Neural-Augmented Static Analysis of Android Communication

Jinman Zhao University of Wisconsin-Madison jz@cs.wisc.edu Aws Albarghouthi University of Wisconsin-Madison aws@cs.wisc.edu Vaibhav Rastogi University of Wisconsin-Madison vrastogi@cs.wisc.edu

Somesh Jha University of Wisconsin-Madison jha@cs.wisc.edu Damien Octeau Google docteau@google.com

Presented by Joshua Learn

Android App Communication Link Discovery

- Applications on the mobile Android platform have the ability to communicate
 Ex: use external messaging app to send SMS message from within your app
- These communication links can cause huge security vulnerabilities through taking advantage of the user privileges granted to an application
- Problem: detect if communication is possible between two application via static analysis
- Static analysis of large, complex applications is difficult and leads to many reported false positives

Inter-Component Communication (ICC)

- Android Apps communicate with a message system called Inter-Component Communication
- ICC Abuse causes many security vulnerabilities
 - Ex: Bus application broadcasting GPS location to all other applications
 - Ex: SMS spying app disguised as tip calculator
- We want to answer the question: *Can component c communicate with component d?*
- Process is called *link inference*

ICC Overview: Intents and Filters

- Intent used to initiate messages
 - Explicit
 - Target component specified
 - Implicit
 - Functionality specified
 - Action string: action to be performed
 - Set of category strings: additional info about what to do with the intent (ex: "BROWSABLE" app handling action can open request in a web browser)
 - Set of data fields: data to be acted upon
- Filter used to convey willingness to receive intents
 - Actions: set of strings of accepted intent actions
 - Categories: set of strings of accepted intent categories
 - Data descriptors: descriptions of accepted data fields

Link Inference

- IC3 is a tool created for Android ICC analysis
- Uses static analysis to infer values of intents and filters
- Inferred values can be used to detect potential links (PRIMO)
- Three possible results:
 - Definite yes: confirmed link between two apps
 - Definite no: confirmed NO link between two apps
 - Maybe: possibility of link exists
- Complex applications yield a high rate of "maybe"s
- Disambiguating "maybe"s is the goal

Relevant Research: PRIMO

- Octeau et al. published probabilistic models for analysing false positives
- Models are handcrafted
- Model creation is months long
- Required deep domain knowledge
- Specific to current Android programming framework
- Includes matching procedure for detecting links between abstract intents/filters

Example

(a) ICC example with three applications

public void sendImplicitIntent() {
 Intent intent = new Intent();
 intent.setAction("SEND");
 msg = ... // contains phone # and msg
 intent.setData(msg);
 startActivity(intent);}
Code constructing and starting implicit intent
<intent-filter>
 <action android:name="SEND"/>
 <action android:name="VIEW"/></action android:name="VIEW"/></action android:name="VIEW"/></action android:name="VIEW"/></action android:name="VIEW"/></action android:name="VIEW"/></action/

<data android:scheme="sms"/>

<category android:name="DEFAULT"/>

</intent-filter>

Intent filter for a SMS component

(b) Intent for sending an SMS and associated filter

Figure 2: ICC Example

Vulnerability Example


```
public void onClick(View v) {
2
   Location loc =
         LocationManager.getLastKnownLocation("gps");
   Uri query = Uri.parse("geo:" + loc.getLatitude() + ","
3
         + loc.getLongitude() + "?g=restaurants");
   Intent intent = new Intent("VIEW", query);
4
5
   startActivity(intent); }
         (a) Click handler sending Intent (1) from Figure 3.
 public class MapActivity extends Activity {
2
   public void onCreate(Bundle b) {
3
      Uri location = getIntent().getData();
      SmsManager.getDefault().sendTextMessage("12345",
           null, location.toString(), null, null); }}
  (b) Code leaking location data in the spy application from Figure 3.
```

