
STATEFORMER: Fine-Grained Type Recovery from Binaries
using Generative State Modeling

Kexin Pei
kpei@cs.columbia.edu
Columbia University

New York, USA

Jonas Guan
jonas@cs.toronto.edu
University of Toronto

Toronto, Canada

Matthew Broughton
mb4207@columbia.edu

Columbia University
New York, USA

Zhongtian Chen
zc2399@columbia.edu
Columbia University

New York, USA

Songchen Yao
sy2743@columbia.edu
Columbia University

New York, USA

David Williams-King
dwk@cs.columbia.edu
Columbia University

New York, USA

Vikas Ummadisetty
ummadisettyvikas@gmail.com

Dublin High School
Dublin, USA

Junfeng Yang
junfeng@cs.columbia.edu

Columbia University
New York, USA

Baishakhi Ray
rayb@cs.columbia.edu
Columbia University

New York, USA

Suman Jana
suman@cs.columbia.edu

Columbia University
New York, USA

ABSTRACT
Binary type inference is a critical reverse engineering task supporting
many security applications, including vulnerability analysis, binary
hardening, forensics, and decompilation. It is a difficult task because
source-level type information is often stripped during compilation,
leaving only binaries with untyped memory and register accesses.
Existing approaches rely on hand-coded type inference rules defined
by domain experts, which are brittle and require nontrivial effort
to maintain and update. Even though machine learning approaches
have shown promise at automatically learning the inference rules,
their accuracy is still low, especially for optimized binaries.

We present STATEFORMER, a new neural architecture that is adept
at accurate and robust type inference. STATEFORMER follows a two-
step transfer learning paradigm. In the pretraining step, the model is
trained with Generative State Modeling (GSM), a novel task that we
design to teach the model to statically approximate execution effects
of assembly instructions in both forward and backward directions. In
the finetuning step, the pretrained model learns to use its knowledge
of operational semantics to infer types.

We evaluate STATEFORMER’s performance on a corpus of 33
popular open-source software projects containing over 1.67 billion
variables of different types. The programs are compiled with GCC
and LLVM over 4 optimization levels O0-O3, and 3 obfuscation
passes based on LLVM. Our model significantly outperforms state-
of-the-art ML-based tools by 14.6% in recovering types for both
function arguments and variables. Our ablation studies show that
GSM improves type inference accuracy by 33%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468607

CCS CONCEPTS
• Security and privacy → Software reverse engineering; • Com-
puting methodologies → Machine learning.

KEYWORDS
Type Inference, Reverse Engineering, Transfer Learning, Machine
Learning for Program Analysis

ACM Reference Format:
Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen
Yao, David Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi
Ray, and Suman Jana. 2021. STATEFORMER: Fine-Grained Type Recovery
from Binaries using Generative State Modeling. In Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’21), August 23–
28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3468264.3468607

1 INTRODUCTION
Recovering source-level data types from binaries is very useful for
many security-critical software engineering tasks, such as vulner-
ability analysis [18, 37, 45], binary hardening [30, 53, 57, 74, 96,
99, 101], memory introspection [43, 89], and decompilation [4, 26].
Type inference in binaries involves reconstructing source-level con-
structs, such as local function variables and data types, from untyped
byte-addressed memory and registers. This process is challenging
because the reconstruction is based on incomplete information –
most source-level information is stripped during compilation for
optimization and to deter reverse engineering.

Traditional approaches to type inference rely extensively on hand-
coded rules defined by domain experts. These rules facilitate (1)
recognizing types directly from specified patterns (e.g., consecutive
printable characters for detecting strings); and (2) propagating types
from known type sinks (e.g., known string manipulation functions)
to registers and memory regions storing the source-level variables.
Unfortunately, these rules are brittle [16, 66] and require continuous

https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468607

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana

effort to adapt to new instruction sequences introduced by compiler
and architecture evolution [10].

As a result, recent years have witnessed a growing interest in data-
driven approaches leveraging Machine Learning (ML) for binary
type inference [20, 40, 59]. These approaches mitigate the reliance
on hand-coded heuristics by learning from a rich training set of
diverse binaries. Moreover, their learned representations have been
shown to generalize across various compilers, operating systems, and
architectures and are highly efficient to compute (i.e., the underlying
learning algorithms are amenable to GPU parallelization).

While promising, existing ML-based approaches still cannot re-
cover data types with high accuracy or robustness, especially in the
presence of compiler optimizations [20, 40]. The types are essen-
tially abstractions describing how a data object is expected to be
manipulated and used during execution. Therefore, the inherent chal-
lenge faced by all ML-based approaches is to understand the effects
of the runtime execution of instructions in the target binary [55, 83],
i.e., the operational semantics of code blocks [64]. For example, on
x64, the runtime effect of iterative increments of the rcx register
by 1 together with the instruction mov rax,[rdx+rcx*4] is
indicative of traversing an int array.

Unfortunately, existing ML-based approaches are agnostic to the
execution effects of code as they learn the direct mapping between
static code tokens and corresponding types in an end-to-end fashion.
A model trained this way often learns spurious correlations [7], tak-
ing shortcuts to leverage simple yet brittle patterns for inferring types.
For example, Chua et al. [20] showed that their model, EKLAVYA,
mispredicts the type of the argument to the function ck_fopen
from Diffutils to be integer instead of pointer. A completely unre-
lated instruction within ck_fopen (namely callq 0x3fc) con-
tributes the most to the misprediction. Without understanding how
an integer is accessed and manipulated during execution and the
effects of callq, EKLAVYA establishes a spurious correlation that
the internal call instruction implies an int argument to ck_fopen.

In this paper, we present STATEFORMER, a new neural architecture
that explicitly learns the operational semantics of assembly for type
inference. Specifically, we design a novel pretraining task to teach
the STATEFORMER model the operational semantics of both data
and control flow behavior of diverse code blocks, and then finetune
the pretrained model for type inference.

Learning operational semantics. A human reverse engineer often
makes sense of a target binary by following its assembly instructions
through mental simulation of their execution. While the reverse engi-
neer might not accurately resolve all invoked branches by following
control flow or compute the precise values of all states by following
data flow during simulation, she can still get a rough idea of what the
code does by approximately following the operational semantics of
code blocks. Our key insight is to teach the STATEFORMER model,
via a novel pretraining task, the approximate operational semantics
of assembly by forcing the model to predict how different sequences
of instructions transform the underlying program states. Specifically,
the pretraining task asks the model to predict the changed values
of registers and memory after executing each instruction, which
captures the operational semantics of assembly code [29, 64, 70].
This gives the model an understanding of the execution effects of
code, which helps the model to infer the types of low-level registers

and memory regions based on the instructions used to manipulate
them without executing any parts of the code during inference.

Generative State Modeling. We design a novel pretraining task,
Generative State Modeling (GSM), where we train a neural network
to reconstruct the complete set of its execution states while taking
the assembly code and a very small subset of its execution states
(e.g., register values at specific program points) as input. For exam-
ple, given the instruction sequence: inc ecx;add ecx,3;xor
ecx,ecx;mov ebx,ecx; and its corresponding execution
states ecx=0;ecx=1;ecx=4;ecx=0;(ebx=0,ecx=0), we
feed the model with all the instructions and only the execution
state after the second instruction, i.e., ecx=4. Our training process
forces the model to compute all the preceding and succeeding states:
ecx=0;ecx=1; and ecx=0;(ebx=0,ecx=0). Therefore, to
achieve low loss on the GSM task, the model needs to understand
the operational semantics of inc, add, xor, and mov.

GSM dynamically selects random subsets of states as inputs across
different training samples and iterations. Moreover, GSM is fully
self-supervised [24], implying that we can collect data from an un-
restricted number of binaries found in the wild. As a result, GSM
creates diverse prediction tasks that compel the model to approxi-
mately reason about the effects of both data and control instructions,
in both forward and backward directions – a critical capability for
type recognition and propagation [55, 83]. During pretraining with
GSM, STATEFORMER encodes such a reasoning capability as part
of its network parameters, known as embeddings. Such embeddings
can then be finetuned for type inference as a finetuning task with a
few binaries with labeled types.

Consider again the example of inferring the traversal of an int
based on iterative increments of the rcx register by 1 together
with the instruction mov rax,[rdx+rcx*4]. The output of pre-
trained STATEFORMER will be a sequence of embeddings encoding
the effects of inc, mov on other registers and memory locations.
Therefore, instead of training on raw code sequences from scratch,
the finetuning process can easily exploit the learned execution ef-
fects of code compressed in these embeddings to predict that rdx
contains the base address of an int array.

STATEFORMER neural architecture. To efficiently pretrain with
GSM, we develop a novel neural architecture specifically designed
for learning operational semantics of assembly instructions. First, as
the model takes as input both the program code and program states,
we develop a multi-modal encoding module that can be trained on
heterogeneous inputs in different formats.

Second, we construct two explicit objective functions to jointly
optimize the model to understand the operational semantics of both
data flow and control flow. Specifically, to help the model learn
about control-flow, which requires learning operational semantics of
comparison instructions (e.g., cmp), we annotate the non-executed
paths with dummy program states to incorporate predicting non-
executed paths as a part of the STATEFORMER’s pretraining task. To
help the model to better understand the operational semantics of data
flow, which often involves assignment (e.g., mov) and arithmetic
instructions (e.g., add) on numerical values, we explicitly model
the numerical values in both decimal and hexadecimal formats with
a trainable numerical representation module based on the neural
arithmetic unit (NAU) [58].

STATEFORMER: Fine-Grained Type Recovery from Binaries using Generative State Modeling ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Finally, as the composite execution effects of a piece of code can
result from the interactions between faraway instructions, we lever-
age self-attention layers from Transformer [93], which is amenable
to learning long-range dependencies without manually constructing
the dependencies (e.g., graph neural net [63, 97]). We show in Sec-
tion 5.5 that such a design indeed achieves high testing accuracy in
GSM for unseen program state traces.

