Recognizing Functions In
Binaries with Neural Networks

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi
UC Berkeley

Key Contribution

e Recurrent Neural Networks (RNNs) can solve the function

identification problem more efficiently and accurately than previous
state-of-the-art ML and traditional methods

Outline

* The problem: function identification in stripped binaries

* Previous solutions and their inadequacies; why RNN?
* Network architecture and design decisions

e Evaluation and limitations
» Key takeaways

Ultra quick refresher on stripped binaries

* Source code to execution:
Preprocessing -> Compiling -> Assembly -> Linking -> Loading

%—J

Compilation

e Symbol table:

Data structure used during compilation that maps identifiers
from the source code to their type info and memory addresses

* A stripped binary is an executable whose symbol table is removed

Function Identification

* Given a stripped binary executable, we want to identify the start and
end bytes of each function in the binary

. text:

83 €C 2C 89 5C 24 1C 89 74 24 20 89 06 89 7cC 24 24 89 C7 89 6¢C 24 28 89 cd e
82 bf ff ff c7 89 ¢3 89 6C 24 08 89 3c 24 89 74 24 04 e8 1a bf ff ff 8b 2b 85

~
o

.text: function 1

B3 eC 2C 89 5¢C 24 1cC 89 74 24 20 89 db6 89 7c 24 24 89 c7 89 6¢C 24 28 89 cd e8
82 bf ff ff ¢c7 89 ¢c3 89 6C 24 08 89 3¢ 24 89 74 24 04 ¢8 12 bf ff ff 8b 2b 85

function 2 function 3

Why do we care?

* Malware analysis

* Debugging

* Decompiling

* Retrofitting control-flow integrity
* Binary rewriting

Why is this difficult?

* During compilation the assembler strips away function symbols, so
we must make deductions based on incomplete information

* Different compilers and optimization settings generate different code
* Disassembly is hard because x86 uses varying length instructions

Compiler generated code can vary

#include <stdio.h>

int add(int x, int y) { return x + y; }

int main(int argc, char xkargv)
{

int x

int y

int z

printf("%d\n",

return 9;

Compiler generated code can vary

int add(int x, int y) { return x + y; }

Source code

.globl add
.type add, @function
add:
push ebp
mov ebp, esp
call __x86.get_pc_thunk.ax

.globl add
.type add, @function
add:

add eax, OFFSET FLAT: GLOBAL_OFFSET_TABLE_
mov edx, DWORD PTR 8[ebp]

mov eax, DWORD PTR 12[ebp]

add eax, edx

pop ebp Compiled with gcc -03 -S -fno-asynchronous-unwind-tables
ret

add eax, DWORD PTR 4[esp]
ret

5
6
7
8 mov eax, DWORD PTR 8[esp]
9
)

1

Compiled with gcc -00 -S -fno-asynchronous-unwind-tables

Disassembly is hard

* x86 uses varying length instructions; depending on which byte
disassembly begins at the instructions can be interpreted differently

* Data is often mixed in code, e.g. jump tables

* Adversaries can use many anti-disassembly techniques to throw off
disassemblers

Disassembly is hard

jmp short near ptr loc_2+1
Anti-disassembly T
. i loc_2: ; CODE XREF: seg000:00000000]
example' Jumplng over call near ptr 15FF2A71h ©
or [ecx], dl
a rogue byte ol
L ® o

(not important to remainder of
presentation, feel free to ignore)

do OE8h
; ..
loc_3: ; CODE XREF: seg000:00000000]
push 2Ah

call Sleep ©

Notation

The input is code C, a sequence of bytes C|0], C[1], ..., C[l] where C|i] €
Z,x¢ is the it" byte in the sequence

The n functions in the code are denoted f3, /5, ..., f;,, and the bytes

belonging to function f; are denoted f; 4, f; 2, ..., fi;; where [; is the total
number of bytes in f;