Formalized Intents and Filters

• Intents

- Pair (act, cats) where
 - $act \in \Sigma^* \cup \{\text{NULL}\}$
 - cats $\in 2^{\Sigma^*}$
- *act* is a string or null representing the action
- *cats* is the set of strings representing the categories
 - Given no category, *cats* is just the singleton set {"DEFAULT"}
- Filters
 - Pair (acts, cats) where
 - acts $\in 2^{\Sigma^*}$
 - cats $\in 2^{\Sigma^*}$
 - *acts* is the set of strings representing the actions
 - cats is the set of strings representing the categories

Abstract Intents and Filters

- Static analysis techniques used yield *abstract intents* and *abstract filters*
 - Programmatic creation of intents and filters can lead to many different possibilities at runtime
 - Represent a potentially infinite set of intents/filters through regular expressions
- Abstract versions have same representation structure
 - All strings are regular expressions
 - Ex act: ("(.*)SEND", {"DEFAULT"}) is intent where action has suffix "SEND"
- For every intent/filter in an application, there will be an abstract intent that matches it

Abstract Matching Function

• PRIMO paper offers procedure that infers links:

match[#]: $I^{\#} \times F^{\#} \rightarrow \{0, 1, \top\}$

- Takes an abstract intent and filter
- Yields yes, no, or maybe
- Goal: disambiguate the maybes

Link Inference as a Classification Problem

• Classifier function:

h: $I^{\#} \times F^{\#} \rightarrow [0, 1]$

- Indicates the probability that a link exists $(h(i^{\#}, f^{\#}) = p(y | i^{\#}, f^{\#}))$
- Created using Link Inference Neural Network (LINN)
 - Training data: non-maybe labels gathered from static analysis

$$D = \{ \langle (i_1^{\#}, f_1^{\#}), y_1 \rangle, \dots, \langle (i_n^{\#}, f_n^{\#}), y_n \rangle \}$$

Link-Inference Neural Network

Type-Directed Encoders

- Need some sort of input representation for abstract intents/filters
- Intents/Filters can be seen as compound data types (sets of strings, unions of strings and null, etc.)
- Type-Directed Encoders recursively encode compound data types
- Encoder of type τ to an *n* dimensional vector:

g: $\tau \rightarrow \mathbb{R}^n$

• Encoding functions are Neural Networks jointly trained with the classifier

Encoding Base Types

- Real Numbers
 - already a real number, no encoding needed
- Categories
 - Finite number of possible values (characters, booleans, etc.)
 - Encode k categories into n-dim vector by lookup table $w \in \mathbb{R}^{n \times k}$
 - Encoding for *j*th category is the *j*th column of *w*
 - Achieved using an embedding layer in the neural net
 - Allows us to choose dimensionality of output vector and capture meaning between categories

Encoding Compound Types

- Lists
 - *flat* function
 - trained as CNN or LSTM
- Sets
 - aggr function
 - Sum of vectors or Child-sum tree-LSTM
 - No ordering so treated differently than lists
- Products
 - comb function
 - MLP or Tree-LSTM unit
- Sums
 - Chooses which encoder to use based on type

Encoding functions

Encoding functions

Encoder	Туре	Possible differentiable implementations
enumEnc flat	$\Sigma \to \mathbb{R}^l$ $\mathcal{L}(\mathbb{R}^n) \to \mathbb{R}^m$	Trainable lookup table (<i>embedding layer</i>) смм / LSTM
aggr comb	$\frac{\mathbf{S}(\mathbb{R}^n) \to \mathbb{R}^m}{\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^l}$	<i>sum</i> / Child-sum Tree-LSTM unit Single-layer MLP / binary Tree-LSTM unit

Tree-LSTM

$(L(\Sigma) + \Omega) \times S(L(\Sigma))$

Action: "VIEW"

Intents $(\underline{L}(\underline{\Sigma}) + \Omega) \times S(L(\underline{\Sigma}))$ flat enumEnc enumEnc enumEnc enumEnc Action: "VIEW"

Categories: {"BROWSABLE", "OTHER"}

$(L(\Sigma) + \Omega) \times S(L(\Sigma))$

Filters

Different Implementations

Table 2: Instantiations of TDE parameters

			TDE parameters				
Instantiation	Type	enumEnc	flat	aggr	comb		
str-RNN	$L(\Sigma)$	lookup	RNN	-			
str-CNN	$L(\Sigma)$	lookup	CNN	-	-		
typed-simple typed-tree	full full	lookup lookup	CNN CNN	sum Tree-lstм	1-layer perceptron Tree-LSTM		