Result summary. We evaluate STATEFORMER on a corpus of 33
popular open-source software projects with 1.67 billion source vari-
ables of different types. The programs are compiled for 4 instruction
set architectures (x86, x64, ARM, and MIPS), by 2 compilers (GCC
and LLVM), and with 4 optimization levels (O0-O3) and 3 obfusca-
tion passes based on LLVM [104]. By training with GSM, our model
outperforms the state-of-the-art ML-based tools by up to 14.6% in
recovering types for both function arguments and variables. Our
extensive ablation studies show that STATEFORMER trained with
GSM substantially boosts the type inference accuracy by 33%. We
make the following contributions.

• We propose a new pretraining task, Generative State Modeling
(GSM), to explicitly learn the operational semantics of assembly
code for accurate and robust type inference.

• We develop a novel neural architecture, STATEFORMER, with
specially designed sub-modules to learn the operational semantics
of both data flow and control flow instructions.

• We evaluate STATEFORMER on an extensive collection of 33
open-source software projects across different architectures, com-
pilers, optimizations, and obfuscations. After training with GSM,
STATEFORMER outperforms the state-of-the-art learning-based
tools by 14.6%. Our ablation studies unveil that training with
STATEFORMER boosts the type inference accuracy by 33%.
We release the code and datasets of STATEFORMER at https:
//github.com/CUMLSec/stateformer.

2 OVERVIEW
The high-level workflow of STATEFORMER follows the general
transfer learning paradigm. As shown in Figure 1, we first pretrain
STATEFORMER with GSM by training it to reconstruct the masked
states (grayed-out) in the trace of program states of various assembly
instructions (Section 2.3). We train STATEFORMER to reconstruct
both the data and control states (Section 2.4). After pretraining
STATEFORMER with GSM, we transfer its learned knowledge by
finetuning on the type inference task (defined in Section 3.4).

2.1 Problem Definition
We consider the problem of mapping untyped low-level registers or
memory regions (specified by memory offsets) to the correspond-
ing source-level types. The source-level types are associated with
function arguments, local, static, and global variables. The granu-
larity of recovered source-level types varies widely across existing
works [16], ranging from primitive (e.g., int, float) and aggre-
gate (e.g., struct, array) types to classes in object-oriented
programs and recursive types such as trees and lists.

We focus on the standard C primitive, aggregate, and pointer types.
Our supported types are more fine-grained than prior works [20, 40,
59], which only support a strict subset of ours (see Section 3.4 for
the complete list of types we support). Predicting fine-grained types,

while very helpful to the human reverse engineer to better understand
the target binary, is a challenging learning task that must distinguish
between subtly different access patterns of different types [83].

We formulate type inference as a classification task. Specifically,
given a sequence of assembly instructions, STATEFORMER predicts
the type labels for each operand in the instructions. Note that STATE-
FORMER performs the type prediction in one shot (see Section 3
for design specifics), as opposed to the traditional type propagation
approaches that infer the types one-by-one in a sequence of instruc-
tions. As we show in Section 5.3, this design brings significant
performance gains during inference.

2.2 Understanding Operational Semantics Helps
Type Inference

While reverse engineering types from binaries, human analysts need
to understand what a target function computes without actually exe-
cuting the binary. Often the analyst follows the assembly instructions
by simulating the execution in their mind. Without knowing the ex-
act initial program state during the function call, the analyst cannot
accurately resolve the taken branches or compute the precise value
of all states during the simulation. Still, they can get a rough idea of
what the code does. This loose approximation of the operational se-
mantics of the code allows the understanding of its runtime behavior,
providing strong hints about the underlying data types [83].

For instance, given a pointer a, observing a dereference like
∗(a+4) in the execution behavior might imply a 4-byte read of
the object at a, indicating an int or a pointer type on 32-bit sys-
tems. Similarly, contiguous dereferencing of sequential addresses
like ∗(a), ∗(a+1), ... suggests that a is likely an array of chars.
Examining precise runtime behaviors of a binary over many in-
puts with high-coverage dynamic analysis is prohibitively expen-
sive [51, 83, 87], Therefore, in this paper, we use ML models to
learn approximate operational semantics of binaries in a data-driven
manner and use this knowledge to statically infer types.

2.3 Learning Operational Semantics with GSM
Our key motivation for developing GSM is to teach an ML model
to approximate operational semantics of code, i.e., its execution
effects, which we then exploit for type inference. Teaching an ML
model the code execution effects is challenging due to many possible
combinations of instructions that introduce complex data and control
flow dependencies. Therefore, it is not practical to manually engineer
input features or target labels to represent the execution effects and
train the model to understand them. To this end, GSM explores
a self-supervised approach that exploits a large number of traces
that can be cheaply generated from many code blocks using under-
constrained dynamic execution, e.g., micro-execution (detailed in
Section 3.1), to automate learning diverse instructions’ execution
effect with a carefully-designed training task.

Predicting masked states. The training task performed in GSM
requires a neural network to reconstruct the whole micro-execution
traces (i.e., all recorded program states) in the training data based on
the corresponding code blocks. To learn on a huge number of traces,
we exploit stochasticity to efficiently train a network for GSM.
Specifically, for each training sample in each epoch, we randomly
mask (i.e., remove) some states in the traces. Such randomness

https://github.com/CUMLSec/stateformer
https://github.com/CUMLSec/stateformer

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana

...
sub	ecx,1
add	ecx,3

...

...
ecx=2
ecx=1
ecx=4
...

code	1
partial
states	1

......
...

mov	eax,2
add	eax,1

...

...
eax=0
eax=2
eax=3
...

code	n
partial
states	n

Pretrained	Model

......
...

ecx=2
ecx=??
ecx=??
...

Data

...
exec=??
exec=??
...

Control
...

eax=??
eax=??
eax=3
...

Data

...
exec=??
exec=??
...

Control

(i)	GSM	Pretraining	Task

Pretrained	Model
Transfer

...
mov	rax,1
push	rax

...

code	1

......
...

cmp	eax,3
ja	0x3c
...

code	n

......Type	Prediction	Head

Predict	types

Type	Prediction	Head

Predict	types

(ii)	Type	Inference	Finetuning	Task

Pretrained	Model

...
mov	rax,1
push	rax

...

code

Type	Prediction	Head

Predict	types

(iii)	Type	Prediction
Predict	complete	states	1 Predict	complete	states	n

Figure 1: STATEFORMER workflow. We first pretrain STATEFORMER with GSM. We then stack new type prediction heads on top of the pretrained
model and finetune both the pretrained model and the stacked heads for type inference. Finally, the finetuned model will only take the program code
as input (we do not execute the code during type inference) and predict the type.

ensures that the model cannot consistently achieve low loss by taking
shortcuts that only work well for a few states, traces, or code blocks.

While deciding which states to mask, GSM does not follow the
sequential execution order of states as recorded in the traces. This
design choice ensures that the model learns to reason about both
forward and backward execution effects of a diverse set of code
blocks. Understanding these forward and backward dependencies is
known to be crucial for accurate type inference [55, 83].

Difference with masked language models. While our stochastic
masking setup is inspired by the Masked Language Modeling (MLM)
used in learning natural language semantics [24], the key difference
is that natural languages are not stateful, i.e., they have no notion
similar to program execution. Therefore, the model trained by MLM
only uses unmasked words in the neighboring context to predict the
masked words, exploiting the common local word phrase patterns.
While in GSM, the unmasked states alone provide little observable
patterns due to high masking rate – the model has to also look at the
corresponding instructions, understand their execution effects on
the unmasked states, in order to correctly predict the masked states.

2.4 STATEFORMER Architecture
Learning instruction-state dependencies. Achieving low loss on
GSM, by design, requires a neural network to understand the long-
range dependencies between instructions and unmasked program
states. However, standard fully-connected or recurrent networks are
inefficient at learning long-range dependencies between different
parts of the network inputs [61, 93, 98].

To avoid these issues, we develop a hierarchical input embedding
module to learn the interactions between program states and instruc-
tions. Specifically, we design two input sub-networks for learning
two embeddings of the binary code and traces – one for the registers
and instruction opcodes and another for the concrete data values.
We combine these representations by aggregating the embeddings
with a vector addition operation and feeding them into a sequence
of self-attention layers that facilitate capturing long-range depen-
dencies [93] (Section 3.2). Finally, we use two output sub-networks

to decode the output of self-attention layers for two different objec-
tives: (1) regression for predicting the program data state and (2)
classification for predicting the program control state (Section 3.3).

Learning representations for numerical values. Typical embed-
dings for numerical tokens (i.e., register values) – just like how any
discrete token is embedded – are known to fail to extrapolate to un-
seen values even on the outputs of simple arithmetic operations like
addition [88]. As understanding data and control flow often requires
reasoning the execution effect of arithmetic instructions (e.g., add
rax,rbx), we use Neural Arithmetic Units (NAUs) [58] as part
of the subnetwork for data value embeddings. Note that our NAU
layers, unlike the original NAU model that directly takes numerical
values as input, learn to represent the numerical values (both decimal
and hexadecimal formats) as embeddings. We have done a thorough
study and refer interested readers to our supplementary material.

3 METHODOLOGY
We now provide the details of our methodology, including how
we collect runtime states of binary programs, the architecture of
STATEFORMER, and how we distill the learned knowledge in STATE-
FORMER from training GSM for type inference.

3.1 Collecting Program States
To train STATEFORMER with GSM, we need to obtain runtime
execution traces of binary programs. Ideally, we want to collect
diverse traces with different instructions and control flow to learn
miscellaneous operational semantics for type inference in various
scenarios. However, the typical dynamic analysis approach is often
limited by path coverage, resulting in potentially restricted sets of
covered instructions. Therefore, we adopt micro-execution [33] to
support tracing arbitrary parts of a binary program without having
to find concrete program inputs that maximize coverage.

