
Lecture 4: Dynamic Analysis and Fuzzing
Lecturer: Suman Jana Scribe: Jonas Guan

Feb 21, 2019

Presentation Logistics

Starting from the class on March 7th, students will begin to individually present research
papers of their choice in class. Please email the paper you would like to present to Suman by
February 28th, so that he can schedule related papers near each other. Each class will contain of
1 student presentation, but this may change depending on how much time we have left.
Presentations should be approximately 45 minutes of material and 15 minutes of discussion.

Selecting a Research Paper / Research Project

The primary goal of this class is to explore how to use ML to solve program analysis problems,
and this field contains many interesting subdomains you can explore for your presentation and
research project. Try to concentrate your effort when selecting your topic: though not required,
the paper you present should ideally be in the same subdomain as your research project. As this
is a research course, your aim should be depth instead of breadth.

Some subdomains you can look at include:

1. Improving static/dynamic/symbolic analysis with machine learning: These are traditional

fields in program analysis. Potential research topics include using ML to cut down false
positives, an issue that plagues static analysis, or improve the efficiency of fuzzers. A sample
paper on symbolic analysis is on the course website (Neuro-Symbolic Execution: The
Feasibility of an Inductive Approach to Symbolic Execution); it investigates using neural
networks to make symbolic execution more scalable.

2. Program synthesis: This field studies how to automatically construct programs given a task.

For example, given a set of unsorted lists and their sorted counterparts, automatically learn
a sorting algorithm. Traditionally this domain uses SMT solvers, but recent work has shown
that neural networks achieve good results (DeepCoder: Learning to Write Programs). A
related domain is latent representation, which is only interested in the correctness of the
generated program; in contrast, program synthesis is interested both in correctness and
interpretability of the program.

3. Semantic similarity of binaries: Given program binaries, this field studies how to

automatically learn the semantic similarities between the programs. Syntactic similarity
between programs is easy to learn, but semantic similarity is a difficult problem. For example,
the x86 instructions xor eax, eax and mov eax, 0 are semantically identical, but are
represented as different instructions.

https://arxiv.org/pdf/1807.00575.pdf
https://arxiv.org/pdf/1807.00575.pdf
https://arxiv.org/pdf/1611.01989.pdf

4. Code deobfuscation: This field studies how to automatically deobfuscate code into a
readable format. Program code is often obfuscated, either purposefully by the coder (e.g.
malware author trying to thwart analysis) or by a compiler (stripping identifiers for efficiency).
Code deobfuscation aims to learn the semantic meaning of obfuscated code and represent it
in an interpretable format without running the code. A paper on the course website
(Predicting Program Properties from “Big Code”) in this field studies how to take stripped
JavaScript as input and produce JavaScript with meaningful variable names as output. A
closely related field is code optimization using ML.

5. Generic program representation: In program analysis, programs are traditionally

represented as control flow graphs, but this may not be a representation that is well suited
for ML based approaches. This field investigates program representations that are more
suitable for machine learning, and how to learn these representations. In some sense, this is
the foundation for all research areas in program analysis with ML. A sample paper in this field
(code2vec: Learning Distributed Representations of Code) looks at how to translate a program
into meaningful values in a vector.

You may also choose papers from relevant subdomains not listed above. Since meaningful
discussion is only possible if everyone is on the same page, try to make sure you read the papers
before their presentations and come to class with questions.

A 1-page preliminary project proposal for your research project is due on March 15th.

Dynamic Analysis

Previously we studied static analysis and symbolic analysis and found that both have several
disadvantages. Static analysis may never converge for large code bases, and even if the analysis
converges it contains many false positives due to the info lost when merging paths. Symbolic
analysis is highly dependent on the solver and cannot know if a path is feasible or not until the
solver is called; converting a program to symbolic formula is also computationally expensive.

On the other hand, dynamic analysis has no false positives, because every path analyzed is
actually executed and therefore must be feasible. The difficulty of dynamic analysis is achieving
high code coverage.

There are two main approaches to dynamic analysis: verifying properties at runtime through
instrumentation, and path exploration through fuzzing. The instrumentation approach is
performed by inserting checks into the program code. For example, to check if the value of x is
ever 0, we can add an if statement to check if x = 0 after each instruction, and if so terminate the
program and report this. This example is naïve and inefficient but represents the basic idea. The
fuzzing approach is performed by generating a set of inputs that achieve high code coverage and
running the program with these inputs to observe buggy behavior. An idea related to fuzzing is

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.706.7690&rep=rep1&type=pdf
https://arxiv.org/abs/1803.09473

regression, which runs the program with a set of common inputs to test its robustness under
normal use. In contrast, fuzzing tests for robustness against abnormal inputs.

Fuzzing

The concept of fuzzing was pioneered by Barton Miller at the University of Wisconsin in 1989,
who was inspired by the observation that some of his failed attempts to login to his remote
machine crashed the system. He became interested in whether programs are in general robust
to random input, and conducted an experiment by sending random inputs to common programs
and observing their behavior. The results showed that an overwhelming number of programs
were not robust against such inputs and crashed. In security, the goal of fuzzing is often not to
just crash a program, but also to find buffer overflow vulnerabilities.

Miller’s experiments are an example of blackbox fuzzing, where the inputs are selected without
regard to the analyzed program’s logic. However, this primitive approach has the severe
weakness that most inputs are filtered out at shallow branches. Modern programs commonly
employ checks at shallow branches to ensure that the structure of the input is valid, and the
probability that the fuzzer generates an input that adheres to the expected structure is low. For
example, ELF parsers usually check that the first 4 bytes of an ELF file is its magic number and
exits if this condition is not satisfied. Later we will look at enhancements to this fuzzing approach.