Hyperparameters

Hyperparam	Choice	
Lookup table	dimension	16
CNN	kernel sizes kernel counts activation pooling	<pre>(1, 3, 5, 7) (8, 16, 32, 64) relu max</pre>
RNN (LSTM)	hidden size	128
1-layer perceptron	dimensions activation	64 relu
Multilayer perceptron	dimensions activation	$\langle 16, 1 \rangle$ $\langle relu, \sigma \rangle$

Implementation Details

- Python with Keras (TensorFlow backend)
- Cross Entropy loss function (model outputs a probability)
- RMSprop variation of stochastic gradient descent
- Relu used for all activation functions
- LINN trained on GPU

Experimental Setup

- PRIMO corpus used for dataset
 - 10,500 Android Apps from Google Play
- IC3 + PRIMO abstract matching for static analysis
 - Provides dataset with must/may link labels
- Synthetic may links used for training and testing the model
- Model trained on a sampled subset of links
 - Using all available data too costly
 - Number of links inferred quadratic to the number of intents/filters
 - Sampling balanced between positive and negative labels
- Testing done only on may links

Simulating Imprecision

- Ground truth of *may* labels is unknown
- Synthetic *may* labels created by introducing imprecision to *must* links
 - Ex: add "(.*)" to the beginning of a string
 - Technique used by Octeau et al. when creating PRIMO
- First study empirical distribution of imprecision from corpus
 - Add imprecisions guided by the distribution of imprecision observed

Evaluation Metrics Used

- F1 Score
 - Measure of predictor's false-negative and false-positive rates
 - Perfect precision/recall has F1 score of 1
- ROC Curve
 - Plot of true positive against true negative rate
 - Perfect model has area under curve of 1
- Kruskal's γ
 - Correlation between ranking computed by model and ground truth
 - Useful because we want to use model to present results in order of likelihood for programmers to observe

Results

Instantiation	# Parameters	Inference time (μ s/link)	Testing γ	Testing F1	AUC	Entropy of \hat{y}	$\Pr(y=1\mid \hat{y}>0.95)$	$Pr(\hat{y} > 0.95)$
str-RNN	154,657	2220	0.970	0.891	0.975	3.002	0.980	0.089
str-CNN	27,409	57	0.988	0.917	0.988	2.534	0.998	0.139
typed-simple	142,417	157	0.989	0.920	0.988	2.399	0.996	0.173
typed-tree	634,881	171	0.992	0.931	0.991	2.220	0.994	0.200

Table 4: Summary of model evaluations

(a) Receiver operating characteristic (ROC) (b) Distribution of predicted link probabilities

Figure 5: Detailed results for the typed-tree instantiation

Observations

- Typed-tree yields the best overall results
- Typed-simple is still slightly better than Str-CNN
- str-CNN has the fastest inference time and best probability of true-positive among highly ranked links
- str-CNN may be preferable but market scale analysis would benefit from slight increases in accuracy
- 10 epochs of training take <20 minutes for all except str-RNN
 - Average computer used
 - Intel i7-6700 (3.4 GHz)
 - 32GB RAM
 - 1TB SSD
 - Nvidia GeForce GTX 970 GPU
- Most complex model has only 5.6MB storage cost

Str-CNN Characteristics

{"action": "NULL=CONSTANT", "categories": null}
{"actions": ["NULL-CONSTANTPOP_DIALOG", "NULL-CONSTANTPUSH_DIALOG_(.*)",
"(.*)REPLACE_DIALOG_(.*)", "APP-00489869YB964702HUPDATE_VIEW"], "categories": nu11}

"action": "NULL-CONSTANTREPLACE_DIALOG_(.*)", "categories": null} {"actions": ["(.*).CLOSE"], "categories": null}

"action": "(.*)", "categories": null}
"actions": ["android.media.RINGER_MODE_CHANGED",