Without executing the program from its entry point, our execution
engine needs to initialize intermediate program states (i.e., regis-
ters and memory content) with randomized values, which can be
under-constrained (i.e., infeasible when executing the program nor-
mally). In addition, we focus on program states that are explicitly
manipulated in instructions (e.g., we only log the value of eax in

STATEFORMER: Fine-Grained Type Recovery from Binaries using Generative State Modeling ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

add	[ebp+0x8],0x3

cmp	[ebp+0x8],0x2

jle	0x6

sub	[ebp+0x8],0x1

mov	eax,0

Code

add	[0x4+0x8],0x3

cmp	[0x4+0x8],0x2

jle	0x6

sub	[0x4+0x8],0x1

mov	0x0,0

State	Trace
mov	ebp,esp mov	0x1c,0x4

Figure 2: Sample 𝜇State trace consisting of both the data states associ-
ated with each instruction and the control states (indicated by ✓and ✗)
generated by the micro-execution.

sub eax,1, instead of logging all registers, flags, and values in
memory). Therefore, we call our collected program states as partial
states (𝜇State), implying that they might differ from the genuine
program states from actual program executions.

𝜇State collection. We collect 𝜇State traces and mask a random sub-
set of them to train the model to reconstruct the complete 𝜇State
trace. 𝜇State consists of two sources of information. (1) The concrete
values of all registers, memory addresses, and hardcoded offsets that
appear in the instruction, dubbed 𝜇DataState. (2) The boolean anno-
tation indicating whether each instruction in the code is executed in
a given 𝜇State, dubbed 𝜇ControlState. The former appears in both
STATEFORMER’s input and output (i.e., subset of 𝜇DataState as
input, complete set of 𝜇DataState as output). The latter appears only
in STATEFORMER’s output. Section 3.2 elaborates on how these two
parts of 𝜇State are used to train STATEFORMER.

Figure 2 shows an example of 𝜇State trace generated by micro-
executing a simple code block, e.g., the concrete values of registers
are 𝜇DataState and the ✓and ✗ besides each instruction indicates
𝜇ControlState. We assign dummy values ($$) to all opcode, as
they do not hold any value during micro-execution. This helps to
align 𝜇State and the assembly code sequence, which makes it con-
venient for STATEFORMER to aggregate them as network inputs
(Section 3.2). To construct 𝜇ControlState, we annotate each instruc-
tion with a binary indicator to denote whether it is executed or not.

3.2 STATEFORMER Input and Output
We construct 5 sequences for STATEFORMER input, namely (1)
static assembly code sequence, (2) 𝜇DataState sequence, (3) instruc-
tion position sequence, (4) opcode/operand position sequence, and
(5) architecture sequence. Each token of the 5 sequences are aligned
and embedded into an embedding (a learned low-dimensional vec-
tor) with the same dimensions, such that they can be easily ag-
gregated (i.e., summation) as a single sequence of 𝑛 embeddings:
𝑥 = {𝑥1, ..., 𝑥𝑛}. Figure 3 illustrates an example input of STATE-
FORMER when training on GSM.

Encoding assembly code. The assembly code sequence with length
𝑛: 𝑐 = {add, ebp, ...}𝑛 is constructed by tokenizing the assembly in-
structions from disassembled binaries. Besides treating both opcodes
and operands as tokens, we keep punctuations as they provide crucial

contextual hints, e.g., the comma delimits the source and destination,
and brackets indicate a dereference of a memory address.

Assembly code can have concrete numerical values hardcoded in
instructions, which leads to a prohibitively large vocabulary size (e.g.,
232 possible values in x86), making it challenging to embed all to-
kens in 𝑐. Therefore, we place the concrete value into the 𝜇DataState
sequence and replace all numerical values (in both hexadecimal and
decimal forms) with a special token hex. This reduces the vocabu-
lary size of 𝑐 across all instruction set architectures to only 648. We
describe how we encode the numerical values in the following.

Encoding 𝜇DataState. We normalize 𝜇DataState sequence 𝑣 as
a two-dimensional array 𝑣 = V𝑛×8, where V = {0x00, ...,
0xff} ∪ {$$} (the union of 256 bytes and a dummy token $$).
Each 𝜇DataState 𝑣𝑖 can thus be viewed as a sequence of 8-byte
tokens V8, where we transform all the numerical values into an
8-byte hexadecimal representation. For example, Figure 3 shows
that a 𝜇DataState 0x6 is padded to (00,00,00,00,00,00,00,06).
As each 𝑣𝑖 is aligned with each token 𝑐𝑖 in code sequence, we put 8
$$s for those 𝑐𝑖 that do not have dynamic values (e.g., opcode).

Such a setting reduces the vocabulary size used to encode all
possible numerical values from 264 (assume 64-bit architectures)
to only 257. Moreover, representing a numerical value with fixed
dimensions makes it easy to stack a single learnable module (see
Section 3.3) to compute inter-dependencies between digits, learning
useful hierarchical knowledge (i.e., an address 0x104c might be
decomposed as a section base at 0x1000 with the offset 0x4c).

Encoding spatial information and syntactic hint. As we flatten
and concatenate all the assembly instructions as a plain code to-
ken sequence, the instruction boundaries and the relative location
of tokens within each instruction become ambiguous. To this end,
we introduce two positional encodings [93], namely the instruction
positional encoding and opcode/operand positional encoding. The
resulting instruction position sequence 𝑝 = Z𝑛+ and opcode/operand
position sequence 𝑜 = Z𝑛+ annotate each token in 𝑐 with their instruc-
tion position and the opcode/operand position within each position,
respectively. Figure 3 shows the example of 𝑝 and 𝑜.

When training with GSM, we mix the training samples from
different instruction set architectures, which introduce disparate
syntax in their assembly code. We thus append the architecture
sequence 𝑎 to indicate the architecture, which assists the model to
transfer the learned instruction semantics useful on one architecture
to another (e.g., push eax in x86 has the similar semantics to
addi $sp,$sp,-4;sw $t0,($sp) in MIPS) [49].

STATEFORMER output. STATEFORMER have different outputs de-
pending on the training tasks. When it is in the pretraining stage
with GSM, its output consists of complete 𝜇State trace including
both 𝜇DataState trace and 𝜇ControlState trace. We describe how
these outputs participate in the computation of loss functions in
Section 3.3. When we finetune STATEFORMER for type inference,
its output is the prediction of type labels defined in Section 3.4.

3.3 Pretraining with GSM
Numerical representation module. We treat each value 𝑣𝑖 in
𝜇DataState trace 𝑣 as an 8-byte sequence. To learn the inter-
dependencies between high and low bytes in 𝑣𝑖 , we develop a

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana

push rbp jmp hexv

1 1 2 2Inst POS

1 2 1 2OP POS

v1 v2 v3 v4

x64 x64 x64 x64Arch

Code

 DataState

x1 x2 x3 x4

x1 x2 x3 x4

E1 E2 E3 E4

Self-attention Layers

Input
Embedding

Output
Embedding

E1 E2 E3 E4

Aggregate DataState as Embedding

v4

00 00 00 00 00 00 00 06

Neural Arithmetic Unit

Input
Embedding

DataState 0x6

Input encoding sub-networks

1. Regression on DataState

00 00 00 00 01 3b c4 a7

00 00 00 00 03 3b c4 a7

Predicted

Ground-truth

Mean Squared Error

Feedforward Network

2. Classification on ControlState

Predicted

Ground-truth

Cross-entropy

Feedforward Network

1

0

Output sub-networks

Vector Addition

Figure 3: STATEFORMER’s input-output when training with GSM and its architecture (we keep the color consistent with that of Figure 1). STATE-
FORMER takes as input the code sequence and a subset of 𝜇DataState (e.g., 𝑣4 in the figure). The other input sequences are described in Section 3.2.
The loss functions measure (1) Mean Squared Error (MSE) between the reconstructed 𝜇DataState and the ground truth, and (2) Binary Cross-Entropy
(BCE) between the predicted 𝜇ControlState and the ground truth.

learnable neural module with Neural Arithmetic Unit (NAU) [58],
which is shown beneficial to capture the semantics of numerical
values involved in arithmetic operations (Section 2.4). Formally, let
𝑣𝑖 = (𝑣𝑖1, ...𝑣𝑖8) denote the 8-byte sequence of 𝑣𝑖 , we denote the
aggregated embedding 𝐸𝑣𝑖 as the representation of each 𝜇DataState:
𝐸𝑣𝑖 = 𝑁𝐴𝑈 (𝐸𝑚𝑏 (𝑣𝑖1), ..., 𝐸𝑚𝑏 (𝑣𝑖8)), e.g., 𝐸𝑚𝑏 (𝑣𝑖1) denote apply-
ing the embedding to the first byte token of 𝑣𝑖 . Figure 3 briefly
illustrates how a 𝜇DataState 0x6 gets encoded by NAU. Note that
𝑣𝑖 in Figure 3 indicates the embedding 𝐸𝑣𝑖 .

Sampling subset of 𝜇DataState. We sample a random subset of
𝜇DataState and replace them with <MASK> (e.g., the grayed-out
tokens as shown in Figure 3) tokens in the model input so that the
model is trained to reconstruct the removed 𝜇DataState. We define
𝑃𝑚𝑎𝑠𝑘 as the percentage of the masked 𝜇DataState and study the
effect of different 𝑃𝑚𝑎𝑠𝑘 on type inference in Section 5.4.

