “VIEW”

Typed-Simple Visualization

● t-SNE non-linear dimensionality reduction
○ Similar objects mapped to nearby points
○ Dissimilar objects mapped to distant

points
● Six imprecise versions of VIEW captured

○ (.*) occurs at different points in the
string

○ Imprecision reflected spatially
● DEFAULT, (.*), null categories all in close

proximity

Possible Concerns/Invalidities
● Tested on synthetic may links

○ Follows empirical distribution of imprecisions
○ Might not capture all meaning in real world data

● Neural network setup is complex
○ Difficult to know if relevant features are being captured or the NN is getting “lucky”
○ Best performing model has many parameters and may be overfitting

● Performance is not significantly better than plain str-CNN
○ More time invested may discover a simpler and better way to embed intents/filters

Future Work
● Main novelty of this paper was Type-Directed Encoders

○ Framework for composing neural networks
○ Applies nicely to the problem of link inference in the Android domain

● TDE could be applied to other contexts that exhibit a structure of data
composed of subtypes

References
● https://arxiv.org/pdf/1809.04059.pdf
● http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.3

9.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAF
A7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm_
_=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a

● https://arxiv.org/pdf/1503.00075.pdf
● https://developer.android.com/guide/components/intents-filters

https://arxiv.org/pdf/1809.04059.pdf
http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.39.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAFA7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a
http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.39.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAFA7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a
http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.39.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAFA7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a
http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.39.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAFA7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a
https://arxiv.org/pdf/1503.00075.pdf
https://developer.android.com/guide/components/intents-filters