"sakurasoft.action.ALWAYS_LOCK", "android.intent.action.BOOT_COMPLETED"], "categories": null}

{"action": "(.*)LOGIN_SUCCESS", "categories : null}

{"actions": ["NULL-CONSTANTLOGIN_FAIL", "NULL-CONSTANTCREATE_PAYMENT_SUCCESS", "(.*)FATAL_ERROR", "(.*)CREATE_PAYMENT_FAIL", "NULL-CONSTANTLOGIN_SUCCESS"], "categories": null}

"action": "APP-00489869YB964702HREPLACE_DIALOG_(.*)", "<u>categories</u>": null} "actions": ["APP-00489869YB964702HLOGIN_FAIL", "APP-00489869YB964702HCREATE_PAYMENT_FAIL", "NULL-CONSTANTCREATE_PAYMENT_SUCCESS", "(.*)FATAL_ERROR", "NULL-CONSTANTLOGIN_SUCCESS"], "categories": null}

"action": "com.joboevan.push.message.(.*)", "categories": null {"actions": ["com.joboevan.push.message.NULL-CONSTANT"]. "categories": null}

"action": "", "categories": [["(.*)"]}

{"actions": ["com.dreamware.Hells_Kitchen.CONCORRENTE"], "categories": ["android.intent.category.DEFAULT"]}

()", "categories": null} 'action 🔡

"actions": ["android.intent.action.MEDIA_BUTTON", "com.ez.addon.MUSIC_COMMAND", "android.media.AUDIO_BECOMING_NOISY"]. "categories": null}

Figure 6: Explaining individual instances

Str-CNN Characteristics

- Tested input strings to see what patterns kernels are picking up
- Important segments seem to be picked up
 - conv1d_size5:14 kernel activated on ".*"
 - conv1d_size5:3 kernel activated on "null"
 - conv1d_size7:0 kernel activated on "VIEW"

convld_size5:14		conv1d	_size5:3	<pre>convld_size7:0</pre>		
segment	activation	segment	activation	segment	activation	
(.*)R	1.951	<pre>null}</pre>	3.796	TAVIEWA	3.704	
(.*)u	1.894	null,	2.822	n.VIEW"	3.543	
(.*)t	1.893	sulle	2.488	y.VIEW"	3.384	

Table 5: Some CNN kernels and their top stimuli

Typed-Simple Visualization

- t-SNE non-linear dimensionality reduction
 - Similar objects mapped to nearby points
 - Dissimilar objects mapped to distant points
- Six imprecise versions of VIEW captured
 - (.*) occurs at different points in the string
 - Imprecision reflected spatially
- DEFAULT, (.*), null categories all in close proximity

(a) android.intent.*

(b) Imprecise VIEW actions

(c) dev*.app*.*.FEED*

(d) DEFAULT, total imprecise and null categories

Figure 7: Intent encodings visualized using t-SNE

Possible Concerns/Invalidities

- Tested on synthetic may links
 - Follows empirical distribution of imprecisions
 - Might not capture all meaning in real world data
- Neural network setup is complex
 - Difficult to know if relevant features are being captured or the NN is getting "lucky"
 - Best performing model has many parameters and may be overfitting
- Performance is not significantly better than plain str-CNN
 - More time invested may discover a simpler and better way to embed intents/filters

Future Work

- Main novelty of this paper was Type-Directed Encoders
 - Framework for composing neural networks
 - Applies nicely to the problem of link inference in the Android domain
- TDE could be applied to other contexts that exhibit a structure of data composed of subtypes

References

- https://arxiv.org/pdf/1809.04059.pdf
- http://delivery.acm.org/10.1145/2840000/2837661/p469-octeau.pdf?ip=160.3
 9.169.169&id=2837661&acc=CHORUS&key=7777116298C9657D%2ECCAF
 A7F43E96773E%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__
 _=1554088993_7d6fdb889b8c94e87c503e4666f2cb7a
- https://arxiv.org/pdf/1503.00075.pdf
- https://developer.android.com/guide/components/intents-filters