Formal Task Definition

* Function boundary identification:
Given Cr find {(fl,b fl,ll)r (fZ,lr fZ,lz)f ety (fn,ll fn,ln)}

 Easier subtasks- function start/end identification:

Given C, find {f1 1, f21, -+ » fn1}
Given C, find {flrll’ fz’lz, vee fn»ln}

Outline

* The problem: function identification in stripped binaries

* Previous solutions and their inadequacies; why RNN?
* Network architecture and design decisions

e Evaluation and limitations
e Key takeaways

Traditional approach

* Disassemble machine code into assembly, then identify functions

with code references and pattern matching against manually curated
function prologue/epilogue signatures

* Used by popular commercial tools: IDA Pro/Hex-Rays, Phoenix,
Boomerang etc.

e Fast but inaccurate: Bao et al. showed that the even most accurate
tool, IDA Pro, had a 41.81% true positives, 21.38% false negatives and
36.81% false positives on a test set of ~1 million functions

Machine learning approach: ByteWeight

* Machine Learning based approach, uses weighted prefix trees to
learn function prologues from data

* Requires preprocessing by disassembler; works on assembly code

* Good accuracy but at the cost of efficiency: 92%+ F1 score on
Windows and Linux binaries, but 587 hours to train on a training set
of 2,200 binaries

Review of RNNs

* Good for processing sequence data, widely used in NLP
* Maintains state while iterating through sequence elements

Unrolled
Output
‘ 00 01 02
’ ‘. ‘
RNN RNN 1 RNN | —— RNN
' | ‘
Previous
Output 10 11 12

input

Why RNNs are a good fit

* Essentially, our task can be formulated as iterating through a

sequence of bytes, and identifying the bytes that represent the start
or end of a function

f.start f.start f.start f.start f.start f.start f.start f. start
at 0? at1? at 27? at 37 at 47 at 5? at 6? at7?
'y A 'y

4 T T 4 4
! ! T ! T ! T !

byte0 byte1 byte2 byte3 byted4d byte5 byte6 byte7

Outline

* The problem: function identification in stripped binaries

* Previous solutions and their inadequacies; why RNN?
* Network architecture and design decisions

e Evaluation and limitations
* Key takeaways

Dataset

2200 Linux/Windows binaries compiled with GCC, ICC, and Visual
Studio under 4 different optimization levels

* Same dataset as ByteWeight; enables direct comparison

ELF x86 ELF x86-64 PE x86 PE x86-64
Number of binaries 1,032 1,032 68 68
Number of bytes 138,547,936 | 145,544,012 | 29,093,888 | 33,351,168
Number of functions 303,238 295,121 03,288 04,548
Average function length 448.84 499.54 292.85 330.03

Data Preparation

* [gnore all binary data except for the .text section which contains the
actual machine code instructions

* Extract 100,000 1000-byte chunks from the 2200 binaries to build
training set

* Encode each byte with one-hot encoding to an R?°° vector
* No disassembly required!

* Authors mention code references could be used to increase accuracy,
but did not attempt this due to complexity

Bi-directional RNNs

e Uni-directional RNNs don’t take advantage of sequence elements that
are later in the sequence than the current element

* As a result, the network must make its classification while only
looking at bytes that come before the current byte

* This restriction is necessary for many sequence data classification
tasks, but not for function identification- complete sequences are
always available

Bi-directional RNNs

f.start f.start f.start f.start f.start f.stat f.start f. start
at 0? at1? at 27 at 37 at 47 at 5?7 at 6? at 7?