Multimodal encoding module. We only apply NAU to each
𝜇DataState sequence 𝑣 . For other sequences, we apply regular
embeddings. We end up with 5 embeddings for each token in
each sequence: 𝐸𝑐𝑖 , 𝐸𝑣𝑖 , 𝐸𝑝𝑖 , 𝐸𝑜𝑖 , 𝐸𝑎𝑖 . We then compute the vec-
tor sum of 5 embeddings and output a single embedding 𝑥𝑖 : 𝑥𝑖 =

𝑠𝑢𝑚(𝐸𝑐𝑖 , 𝐸𝑣𝑖 , 𝐸𝑝𝑖 , 𝐸𝑜𝑖 , 𝐸𝑎𝑖). The vector sum operation aggregates the
multiple modalities (e.g., instruction and state) of each token into a
single embedding. When we compute attentions between these em-
beddings, i.e., dot product [93], the cross-modality (instruction-state)
dependencies are naturally computed, following the distributive prop-
erty of multiplication: 𝑥𝑖 · 𝑥 𝑗 = 𝐸𝑐𝑖 · 𝐸𝑐 𝑗 + 𝐸𝑐𝑖 · 𝐸𝑣𝑗 + ... + 𝐸𝑎𝑖 · 𝐸𝑎 𝑗

.

Loss functions. After encoding all the input sequences as a single se-
quence of embeddings 𝑥 = (𝑥1, 𝑥2, .., 𝑥𝑛), we feed 𝑥 to self-attention
layers. The output of self-attention layers are known as the con-
textual embeddings 𝑒 = (𝑒1, 𝑒2, .., 𝑒𝑛). We stack two independent
2-layer feedforward networks ℎ𝑣 and ℎ𝑓 , that takes 𝑒 as input and
output the predicted 𝜇DataState and 𝜇ControlState. Formally, let
𝑓 = {0, 1}𝑛 denote the 𝜇ControlState labels, and 𝑀 a set of locations
in the masked 𝜇DataState 𝑣 . We define the pretraining objective as:

𝑚𝑖𝑛
∑
𝑖∈𝑀

𝑀𝑆𝐸 (𝑣𝑖 , ℎ𝑣 (𝑒𝑖)) + 𝛼

𝑛∑
𝑖=1

𝐵𝐶𝐸 (𝑓𝑖 , ℎ𝑖 (𝑒𝑖)) (1)

The first part of the objective function aims to minimize the
Mean Squared Error (MSE) between the predicted 8-byte and the
groundtruth 8-byte for the only masked 𝜇DataState. Note that MSE
treats the output byte tokens as numerical values (as opposed to
categorical as treated in the input). Such a setting encourages the
loss to penalize predictions far from the groundtruth (e.g., predicts
0x00 but the groundtruth is 0xff). The second part of the objec-
tive function aims to minimize the Binary Cross-Entropy (BCE)
between the predicted 𝜇ControlState and the groundtruth, for all
input tokens. 𝛼 is the weighting hyperparameter that keeps the scale
of both losses at roughly the same magnitude. As all the modules of
STATEFORMER are differentiable, i.e., NAU, FFN used for aggregat-
ing input sequences, self-attention layers, and ℎ𝑣 and ℎ𝑖 , optimizing
Equation 1 can be efficiently solved by gradient descent.

3.4 Transfer Learning Type Inference
After pretraining with GSM, we transfer STATEFORMER’s learned
knowledge by finetuning it for type inference. We define our consid-
ered types in Figure 4, which serves as the labels for STATEFORMER

to predict. Notably, our considered types are much more fine-grained
than the existing ML-based type inference approaches. For example,
EKLAVYA [20] does not distinguish signedness of the primitive
types. Debin [40] does not handle floating point. And both works
treat the pointer as a single type (ptr), without inferring what the
pointer refers (e.g., predicting char∗ or struct∗).

As discussed in Section 2.3, we do not collect 𝜇State by micro-
executing the code during finetuning. Specifically, we replace each
token in 𝑣 with the dummy token $$ (described in Section 3.2) and
still follow the same steps to compute the embeddings 𝑥 . We then
stack a new prediction head ℎ𝑡𝑦𝑝𝑒 , a 2-layer feedforward network,
that takes as input 𝑒 (the output of the last self-attention layers),
and predicts the type labels defined in Figure 4 for each input code
token. Formally, let 𝑡𝑖 denote the groundtruth type of code token
𝑐𝑖 , the objective function of finetuning task is defined as the Cross-
Entropy between the predicted typeℎ𝑡𝑦𝑝𝑒 (𝑒𝑖) and 𝑡𝑖 for each token in

an input sequence with length 𝑛: 𝑚𝑖𝑛
𝑛∑
𝑖=1

𝐶𝐸 (𝑡𝑖 , ℎ𝑡𝑦𝑝𝑒 (𝑒𝑖)). During

STATEFORMER: Fine-Grained Type Recovery from Binaries using Generative State Modeling ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

⟨type⟩ ::= ⟨access⟩ | ‘no-access’

⟨access⟩ ::= ⟨prim⟩ | ⟨agg⟩ | ⟨ptr⟩

⟨ptr⟩ ::= ⟨prim⟩ ‘*’ | ⟨agg⟩ ‘*’ | ‘void*’

⟨prim⟩ ::= ‘float’ | ‘double’ | ‘long double’ | ⟨sign⟩ ‘char’ | ⟨sign⟩
‘short’ | ⟨sign⟩ ‘int’ | ⟨sign⟩ ‘long’ | ⟨sign⟩ ‘long long’

⟨agg⟩ ::= ‘struct’ | ‘union’ | ‘enum’ | ‘array’

⟨sign⟩ ::= ‘signed’ | ‘unsigned’

Figure 4: The types that STATEFORMER predicts as output. We define
the type hierarchy using the production rules for clarity, but we con-
cretize all types during prediction, resulting in 35-type labels. ⟨𝑝𝑟𝑖𝑚⟩,
⟨𝑎𝑔𝑔⟩, and ⟨𝑝𝑡𝑟 ⟩ stand for primitive, aggregate, and pointer types.

finetuning, both ℎ𝑡𝑦𝑝𝑒 and the pretrained model weights will be
updated by gradient descent.

4 IMPLEMENTATION AND SETUP
We implement STATEFORMER using the Fairseq toolkit [65]
based on PyTorch 1.6.0. All the experiments are run on a Linux
server with Ubuntu 18.04, Intel Xeon 4214 at 2.20GHz with 48
virtual cores, 188GB RAM, and 4 Nvidia RTX 2080-Ti GPUs. To
obtain ground-truth types for training and testing, we compile all the
software projects with debugging information and parse the DWARF
sections using pyelftools [12] and Ghidra [1].

𝜇State collection. To log the program states (𝜇State) for pretrain-
ing STATEFORMER on GSM task, we implement micro-execution
using Unicorn [76], a cross-architecture CPU emulator based on
QEMU [11]. Specifically, we micro-execute each function binaries
(collected from the datasets described below) 9 times with different
randomized initial values for registers and memory, generating 9
sets of 𝜇State for each function binary. To align the 𝜇State with
the corresponding assembly instructions (Section 3.2), we leverage
Capstone [75] to disassemble the function binaries.

Metrics. As described in Section 2, we treat type inference as a clas-
sification task. As the datasets have highly imbalanced labels, where
the majority of tokens do not possess any type, we use precision
(𝑃), recall (𝑅), and 𝐹1 score to measure the actual performance of
STATEFORMER and all other tools. Let 𝑇𝑃 denote the number of
correctly predicted types, 𝐹𝑃 denote that of incorrectly predicted
types, 𝑇𝑁 denote the number of correctly predicted no-access,
and 𝐹𝑁 denote the number of incorrectly predicted no-access.
𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and 𝐹1 = 2 · 𝑃 · 𝑅/(𝑃 + 𝑅).
Baseline tools. We compare STATEFORMER with 3 state-of-the-art
ML-based type inference prototypes: EKLAVYA [20], Debin [40],
and TypeMiner [59]. These tools have been demonstrated to outper-
form traditional type inference techniques. For example, EKLAVYA
has been shown to outperform TypeArmor [91], which is based on
principled dataflow analysis such as def-use and liveness analysis.

EKLAVYA implements the function signature recovery task. The
authors define the task as predicting the type of function arguments.
Since EKLAVYA does not release their trained model, we use their
reported numbers and use the same datasets to evaluate STATE-
FORMER’s accuracy in recovering types for function argument.

Table 1: The statistics of our datasets, categorized by architecture
(Arch), optimization (OPT), and obfuscation (OBF).

ARCH OPT/OBF # Variables # Instructions # Functions
O0 26,173,242 12,511,100 821,191
O1 27,845,108 9,346,292 874,595
O2 27,829,459 9,279,857 898,930
O3 28,143,646 10,114,915 942,138

ARM

Total 109,991,455 41,252,164 3,536,854
O0 13,474,083 14,096,871 602,699
O1 15,081,503 10,559,297 652,769
O2 15,146,769 10,170,866 678,577
O3 15,457,561 11,021,417 721,519

MIPS

Total 59,159,916 45,848,451 2,655,564
O0 187,621,379 53,057,850 6,735,347
O1 189,217,168 51,024,118 6,787,678
O2 189,220,382 51,410,490 6,810,321
O3 189,554,035 52,275,998 6,853,561

x86

Total 755,612,964 207,768,456 27,186,907
O0 184,390,034 40,286,578 6,599,662
O1 186,140,724 38,196,269 6,656,821
O2 186,114,113 38,355,719 6,679,632
O3 186,425,557 39,179,302 6,723,296
bcf 714,892 12,960,798 119,706
cff 644,018 11,604,224 90,740
sub 714,310 6,960,835 119,481

x64

Total 745,143,648 187,543,725 26,989,338
Total 1,669,907,983 482,412,796 60,368,663

Debin recovers both variable types and names. As we do not
study recovering source-level variable names but focus on obtaining
variable types, we compare with Debin’s type prediction only. Since
Debin has released their trained model, we run Debin on our datasets
directly and compare against its attained accuracy.

