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Presentation Logistics 

Starting from the class on March 7th, students will begin to individually present research 
papers of their choice in class. Please email the paper you would like to present to Suman by 
February 28th, so that he can schedule related papers near each other. Each class will contain of 
1 student presentation, but this may change depending on how much time we have left. 
Presentations should be approximately 45 minutes of material and 15 minutes of discussion. 
 
 

Selecting a Research Paper / Research Project 

The primary goal of this class is to explore how to use ML to solve program analysis problems, 
and this field contains many interesting subdomains you can explore for your presentation and 
research project. Try to concentrate your effort when selecting your topic: though not required, 
the paper you present should ideally be in the same subdomain as your research project. As this 
is a research course, your aim should be depth instead of breadth. 
 
Some subdomains you can look at include: 
 
1. Improving static/dynamic/symbolic analysis with machine learning: These are traditional 

fields in program analysis. Potential research topics include using ML to cut down false 
positives, an issue that plagues static analysis, or improve the efficiency of fuzzers. A sample 
paper on symbolic analysis is on the course website (Neuro-Symbolic Execution: The 
Feasibility of an Inductive Approach to Symbolic Execution); it investigates using neural 
networks to make symbolic execution more scalable. 

 
2. Program synthesis: This field studies how to automatically construct programs given a task. 

For example, given a set of unsorted lists and their sorted counterparts, automatically learn 
a sorting algorithm. Traditionally this domain uses SMT solvers, but recent work has shown 
that neural networks achieve good results (DeepCoder: Learning to Write Programs). A 
related domain is latent representation, which is only interested in the correctness of the 
generated program; in contrast, program synthesis is interested both in correctness and 
interpretability of the program. 

 
3. Semantic similarity of binaries: Given program binaries, this field studies how to 

automatically learn the semantic similarities between the programs. Syntactic similarity 
between programs is easy to learn, but semantic similarity is a difficult problem. For example, 
the x86 instructions xor eax, eax and mov eax, 0 are semantically identical, but are 
represented as different instructions. 

 

https://arxiv.org/pdf/1807.00575.pdf
https://arxiv.org/pdf/1807.00575.pdf
https://arxiv.org/pdf/1611.01989.pdf


4. Code deobfuscation: This field studies how to automatically deobfuscate code into a 
readable format. Program code is often obfuscated, either purposefully by the coder (e.g. 
malware author trying to thwart analysis) or by a compiler (stripping identifiers for efficiency). 
Code deobfuscation aims to learn the semantic meaning of obfuscated code and represent it 
in an interpretable format without running the code. A paper on the course website 
(Predicting Program Properties from “Big Code”) in this field studies how to take stripped 
JavaScript as input and produce JavaScript with meaningful variable names as output. A 
closely related field is code optimization using ML. 

 
5. Generic program representation: In program analysis, programs are traditionally 

represented as control flow graphs, but this may not be a representation that is well suited 
for ML based approaches. This field investigates program representations that are more 
suitable for machine learning, and how to learn these representations. In some sense, this is 
the foundation for all research areas in program analysis with ML. A sample paper in this field 
(code2vec: Learning Distributed Representations of Code) looks at how to translate a program 
into meaningful values in a vector. 

 
You may also choose papers from relevant subdomains not listed above. Since meaningful 
discussion is only possible if everyone is on the same page, try to make sure you read the papers 
before their presentations and come to class with questions. 
 
A 1-page preliminary project proposal for your research project is due on March 15th. 
  
 

Dynamic Analysis 
 
Previously we studied static analysis and symbolic analysis and found that both have several 
disadvantages. Static analysis may never converge for large code bases, and even if the analysis 
converges it contains many false positives due to the info lost when merging paths. Symbolic 
analysis is highly dependent on the solver and cannot know if a path is feasible or not until the 
solver is called; converting a program to symbolic formula is also computationally expensive.  
 