-t r 1t t 1 /]

L

byte0O byte1 byte2 byte3 byted4d byte5 byte6 byte7

Architecture and Hyperparameters

e Bi-directional RNN

* One hidden layer with 16 bi-directional RNN nodes
» Softmax layer: function start; function end; neither

* Mini-batch gradient descent using RMSprop, batch size 32

Architecture and Hyperparameters

 10-fold cross validation with 10% of training set to tune

hyperparameters
Function start identification Function end identification
ELF x86 | ELF x86-64 | PE x86 | PE x86-64 | ELF x86 | ELF x86-64 | PE x86 | PE x86-64

Separate
h=8,1=1 08.88% 96.07% 98.04% 99.42% 95.93% 92.94% 97.98% 99.25%
h=8,1=2 | 99.03% 97.69% 98.00% 99.43% 97.71% 94.49% 98.30% 99.19%
h=16,1=1 | 99.24% 08.13% 98.33% 99.50% 98.09% 95.74% 98.56% 99.24%

Shared
h=8,1=1 97.79% 95.28% 97.30% 99.23% 95.86% 91.94% 97.08% 98.90%
h=8,1=2 | 98.60% 96.67% 97.96% 99.45% 97.41% 94.92% 97.58% 99.12%
h=16,1=1 | 98.29% 97.41% 98.42% 99.47% 97.20% 95.51% 98.32% 99.38%

Outline

* The problem: function identification in stripped binaries

* Previous solutions and their inadequacies; why RNN?
* Network architecture and design decisions

e Evaluation and limitations
* Key takeaways

Evaluation Metrics

* Network performance: precision, recall, F1 score (harmonic mean of
precision and recall)

- TP
Precision =
TP + FP
Recall = L
TP 4+ EN
Fl — 2 - Precision - Recall

Precision + Recall

e Efficiency: computational power consumead by training

Evaluation: Start/End Identification

ELF x86

ELF x86-64

Fl

Fl

ByteWeight (func. start)

98.41%

97.94%

98.17%

99.14%

98.47%

98.80%

Our models (func. start)

99.56%

99.06%

99.31%

98.80%

97.80%

98.30%

Our models (func. end)

98.69%

97.87%

98.28%

97.45%

95.03%

96.22%

PE x86

PE x86-64

Fl

Fl

ByteWeight (func. start)

93.78%

95.37%

94.57%

97.88%

97.98%

97.93%

Our models (func. start)

99.01%

98.46%

98.74%

99.52%

99.09%

99.31%

Our models (func. end)

99.24%

98.35%

98.79%

99.28%

99.20%

99.24%

Evaluation: Boundary ldentification

ELF x86

ELF x86-64

P

R

Fl

P

R

Fl

ByteWeight

92.78%

92.29%

92.53%

93.22%

92.52%

92.87%

Our models

97.75%

95.34%

96.53%

94.85%

89.91%

92.32%

PE x86

PE x86-64

P

R

F1

P

R

F1

ByteWeight

92.30%

93.91%

93.10%

93.04%

93.13%

93.08%

Our models

97.53%

95.27%

96.39%

98.43%

97.33%

97.88%

Evaluation: Training Time

e 7x speed up in training time
* Total training time of ByteWeight: 587 hours
* Total training time of Bi-directional RNN: 80 hours

ELF x86 ELF x86-64 PE x86 PE x86-64

Our models (func. boundary) 1061.76 s 1017.90 s 236.93 s 264.50 s
ByteWeight (func. start only) 3296.98 s 5718.84s | 10269.19s | 11904.06 s
ByteWeight (func. boundary) 367018.53s | 412223.55s | 54482.30s | 87661.01 s
ByteWeight (func. boundary with RFCR) | 457997.09 s | 593169.73 s | 84602.56 s | 97627.44 s

Limitations

* Does not account for adversarial inputs that come from a different
distribution than benign training set

 |dentification for GCC binaries on x86-64 architecture is less accurate

* |CC will generate functions with multiple entry points as an
optimization technique; this causes many false negatives

Key Takeaways

* Function identification in stripped binaries is a binary analysis
problem critical to many security domains

* Bi-directional RNNs can solve the function identification problem
more efficiently and accurately than previous state-of-the-art ML and
traditional methods

* More research needs to be done to increase robustness of function
identification against adversarial inputs, which are common for
security tasks