TypeMiner considers much finer-grained type labels than the previ-
ous two works. For example, it further distinguishes the pointer type
to struct and char, while the former two do not. As TypeMiner
is not open-sourced, we have contacted the authors to obtain their
reported F1 scores and compare them to STATEFORMER by running
STATEFORMER on their dataset.

These tools vary in their definition of the target types (e.g.,
EKLAVYA is limited to predicting only function argument types)
and the evaluated architectures (e.g., TypeMiner only handles x64,
EKLAVYA handles x86 and x64). Hence, we adjust our setup ac-
cordingly when comparing with the baselines.

Dataset. We collect 33 open-sourced software projects in their latest
versions, including popular and large projects such as OpenSSL,
ImageMagic, and Coreutils. Due to the page constraints, we put the
details of the datasets in our supplementary material. We compile
these software projects to 4 instruction set architectures including
x86, x64, MIPS, and ARM, each with 4 optimizations, i.e., O0-
O3, using GCC-7.5, and 3 obfuscation strategies, including bogus
control flow (bcf), control flow flattening (cff), and instruction
substitution (sub), using Hikari [104] based on Clang-8. Table 1
summarizes the statistics of the datasets.

Pretraining and finetuning setup. We pretrain STATEFORMER

(with GSM) on all datasets in Table 1. We sample a random 10%
of the functions from the pretraining datasets as the validation set.
We then pretrain the model in 10 epochs and checkpoint the model
weights that achieve the lowest validation loss for finetuning. Note
that GSM pretraining task does not have any access to ground truth

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana

Table 2: STATEFORMER’s precision, recall, and F1 score, for each ar-
chitecture (ARCH), optimization (OPT), and obfuscation (OBF).

ARCH OPT/OBF Precision Recall F1 score
O0 77.1 79.2 78.1
O1 78 76.2 77.1
O2 77.3 73.7 75.4ARM

O3 90.9 89.9 90.4

MIPS

O0 98.9 91.7 95.2
O1 86.1 67.6 75.7
O2 80 68 73.4
O3 81.3 71.2 75.8
O0 85.3 83.8 84.5
O1 72.4 70.9 71.6
O2 74.8 70.9 72.8

x86

O3 83.6 79.8 81.6
O0 81.5 81.4 81.4
O1 75.8 74 74.9
O2 71.1 69.2 70.1
O3 72.3 70.4 71.3
bcf 73.5 70.5 72
cff 73.2 71.1 72.1

x64

sub 75.6 69.1 72.2

type labels. Therefore, we can always collect arbitrary binaries for
pretraining, including those used in finetuning for type inference.
This is a common practice in transfer learning [24, 67].

We finetune on STATEFORMER our dataset categorized by the
architecture and optimization/obfuscation (Section 5.1). We parti-
tion the training and testing set by randomly selecting 90% of the
functions for training and the remainder for testing.

Hyperparameters. We pretrain and finetune STATEFORMER for
10 epochs and 50 epochs, respectively. We set the default masking
percentage 𝑃𝑚𝑎𝑠𝑘 = 0.8 (Section 3.3) and study different choices
of 𝑃𝑚𝑎𝑠𝑘 in Section 5.4. We choose 𝛼 = 4 in Equation 1 such
that the MSE of predicting 𝜇DataState and the BCE of predicting
𝜇ControlState are scaled to the same magnitude. We perform an
extensive evaluation of the properties of NAU to understand its
capability in encoding numerical values and learning arithmetics.
Due to the space constraints, we put the details of this study and the
complete hyperparameter settings in our supplementary material.

5 EVALUATION
We aim to answer the following research questions.

• RQ1: How accurate is STATEFORMER in type inference?
• RQ2: How does STATEFORMER compare to the state-of-the-art

ML-based systems?
• RQ3: How fast is STATEFORMER compared to other tools?
• RQ4: How effective is pretraining with GSM in improving the

type inference accuracy?
• RQ5: How well does STATEFORMER approximate the operational

semantics by training with GSM?

5.1 RQ1: Accuracy
We first study the accuracy of STATEFORMER on all binaries. Fol-
lowing the setup described in Section 4, we report the results in
Table 2. STATEFORMER achieves an average 77.9% F1 score across
all architecture, optimization, and obfuscation.

On x86 and x64, We observe that STATEFORMER remains rela-
tively robust for binaries with higher optimization and obfuscation.

EKLAVYA StateFormer

O0 O1 O2 O30.00

0.25

0.50

0.75

1.00

Ac
cu
ra
cy

(a) x86
O0 O1 O2 O30.00

0.25

0.50

0.75

1.00

Ac
cu
ra
cy

(b) x64

Figure 5: Accuracy of EKLAVYA and STATEFORMER on binaries of
different architectures and optimizations.

For example, the F1 score for x86 O3 is only 2.9% lower than that
of x86 O0. The F1 score for x64 O3 is only 3.6% lower than that of
x64 O1. Regarding the performance across different architectures
(with all optimizations/obfuscations), we notice no significant differ-
ence on average. These observations indicate that STATEFORMER is
robust across architectures and optimizations with disparate opera-
tional semantics of their instructions.

STATEFORMER achieves an average 77.9% F1 score across all
architecture, optimization, and obfuscation and remains robust
for binaries with higher optimization levels and obfuscations.

5.2 RQ2: Comparison to Baseline
Baseline comparison. We compare STATEFORMER with 3 state-of-
the-art type inference tools, namely EKLAVYA, Debin, and TypeM-
iner, as described in Section 4.

To compare with EKLAVYA, we evaluate STATEFORMER on the
same 8 projects considered in their paper: Binutils, Coreutils, Findu-
tils, sg3-utils, util-linux, Inetutils, Diffutils, and usbutils. We evaluate
STATEFORMER on 7 types considered in EKLAVYA. EKLAVYA
treats type inference for each argument (of multiple function argu-
ments) as an independent classification task and reports the accuracy
(instead of F1 score). We thus also evaluate STATEFORMER’s accu-
racy, defined as the number of correctly predicted types divided by
all the number of tokens.

Figure 5 compares STATEFORMER to EKLAVYA side-by-side
on two architectures (i.e., x86 and x64) and 4 optimizations (O0-
O3) as EKLAVYA is evaluated with these settings. On average,
STATEFORMER outperforms EKLAVYA by 13.3%. Notably, STATE-
FORMER remains robust across different optimization levels, while
EKLAVYA has a clear drop when the optimization level is increased.

To compare with Debin, we run their released model on OpenSSL,
which we have confirmed is not included in their training set. We
compile OpenSSL into 3 architectures (x86, x64, and ARM) with
4 optimizations (O0-O3). As Debin considers only 17 types, we
also restrict the prediction of STATEFORMER to the same 17 types.
Figure 6 shows that STATEFORMER consistently outperforms Debin
on all architectures and optimizations, achieving 14.6% higher F1
scores on average. We observe Debin has an apparent drop in F1
scores with higher optimizations (down to 46.1% for ARM), while
STATEFORMER remains robust with at least 70% F1 scores.

Finally, we compare STATEFORMER to TypeMiner on the same
datasets they have considered. We restrict our test on x64 with O3, as
TypeMiner is evaluated only on x64. TypeMiner treats type inference

STATEFORMER: Fine-Grained Type Recovery from Binaries using Generative State Modeling ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Debin-x86
StateFormer-x86

Debin-x64
StateFormer-x64

Debin-ARM
StateFormer-ARM

O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O30.00

0.25

0.50

0.75

F1
 sc

or
e

Figure 6: F1 of Debin and STATEFORMER in recovering types for bina-
ries of different architectures and optimizations.

<ptr> <prim>0.00

0.25

0.50

0.75

1.00

F1
 sc

or
e

TypeMiner StateFormer

(a) Task 1
array* struct* char* other ptr0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

TypeMiner StateFormer

(b) Task 2

int long char double0.00

0.25

0.50

0.75

1.00

F1
 sc

or
e

TypeMiner StateFormer

(c) Task 3
signed unsigned0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

TypeMiner StateFormer

(d) Task 4

Figure 7: STATEFORMER’s and TypeMiner’s F1 scores in 4 type infer-
ence tasks defined in Section 5.2.

as a multi-stage classification task, training independent classifiers
to predict types at different levels. For example, it first trains a binary
classifier to predict whether a variable is a pointer or not and then
trains a second classifier to predict the pointer type. Since they do not
make complete predictions in one-shot, we compare STATEFORMER

on 4 sub-tasks on which TypeMiner has been evaluated. Specifically,
TypeMiner’s first prediction task is a binary classification task de-
ciding whether a variable has a pointer type (<ptr>) or a primitive
type (<prim>). Its second task is to predict the pointer types, includ-
ing array∗, struct∗, char∗, and other ptr. Its third task is
to predict the primitive types, including int, long int, char,
and double. Its fourth task is to predict the signedness, including
signed and unsigned. We label these 4 tasks as Task 1-4.

Figure 7 demonstrates that STATEFORMER outperforms TypeM-
iner in 4 tasks by an average 8.2%. In particular, TypeMiner sig-
nificantly fluctuates when predicting primitive types (Task 3) and
pointer types (Task 2), but STATEFORMER is more robust.

STATEFORMER outperforms EKLAVYA, Debin, and TypeMiner
by 13.3%, 14.6%, and 8.2%, respectively, and is more robust than
all baselines for different optimizations and type granularity.

5.3 RQ3: Inference Speed
We evaluate STATEFORMER’s inference speed on binary programs
and compare it to Debin and Ghidra. Specifically, we consider 4
software projects with different sizes on x64 compiled with O0.

Table 3: Execution time (in seconds) of STATEFORMER (on both CPU
and GPU), Debin, and Ghidra on 4 of our datasets, with diverse number
of instructions (measured in thousand).