On the other hand, dynamic analysis has no false positives, because every path analyzed is 
actually executed and therefore must be feasible. The difficulty of dynamic analysis is achieving 
high code coverage. 
 
There are two main approaches to dynamic analysis: verifying properties at runtime through 
instrumentation, and path exploration through fuzzing. The instrumentation approach is 
performed by inserting checks into the program code. For example, to check if the value of x is 
ever 0, we can add an if statement to check if x = 0 after each instruction, and if so terminate the 
program and report this. This example is naïve and inefficient but represents the basic idea. The 
fuzzing approach is performed by generating a set of inputs that achieve high code coverage and 
running the program with these inputs to observe buggy behavior. An idea related to fuzzing is 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.706.7690&rep=rep1&type=pdf
https://arxiv.org/abs/1803.09473


regression, which runs the program with a set of common inputs to test its robustness under 
normal use. In contrast, fuzzing tests for robustness against abnormal inputs. 
 
 

Fuzzing 
 
The concept of fuzzing was pioneered by Barton Miller at the University of Wisconsin in 1989, 
who was inspired by the observation that some of his failed attempts to login to his remote 
machine crashed the system. He became interested in whether programs are in general robust 
to random input, and conducted an experiment by sending random inputs to common programs 
and observing their behavior. The results showed that an overwhelming number of programs 
were not robust against such inputs and crashed. In security, the goal of fuzzing is often not to 
just crash a program, but also to find buffer overflow vulnerabilities. 
 
Miller’s experiments are an example of blackbox fuzzing, where the inputs are selected without 
regard to the analyzed program’s logic. However, this primitive approach has the severe 
weakness that most inputs are filtered out at shallow branches. Modern programs commonly 
employ checks at shallow branches to ensure that the structure of the input is valid, and the 
probability that the fuzzer generates an input that adheres to the expected structure is low. For 
example, ELF parsers usually check that the first 4 bytes of an ELF file is its magic number and 
exits if this condition is not satisfied. Later we will look at enhancements to this fuzzing approach. 
 
There are two components to fuzzers: an input generator that automatically generates test cases, 
and a monitor that detects errors in the program at runtime. There are multiple types of error 
detection. A simple error detection is to check if the program has crashed, and if so report the 
type of the crash. A more advanced detection would be to check for dynamic memory errors 
using an instrumentation tool such as Valgrind. This method will catch more bugs, but as tradeoff 
it is more expensive to run. 
 
An enhancement to random blackbox fuzzing is mutation-based fuzzing. This enhancement aims 
to address the problem that random inputs are often filtered out at shallow branches. In this 
approach, the generator uses valid inputs that can reach deeper branches as seeds, and then 
mutate these valid inputs to generate test cases. The mutations can be performed randomly or 
based on some heuristics, for example selecting certain grammar rules in context-free grammar 
to violate. The disadvantage of this approach is that it lacks a feedback loop to improve mutations 
based on past performance. Furthermore, code coverage of mutation-based fuzzing largely 
depends on the coverage of the input seeds. 
 
As an example, let’s study how to fuzz a PDF parser using mutation-based fuzzing. We first collect 
a corpus of PDF files using google, then filter out a subset of interesting PDFs to use as seeds. The 
goal of filtering is to select a subset that maximizes code coverage. The metric for filtering can 
either be the distance between examples in the input space, or distance between examples in 
the program space, i.e. find examples that trigger paths that are far from each other by some 



distance metric. The latter approach is usually preferred as it more directly increases branch 
coverage in the program, but is more costly as it requires execution. A critical problem could be 
that checksums will fail as we mutate valid input, which again causes programs to terminate at 
shallow branches. This problem also occurs in symbolic execution. To prevent this, we could 
disable checksum logic in the program before analysis. 
 
A different enhancement to mutation-based fuzzing is generation-based fuzzing. Instead of 
mutating based on valid inputs, generation-based fuzzing generates inputs from scratch based 
on some description of valid input formats. This enhancement is better equipped to deal with 
complex dependencies such as checksums, but writing the generator is more difficult. 
 