There are two components to fuzzers: an input generator that automatically generates test cases,
and a monitor that detects errors in the program at runtime. There are multiple types of error
detection. A simple error detection is to check if the program has crashed, and if so report the
type of the crash. A more advanced detection would be to check for dynamic memory errors
using an instrumentation tool such as Valgrind. This method will catch more bugs, but as tradeoff
it is more expensive to run.

An enhancement to random blackbox fuzzing is mutation-based fuzzing. This enhancement aims
to address the problem that random inputs are often filtered out at shallow branches. In this
approach, the generator uses valid inputs that can reach deeper branches as seeds, and then
mutate these valid inputs to generate test cases. The mutations can be performed randomly or
based on some heuristics, for example selecting certain grammar rules in context-free grammar
to violate. The disadvantage of this approach is that it lacks a feedback loop to improve mutations
based on past performance. Furthermore, code coverage of mutation-based fuzzing largely
depends on the coverage of the input seeds.

As an example, let’s study how to fuzz a PDF parser using mutation-based fuzzing. We first collect
a corpus of PDF files using google, then filter out a subset of interesting PDFs to use as seeds. The
goal of filtering is to select a subset that maximizes code coverage. The metric for filtering can
either be the distance between examples in the input space, or distance between examples in
the program space, i.e. find examples that trigger paths that are far from each other by some

distance metric. The latter approach is usually preferred as it more directly increases branch
coverage in the program, but is more costly as it requires execution. A critical problem could be
that checksums will fail as we mutate valid input, which again causes programs to terminate at
shallow branches. This problem also occurs in symbolic execution. To prevent this, we could
disable checksum logic in the program before analysis.

A different enhancement to mutation-based fuzzing is generation-based fuzzing. Instead of
mutating based on valid inputs, generation-based fuzzing generates inputs from scratch based
on some description of valid input formats. This enhancement is better equipped to deal with
complex dependencies such as checksums, but writing the generator is more difficult.

A key question in fuzzing is how much fuzzing is enough. Fuzzing will always hit saturation after
a certain point, when it becomes prohibitively costly or impossible to find new paths. For
mutation-based fuzzing, this occurs because mutations cannot reach paths that are far from any
input seeds. For generation-based fuzzing, the test cases the generator can generate is finite and
may not reach all paths.

Another question is how to evaluate fuzzer performance. Because the success of fuzzing is
probabilistic in nature, we cannot measure performance solely by the number of bugs found. The
locations of bugs are sparse, and some fuzzers may find more bugs than others just by being lucky.
A better criterion for performance is code coverage. There are three methods to measure code
coverage: line coverage, branch coverage and path coverage. Line coverage measures the
number of lines in the source code that was executed; branch coverage measures the number of
conditional jumps (branches) that was taken; and path coverage measures the number of paths
that was taken. As a side note, because fuzzing is probabilistic, no fuzzer can provide formal
guarantees of program robustness.

Using code coverage as the criterion for performance, we can further enhance fuzzing with
coverage-guided gray-box fuzzing. This enhancement is based on mutation-based fuzzing, but
also keeps track of mutations that perform better and bases future mutations on past successful
mutations. More specifically, it uses a genetic algorithm that mimics the gene propagation
process in nature. The algorithm’s fitness function is defined using code coverage, and mutations
that increases code coverage are kept for future mutations and those that don’t die out. This is
the fuzzing technique used by current state-of-the-art fuzzers such as AFL and libFuzzer.

Another method of fuzzing is data-flow-guided fuzzing. Previous discussed methods use the
control flow of the program as guidance, but this fuzzing technique integrates the data flow of
the program. The fuzzer instruments data flow and analyzes the inputs to comparisons at
branches, then modifies test inputs and observe the effect on comparisons. The downside of this
method is high overhead costs. The use of data-flow-guided fuzzing may also be limited: many
programs like parsers consist mostly of logical rather than numerical comparisons, and thus the
extra overhead incurred may not be worth it. Prototype implementations of data-flow-guided
fuzzing can be found in libFuzzer and go-fuzz.

Two challenges for fuzzing are selecting seeds to efficiently achieve high code coverage and
dealing with branches that are difficult to get past. Seed selection is a balance between coverage
and efficiency. If the seeds don’t cover enough different branches, many possible paths will not
be tested. On the other hand, since seeds that cover similar branches causes redundancy, we
must remove duplicate seeds to improve efficiency. Small seeds are preferred because they are
usually faster for the program to process, which leads to a faster feedback loop for mutations.

Branches that have small sets of satisfying inputs is often difficult to get past. The following code
snippet is an example:

void test (int n) {

 if (n == 0x12345678)

 crash();

}

In the worst case, we need 232 attempts to guarantee we satisfy the conditional check. To combat
this issue, we can either apply transformations to the checks, or remove the checks completely.
However, we should be careful when modifying program logic to avoid false positives. Below is a
transformation that greatly decreases attempts required to pass this branch by providing more
granular feedback on each byte:

void test (int n) {

int dummy = 0;

char *p = (char *) &n;

 if (p[3] == 0x12) dummy++;

 if (p[2] == 0x34) dummy++;

 if (p[1] == 0x56) dummy++;

 if (p[0] == 0x78) dummy++;

 if (dummy == 4)

 crash();

}

As a quick recap, the two most important components of dynamic analysis is instrumentation
and path exploration, and fuzzing is our method of conducting path exploration.

In the next class we will learn more about applying ML to fuzzing by studying a NN-based fuzzer
developed by Suman’s research group that is being published at a top security conference.