Project # Inst (k)
Runtime

STATEFORMER

Speedup
STATEFORMER

Debin Ghidra
CPU GPU

ImageMagic 1,252 187.8 7.3 N/A∗ 664.3 91×
PuTTY 969 146.0 5.6 5239.8 514.2 91.8×

Findutils 157 23.7 0.9 849.0 83.3 92.6×
zlib 22 3.3 0.1 119.0 11.7 117×

∗Debin terminates abruptly after running one of the binaries for 138 minutes.

10 20 30 40 50
Epochs

−0.4

−0.2

0.0

0.2

0.4

0.6

F1
 sc

or
e

w/ GSM
w/ GSM (only μDataState)
w/ GSM (only μControlState)
w/o GSM

(a) Pretraining GSM effect

10 20 30 40 50
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

Masking 80% Pmask=0.8
Masking 60% Pmask=0.6
Masking 40% Pmask=0.4
Masking 20% Pmask=0.2

(b) Masking percentage effect

Figure 8: (Left) STATEFORMER’s testing F1 scores when it is (1) pre-
trained with GSM, (2) pretrained with only predicting 𝜇DataState, (3)
pretrained with only predicting 𝜇ControlState, or (4) not pretrained.
(Right) STATEFORMER’s validation F1 score at each finetuning epoch
when the masking percentages 𝑃𝑚𝑎𝑠𝑘 in GSM are 0.8, 0.6, 0.4, or 0.2.

Table 3 shows the runtime performance of STATEFORMER, De-
bin, and Ghidra. STATEFORMER (based on GPUs) achieves 98.1×
speedup on average than the second-best tool. Notably, while the
authors of Debin have tried to optimize their underlying learning
algorithms (conditional random field) with parallelized implementa-
tion [78], it performs 1023× and 35.8× slower than STATEFORMER

GPU and CPU, respectively. We attribute the speedup of STATE-
FORMER to its underlying neural architecture, which is amenable
to GPU acceleration, while neither Debin’s nor Ghidra’s underlying
algorithms can be implemented using GPU efficiently.

STATEFORMER is 98.1× faster than the second-best tool.

5.4 RQ4: Effectiveness of GSM
In this section, we dig deeper into the effectiveness of GSM pretrain-
ing task by quantifying how much improvement that STATEFORMER

achieves when pretrained with GSM.

Effectiveness of GSM. We compare STATEFORMER’s finetuning
accuracy when it is (1) pretrained with GSM, (2) pretrained with par-
tial GSM by only predicting 𝜇DataState, (3) pretrained with partial
GSM by only predicting 𝜇ControlState, and (4) not pretrained.

Figure 8a shows STATEFORMER’s validation F1 score at each
finetuning epoch. It clearly demonstrates that STATEFORMER pre-
trained with complete GSM achieves the best finetuning F1 scores:
it reaches 71.3% F1 score within the 50 epochs. Without pretrain-
ing with GSM, it only achieves 38.3% F1 score. We also note that
STATEFORMER pretrained with only predicting 𝜇DataState outper-
forms that with only predicting 𝜇ControlState. This is intuitive as

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana

predicting 𝜇DataState requires understanding instructions’ actual
execution effect and computing the concrete values, while predicting
𝜇ControlState is only a binary classification task encoding approxi-
mate control flow. Nevertheless, we observe even pretraining with
predicting only 𝜇DataState or 𝜇ControlState is still beneficial for
type inference, as STATEFORMER pretrained on either of them ob-
tains 69% and 62% F1 scores, respectively.

Masking percentage. Recall in GSM, we train STATEFORMER to
reconstruct the masked 𝜇DataState, and we use default masking
percentage 𝑃𝑚𝑎𝑠𝑘 = 0.8 throughout our experiments (Section 4).
As masking less percentage of 𝜇DataState makes it easier to train
on GSM, we study how varying 𝑃𝑚𝑎𝑠𝑘 affects the type inference
performance. Figure 8b shows the validation F1 scores achieved by
STATEFORMER when we vary 𝑃𝑚𝑎𝑠𝑘 . We observe that the more we
mask in GSM, the better it boosts the type inference performance,
but the gap of improvement is not significant. One possible explana-
tion is that even in one example, the masked states are less, many
pretraining samples and the dynamic masking still introduce diverse
enough cases for learning operational semantics.

STATEFORMER pretrained with GSM outperforms that without
pretraining by 33% in F1 score. Masking percentage in pretraining
GSM does not significantly affect the finetuning results: pretrain-
ing with 20% masking rate results in <2% decrease in F1 score
compared to pretraining with 80% masking rate.

5.5 RQ5: STATEFORMER Performance on GSM
Pretraining losses with GSM. We also study the losses of pre-
training STATEFORMER with GSM. Such a study directly validates
whether pretraining with GSM indeed helps STATEFORMER to learn
operational semantics. Low losses on unseen testing 𝜇State and func-
tion binaries indicates that STATEFORMER highly likely learns to
generalize based on its learned knowledge of operational semantics.

Figure 9 shows the training and validation losses in 10 epochs of
pretraining STATEFORMER with GSM. The validation set is con-
structed by sampling a random 10% functions from the projects used
in pretraining (as described in Section 4). Specifically, Figure 9a
shows the MSE loss of predicting 𝜇DataState and Figure 9b shows
the BCE loss of predicting 𝜇ControlState. We observe that the valida-
tion MSE drops to 0.00011, which translates to average absolute dis-
tance (by taking the square root) between prediction and groundtruth
as 0.011 (

√
0.00011 = 0.011). As we normalize the byte values from

[0, 256] into [0, 1] (see Section 3.2), 0.011 × 256 = 2.8 is the ac-
tual absolute error between the predicted byte and the groundtruth.
The average error within the deviation of only 3-byte indicates that
STATEFORMER learns to approximate the execution effect.

Effects of control and data flow pretraining. Concurrent to our
work, Trex [68] also leverages transfer learning to learn program
execution semantics. However, Trex completely ignores control and
data flow modeling as it focuses on binary similarity detection. In
contrast, STATEFORMER focuses on type inference; therefore, it
requires precise data flow (type of output of an instruction depends
on types of operands) and control flow (it must also infer types of
values in the unexecuted portion of the code).

Because of these differences in the high-level requirements of
the downstream tasks, STATEFORMER and Trex adopt significantly

1 2 3 4 5 6 7 8 9 10
Pretrain Epoch

0.00025

0.00050

0.00075

0.00100

0.00125

M
SE

 lo
ss

Training
Validation

(a) MSE in predicting 𝜇DataState

1 2 3 4 5 6 7 8 9 10
Pretrain Epoch

0.000

0.002

0.004

0.006

BC
E

Lo
ss

Training
Validation

(b) BCE in predicting 𝜇ControlState

Figure 9: MSE and BCE of predicting 𝜇DataState and 𝜇ControlState,
respectively, during pretraining STATEFORMER with GSM.

10 20 30 40 50
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

StateFormer
Trex

Figure 10: Type inference F1 score between models pretrained by GSM
and Trex’s pretraining objective.

different pretraining approaches, i.e., generating control and data
flow state (GSM) vs. code and trace token classification. In general,
it remains an open challenge in transfer learning to determine which
pretraining task is the most effective for which downstream task.
Part of our contribution in STATEFORMER is to design a pretraining
task that makes the downstream task of type inference precise. For
example, Figure 10 shows that STATEFORMER outperforms Trex by
around 10.9 percentage points in F1 score for type inference.

Probing STATEFORMER on real-world code. Besides quantifying
the pretraining losses, we probe the pretrained STATEFORMER using
a concrete binary example to study how it predicts 𝜇State.

Consider the example in Figure 11. We examine how STATE-
FORMER predicts registers esp, edi, ebp, and esi from input
𝜇DataState, in which we mask all registers except for their first ap-
pearances. The accurate prediction of esp at line 5 suggests that
STATEFORMER is able to associate 0x0886644e with esp at line
1 and line 2 and understand the execution effect of sub. Further, to
predict esi at line 6, STATEFORMER needs to understand xor’s
execution effects at line 3. Since there is no other occurrence of esi
in this code block, we can conclude that the prediction of esi is
based solely on STATEFORMER’s understanding of xor.

GSM is effective in assisting STATEFORMER to learn various
instructions’ operational semantics. STATEFORMER’s absolute
error in predicting 𝜇DataState during pretraining GSM is very
low (within 3 on average for each byte).

STATEFORMER: Fine-Grained Type Recovery from Binaries using Generative State Modeling ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Line	Number		 Register Ground	Truth Prediction
2 esp 0x0886644e 0x0886644e

5 esp 0x0886644e 0x0886644e

5 edi 0x00000000 0x00000000

6 ebp 0x0886644e 0x0886644e

6 esi 0x00000000 0x00000000

<remove_quoted_ifs>:

Code:																		Input			DataState:
...																				...
1		mov	ebp,esp									mov	0x0885544e,0x0886644e
2		sub	esp,hexv								sub	<mask>,0x00000000
...																				...
3		xor	esi,esi									xor	0x0886644f,0x0886644f
4		mov	edi,eax									mov	0x02222883,0x00000000
5		mov	[esp],edi							mov	[<mask>],<mask>
...																				...
6		mov	[ebp-hexv],esi		mov	[<mask>],<mask>

Figure 11: The code and 𝜇DataState trace from remove_quoted_ifs
in bash. We highlight with same colors the masked values and locations
that STATEFORMER relies on to make the prediction.

6 THREATS TO VALIDITY
Target binaries. We focus on the binary ready to be disassembled
and do not consider maliciously encrypted code or packed binaries as
it requires an entirely different toolchain to unpack. STATEFORMER

can be applied once the binaries are unpacked or decrypted.

Datasets. We aim to collect diverse datasets of software projects to
expose various instances of operational semantics. To this end, we
ensure our datasets have different implemented functionalities (e.g.,
utility functions, image processing functions, etc.).

Hyperparameters. We keep most hyperparameters fixed throughout
the evaluation, considering the fact that there is no principled method
for tuning hyperparameters to date [50]. Nevertheless, we ensure our
hyperparameter choice is empirically reasonable (Section 4).