A key question in fuzzing is how much fuzzing is enough. Fuzzing will always hit saturation after 
a certain point, when it becomes prohibitively costly or impossible to find new paths. For 
mutation-based fuzzing, this occurs because mutations cannot reach paths that are far from any 
input seeds. For generation-based fuzzing, the test cases the generator can generate is finite and 
may not reach all paths. 
 
Another question is how to evaluate fuzzer performance. Because the success of fuzzing is 
probabilistic in nature, we cannot measure performance solely by the number of bugs found. The 
locations of bugs are sparse, and some fuzzers may find more bugs than others just by being lucky. 
A better criterion for performance is code coverage. There are three methods to measure code 
coverage: line coverage, branch coverage and path coverage. Line coverage measures the 
number of lines in the source code that was executed; branch coverage measures the number of 
conditional jumps (branches) that was taken; and path coverage measures the number of paths 
that was taken. As a side note, because fuzzing is probabilistic, no fuzzer can provide formal 
guarantees of program robustness. 
 
Using code coverage as the criterion for performance, we can further enhance fuzzing with 
coverage-guided gray-box fuzzing. This enhancement is based on mutation-based fuzzing, but 
also keeps track of mutations that perform better and bases future mutations on past successful 
mutations. More specifically, it uses a genetic algorithm that mimics the gene propagation 
process in nature. The algorithm’s fitness function is defined using code coverage, and mutations 
that increases code coverage are kept for future mutations and those that don’t die out. This is 
the fuzzing technique used by current state-of-the-art fuzzers such as AFL and libFuzzer. 
 
Another method of fuzzing is data-flow-guided fuzzing. Previous discussed methods use the 
control flow of the program as guidance, but this fuzzing technique integrates the data flow of 
the program. The fuzzer instruments data flow and analyzes the inputs to comparisons at 
branches, then modifies test inputs and observe the effect on comparisons. The downside of this 
method is high overhead costs. The use of data-flow-guided fuzzing may also be limited: many 
programs like parsers consist mostly of logical rather than numerical comparisons, and thus the 
extra overhead incurred may not be worth it. Prototype implementations of data-flow-guided 
fuzzing can be found in libFuzzer and go-fuzz. 



Two challenges for fuzzing are selecting seeds to efficiently achieve high code coverage and 
dealing with branches that are difficult to get past. Seed selection is a balance between coverage 
and efficiency. If the seeds don’t cover enough different branches, many possible paths will not 
be tested. On the other hand, since seeds that cover similar branches causes redundancy, we 
must remove duplicate seeds to improve efficiency. Small seeds are preferred because they are 
usually faster for the program to process, which leads to a faster feedback loop for mutations. 
 
Branches that have small sets of satisfying inputs is often difficult to get past. The following code 
snippet is an example: 
 

void test (int n) { 

 if (n == 0x12345678) 

  crash(); 

} 

 
In the worst case, we need 232 attempts to guarantee we satisfy the conditional check. To combat 
this issue, we can either apply transformations to the checks, or remove the checks completely. 
However, we should be careful when modifying program logic to avoid false positives. Below is a 
transformation that greatly decreases attempts required to pass this branch by providing more 
granular feedback on each byte: 
 

void test (int n) { 

int dummy = 0; 

char *p = (char *) &n; 

 if (p[3] == 0x12) dummy++; 

 if (p[2] == 0x34) dummy++; 

 if (p[1] == 0x56) dummy++; 

 if (p[0] == 0x78) dummy++; 

 if (dummy == 4) 

  crash(); 

} 

 
As a quick recap, the two most important components of dynamic analysis is instrumentation 
and path exploration, and fuzzing is our method of conducting path exploration. 
  
In the next class we will learn more about applying ML to fuzzing by studying a NN-based fuzzer 
developed by Suman’s research group that is being published at a top security conference. 