7 RELATED WORK
There are two main lines of prior works that are related to our
work – type inference from binaries (e.g., for binary hardening and
decompilation) and type inference from source code of dynamically-
typed languages (e.g., for software debugging, IDE support, and
API understanding for developers) [42, 73, 95]. In this paper, we
focus on type inference for binaries. Binary analysis is known to be
more challenging as recovering stripped source-level constructs is
an undecidable problem [62, 66]. Moreover, many source-level type
hints such as the variable name and the computation that operates
on the variable are absent at binary-level. We summarize common
approaches used for different type inference tasks below.

Traditional approaches. Static analysis has been widely adopted in
off-the-shelf reverse engineering tools for type inference [1, 14, 81,
82, 85, 86]. A standard static analysis approach for type inference
uses domain-expert-provided rules for different instructions/state-
ments to either directly specify the operand types [6, 23, 31, 32, 39,
44], or define how types should be propagated from instructions with
known types to other instructions [9, 19, 21, 25, 28, 51, 52, 55, 103].

To track the type propagation, these works often rely on expensive
data/control dependency analysis [8, 9, 46, 47, 51, 52, 59, 72, 82].

By contrast, dynamic analysis uses accurate program states and
memory access patterns observed during program execution [27]
to define precise rules for type inference [5, 15, 22, 38, 48, 77, 79,
84] and propagation [17, 34–36, 54, 83, 102]. However, dynamic
approaches suffer from low code coverage, leading to a high false
negative rate [51]. Increasing code coverage requires collecting and
combining dynamic traces from multiple program executions [15,
83], which incurs prohibitively high overhead.

STATEFORMER enjoys the benefits of both static and dynamic
analysis as it automates learning instructions’ approximate opera-
tional semantics from cheap micro-execution and uses such seman-
tics to learn type inference rules without dynamic execution.

ML-based approaches. Recently, machine learning has been in-
creasingly applied to type inference. Examples include inferring
the type of function argument [20], recovering general variable
type [41, 59, 60, 71, 97, 100], and other metadata (e.g., variable
names) [2, 40, 56, 78, 80, 90, 92, 94]. However, existing ML-based
binary type inference approaches use only static code without any
traces and suffer from similar limitations as static analysis. Concur-
rent to our work, Trex [68] also leverages transfer learning to learn
program execution semantics. However, Trex is not control/data
flow aware, resulting in a significant performance drop in the type
inference task, as shown in Section 5.5.

More broadly, machine learning has shown significant success in
learning generalizable representation that applies to many program
analysis tasks [3, 13, 69]. STATEFORMER contributes a new generic
framework to learn programs’ operational semantics. Therefore,
we believe STATEFORMER has a great potential to apply to other
downstream program analysis tasks beyond type inference.

8 CONCLUSION
We presented STATEFORMER, a neural architecture that uses the
operational semantics of assembly code to recover type informa-
tion from stripped binaries. We designed a novel pretraining task,
Generative State Modeling, to help STATEFORMER to learn code
operational semantics and transfers this knowledge to learn type
inference rules. We showed that STATEFORMER is 14.6% more
accurate than state-of-the-art tools, and our ablation studies showed
that GSM improves type inference accuracy by 33%.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their constructive and valu-
able feedback. This work is sponsored in part by NSF grants
CNS-1842456, CNS-1801426, CNS-1617670, CCF-1822965, CCF-
1845893, CNS-1563843, CNS-1564055, and IIS-2040961; ONR
grants N00014-17-1-2010, N00014-16-1-2263, and N00014-17-1-
2788; an NSF CAREER award; an ARL Young Investigator (YIP)
award; a Google Faculty Fellowship; a J.P. Morgan Faculty research
award; a DiDi Faculty research award; a Google Cloud grant; a
Capital One research grant; and an Amazon Web Services grant.
Any opinions, findings, conclusions, or recommendations expressed
herein are those of the authors, and do not necessarily reflect those
of the US Government, ONR, ARL, NSF, Captital One, Google, J.P.
Morgan, DiDi, or Amazon.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Pei, Guan, Broughton, Chen, Yao, Williams-King, Ummadisetty, Yang, Ray, Jana

REFERENCES
[1] National Security Agency. 2019. Ghidra Disassembler. https://ghidra-sre.org/.
[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015.

Suggesting accurate method and class names. In 2015 10th Joint Meeting on
Foundations of Software Engineering.

[3] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. Comput. Surveys
(2018).

[4] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
et al. 2020. BinRec: dynamic binary lifting and recompilation. In Fifteenth
European Conference on Computer Systems.

[5] Jong-hoon An, Avik Chaudhuri, Jeffrey S Foster, and Michael Hicks. 2011.
Dynamic inference of static types for Ruby. ACM SIGPLAN Notices (2011).

[6] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. 2005. To-
wards type inference for JavaScript. In European conference on Object-oriented
programming.

[7] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
function detection in binaries. In 2017 IEEE European Symposium on Security
and Privacy.

[8] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing memory accesses in
x86 executables. In International conference on compiler construction.

[9] Gogul Balakrishnan and Thomas Reps. 2007. Divine: Discovering variables in
executables. In International Workshop on Verification, Model Checking, and
Abstract Interpretation.

[10] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In
23rd USENIX Security Symposium.

[11] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track.

[12] Eli Bendersky. [n.d.]. PYEFLTOOLS. https://github.com/eliben/pyelftools.
[13] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Programming with"

big code": Lessons, techniques and applications. In 1st Summit on Advances in
Programming Languages.

[14] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A binary analysis platform. In International Conference on Computer
Aided Verification.

[15] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. 2010.
Binary Code Extraction and Interface Identification for Security Applications. In
2010 Network and Distributed System Security Symposium.

[16] Juan Caballero and Zhiqiang Lin. 2016. Type inference on executables. Comput.
Surveys (2016).

[17] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 2009.
Dispatcher: Enabling active botnet infiltration using automatic protocol reverse-
engineering. In 16th ACM conference on Computer and communications secu-
rity.

[18] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
2015. StackArmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries. In 2015 Network and Distributed System Security
Symposium.

[19] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. 2005. String analysis
for x86 binaries. In 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering.

[20] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017.
Neural nets can learn function type signatures from binaries. In 26th USENIX
Security Symposium.

[21] Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg. 2019.
Bidirectional type checking for relational properties. In 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[22] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T King. 2008. Digging
for Data Structures. In 2008 USENIX Symposium on Operating Systems Design
and Implementation.

[23] Loris d’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen,
and Benjamin Pierce. 2013. Sensitivity analysis using type-based constraints. In
1st annual workshop on Functional programming concepts in domain-specific
languages.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for language understand-
ing. In 2019 Annual Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.

[25] David Dewey and Jonathon T Giffin. 2012. Static detection of C++ vtable escape
vulnerabilities in binary code. In 2012 Network and Distributed System Security
Symposium.

[26] EN Dolgova and AV Chernov. 2009. Automatic reconstruction of data types in
the decompilation problem. Programming and Computer Software (2009).

[27] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. 2013. Scalable variable and data type detection in a binary rewriter. In

34th ACM SIGPLAN conference on Programming language design and imple-
mentation.

[28] MV Emmerik and Trent Waddington. 2004. Using a decompiler for real-world
source recovery. In 11th Working Conference on Reverse Engineering.

[29] Michael D Ernst. 2003. Static and dynamic analysis: Synergy and duality. In
2003 International Conference on Software Engineering Workshop on Dynamic
Analysis. 24–27.

[30] Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William Robertson, En-
gin Kirda, and Hamed Okhravi. 2018. On the effectiveness of type-based control
flow integrity. In 34th Annual Computer Security Applications Conference.

[31] Alexander Fokin, Katerina Troshina, and Alexander Chernov. 2010. Recon-
struction of class hierarchies for decompilation of C++ programs. In 2010 14th
European Conference on Software Maintenance and Reengineering.

[32] Michael Furr, Jong-hoon An, Jeffrey S Foster, and Michael Hicks. 2009. Static
type inference for Ruby. In 2009 ACM symposium on Applied Computing.

[33] Patrice Godefroid. 2014. Micro execution. In 36th International Conference on
Software Engineering.

[34] Neville Grech, Bernd Fischer, and Julian Rathke. 2018. Preemptive type checking.
Journal of logical and algebraic methods in programming (2018).

[35] Neville Grech, Julian Rathke, and Bernd Fischer. 2013. Preemptive type checking
in dynamically typed languages. In International Colloquium on Theoretical
Aspects of Computing.

[36] Philip J Guo, Jeff H Perkins, Stephen McCamant, and Michael D Ernst. 2006. Dy-
namic inference of abstract types. In 2006 international symposium on Software
testing and analysis.

[37] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Herbert
Bos, and Erik Van Der Kouwe. 2016. TypeSan: Practical type confusion detection.
In 2016 ACM SIGSAC Conference on Computer and Communications Security.

[38] Istvan Haller, Asia Slowinska, and Herbert Bos. 2013. Mempick: High-level
data structure detection in C/C++ binaries. In 2013 20th Working Conference on
Reverse Engineering.

[39] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. 2018. MaxSMT-
based type inference for Python 3. In International Conference on Computer
Aided Verification.

[40] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
2018. DEBIN: Predicting debug information in stripped binaries. In 2018 ACM
SIGSAC Conference on Computer and Communications Security.

[41] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis.
2018. Deep learning type inference. In 2018 26th acm joint meeting on european
software engineering conference and symposium on the foundations of software
engineering.

[42] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In 21st USENIX Security Symposium.

[43] Md Nahid Hossain, Junao Wang, Ofir Weisse, R Sekar, Daniel Genkin, Boyuan
He, Scott D Stoller, Gan Fang, Frank Piessens, Evan Downing, et al. 2018.
Dependence-preserving data compaction for scalable forensic analysis. In 27th
USENIX Security Symposium.

[44] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In International Static Analysis Symposium.

[45] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
27th ACM SIGSOFT international symposium on software testing and analysis.

[46] Wuxia Jin, Yuanfang Cai, Rick Kazman, Gang Zhang, Qinghua Zheng, and Ting
Liu. 2020. Exploring the Architectural Impact of Possible Dependencies in
Python Software. In 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering.

[47] Wesley Jin, Cory Cohen, Jeffrey Gennari, Charles Hines, Sagar Chaki, Arie
Gurfinkel, Jeffrey Havrilla, and Priya Narasimhan. 2014. Recovering C++ objects
from binaries using inter-procedural data-flow analysis. In Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop 2014.

[48] Changhee Jung and Nathan Clark. 2009. DDT: design and evaluation of a
dynamic program analysis for optimizing data structure usage. In 42nd Annual
IEEE/ACM International Symposium on Microarchitecture.

[49] Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model
pretraining. In 33rd Conference on Neural Information Processing Systems.

[50] Yann LeCun, Patrice Y Simard, and Barak Pearlmutter. 1993. Automatic learning
rate maximization by on-line estimation of the hessian’s eigenvectors. In 1993
Advances in Neural Information Processing System.

[51] JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled
reverse engineering of types in binary programs. In 2011 Network and Distributed
System Security Symposium.

[52] Junghee Lim, Thomas Reps, and Ben Liblit. 2006. Extracting output formats
from executables. In 2006 13th Working Conference on Reverse Engineering.

[53] Yan Lin and Debin Gao. 2021. When Function Signature Recovery Meets
Compiler Optimization. In 2021 IEEE Symposium on Security and Privacy.

[54] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. 2008. Auto-
matic Protocol Format Reverse Engineering through Context-Aware Monitored
Execution. In 2008 Network and Distributed System Security Symposium.

https://ghidra-sre.org/
https://github.com/eliben/pyelftools

STATEFORMER: Fine-Grained Type Recovery from Binaries using Generative State Modeling ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[55] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic reverse
engineering of data structures from binary execution. In 2010 Network and
Distributed System Security Symposium.

[56] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim,
Anil Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and
refactor inconsistent method names. In 2019 IEEE/ACM 41st International
Conference on Software Engineering.

[57] Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets
with multi-layer type analysis. In 2019 ACM SIGSAC Conference on Computer
and Communications Security.

[58] Andreas Madsen and Alexander Rosenberg Johansen. 2020. Neural Arithmetic
Units. In International Conference on Learning Representations.

[59] Alwin Maier, Hugo Gascon, Christian Wressnegger, and Konrad Rieck. 2019.
TypeMiner: Recovering types in binary programs using machine learning. In
International Conference on Detection of Intrusions and Malware, and Vulnera-
bility Assessment.

[60] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring
JavaScript function types from natural language information. In 2019 IEEE/ACM
41st International Conference on Software Engineering.

[61] James Martens and Ilya Sutskever. 2011. Learning recurrent neural networks
with hessian-free optimization. In 28th international conference on machine
learning.

[62] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. 2019. Probabilistic disassembly. In 41st International Conference
on Software Engineering.

[63] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural
networks over tree structures for programming language processing. In AAAI
Conference on Artificial Intelligence.

[64] Hanne Riis Nielson and Flemming Nielson. 1992. Semantics with applications.
Vol. 104. Springer.

[65] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. Fairseq: A fast, extensible toolkit
for sequence modeling. In 2019 Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies: Demonstrations.

[66] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
Bing Mao, and Jun Xu. 2021. SoK: All You Ever Wanted to Know About
x86/x64 Binary Disassembly But Were Afraid to Ask. In 2021 IEEE Symposium
on Security and Privacy.

[67] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and Suman Jana.
2021. XDA: Accurate, Robust Disassembly with Transfer Learning. In 2021
Network and Distributed System Security Symposium.

[68] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020.
TREX: Learning Execution Semantics from Micro-Traces for Binary Similarity.
arXiv preprint arXiv:2012.08680 (2020).

[69] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. 2015. Building
program vector representations for deep learning. In International Conference
on Knowledge Science, Engineering and Management.

[70] G. D. Plotkin. 1981. A Structural Approach to Operational Semantics. University
of Aarhus (1981).

[71] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
writer: Neural type prediction with search-based validation. In 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering.

[72] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic
type inconsistency analysis for JavaScript. In 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering.

[73] Michael Pradel and Koushik Sen. 2015. The good, the bad, and the ugly: An
empirical study of implicit type conversions in JavaScript. In 29th European
Conference on Object-Oriented Programming.

[74] Aravind Prakash, Heng Yin, and Zhenkai Liang. 2013. Enforcing system-wide
control flow integrity for exploit detection and diagnosis. In 8th ACM SIGSAC
symposium on Information, computer and communications security.

[75] Nguyen Anh Quynh. 2014. Capstone: Next-gen disassembly framework. Black
Hat USA (2014).

[76] NGUYEN Anh Quynh and DANG Hoang Vu. 2015. Unicorn: Next Generation
CPU Emulator Framework. BlackHat USA (2015).

[77] Easwaran Raman and David I August. 2005. Recursive data structure profiling.
In 2005 workshop on Memory system performance.

[78] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from “big code”. ACM SIGPLAN Notices (2015).

[79] Brianna M Ren, John Toman, T Stephen Strickland, and Jeffrey S Foster. 2013.
The ruby type checker. In 28th Annual ACM Symposium on Applied Computing.

[80] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tris-
tan Ratchford. 2012. Automated API property inference techniques. IEEE

Transactions on Software Engineering (2012).
[81] Hex-Rays SA. 2008. IDA Pro Disassembler.
[82] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario

Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offen-
sive Techniques in Binary Analysis. In 2016 IEEE Symposium on Security and
Privacy.

[83] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A Dy-
namic Excavator for Reverse Engineering Data Structures. In 2011 Network and
Distributed System Security Symposium.

[84] Venkatesh Srinivasan and Thomas Reps. 2014. Recovery of class hierarchies and
composition relationships from machine code. In International Conference on
Compiler Construction.

[85] Binary Ninja Team. 2015. Binary Ninja – A new type of reversing platform.
https://binary.ninja/.

[86] Radare2 Team. 2017. Radare2 GitHub repository. https://github.com/radare/
radare2.

[87] David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. 2020. Past-
sensitive pointer analysis for symbolic execution. In 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering.

[88] Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blun-
som. 2018. Neural arithmetic logic units. In Advances in Neural Information
Processing Systems. 8035–8044.

[89] David Urbina, Yufei Gu, Juan Caballero, and Zhiqiang Lin. 2014. Sigpath: A
memory graph based approach for program data introspection and modification.
In European Symposium on Research in Computer Security.

[90] Muhammad Usman, Wenxi Wang, Kaiyuan Wang, Cagdas Yelen, Nima Dini,
and Sarfraz Khurshid. 2020. A study of learning likely data structure properties
using machine learning models. International Journal on Software Tools for
Technology Transfer (2020).

[91] Victor Van Der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In 2016 IEEE Symposium on Security and Privacy.

[92] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recov-
ering clear, natural identifiers from obfuscated JS names. In 2017 11th joint
meeting on foundations of software engineering.

[93] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In 2017 Advances in Neural Information Processing Systems.

[94] Yaza Wainakh, Moiz Rauf, and Michael Pradel. 2021. IdBench: Evaluating Se-
mantic Representations of Identifier Names in Source Code. In 2021 IEEE/ACM
43rd International Conference on Software Engineering.

[95] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2009. Locating
need-to-translate constant strings for software internationalization. In 2009 IEEE
31st International Conference on Software Engineering.

[96] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. 2012.
Securing untrusted code via compiler-agnostic binary rewriting. In 28th Annual
Computer Security Applications Conference.

[97] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. Lambdanet: Prob-
abilistic type inference using graph neural networks. In 2020 International
Conference on Learning Representations.

[98] Paul J Werbos. 1990. Backpropagation through time: what it does and how to do
it. IEEE 78, 10 (1990), 1550–1560.

[99] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis.
2020. Egalito: Layout-Agnostic Binary Recompilation. In 25th International
Conference on Architectural Support for Programming Languages and Operating
Systems.

[100] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016.
Python probabilistic type inference with natural language support. In 24th ACM
SIGSOFT international symposium on foundations of software engineering.

[101] Dongrui Zeng and Gang Tan. 2018. From Debugging-Information Based Binary-
Level Type Inference to CFG Generation. In Eighth ACM Conference on Data
and Application Security and Privacy.

[102] Junyuan Zeng, Yangchun Fu, Kenneth A Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. 2013. Obfuscation resilient binary code reuse through trace-
oriented programming. In 2013 ACM SIGSAC conference on Computer & com-
munications security.

[103] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song.
2015. VTint: Protecting Virtual Function Tables’ Integrity. In 2015 Network and
Distributed System Security Symposium.

[104] Naville Zhang. 2017. Hikari – an improvement over Obfuscator-LLVM. https:
//github.com/HikariObfuscator/Hikari.

https://binary.ninja/
https://github.com/radare/radare2
https://github.com/radare/radare2
https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Definition
	2.2 Understanding Operational Semantics Helps Type Inference
	2.3 Learning Operational Semantics with GSM
	2.4 StateFormer Architecture

	3 Methodology
	3.1 Collecting Program States
	3.2 StateFormer Input and Output
	3.3 Pretraining with GSM
	3.4 Transfer Learning Type Inference

	4 Implementation and Setup
	5 Evaluation
	5.1 RQ1: Accuracy
	5.2 RQ2: Comparison to Baseline
	5.3 RQ3: Inference Speed
	5.4 RQ4: Effectiveness of GSM
	5.5 RQ5: StateFormer Performance on GSM

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

