
On Training Robust PDF Malware Classifiers

Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana
Columbia University

Abstract
Although state-of-the-art PDF malware classifiers can be
trained with almost perfect test accuracy (99%) and extremely
low false positive rate (under 0.1%), it has been shown that even
a simple adversary can evade them. A practically useful mal-
ware classifier must be robust against evasion attacks. However,
achieving such robustness is an extremely challenging task.

In this paper, we take the first steps towards training robust
PDF malware classifiers with verifiable robustness properties.
For instance, a robustness property can enforce that no matter
how many pages from benign documents are inserted into a
PDF malware, the classifier must still classify it as malicious.
We demonstrate how the worst-case behavior of a malware
classifier with respect to specific robustness properties can
be formally verified. Furthermore, we find that training
classifiers that satisfy formally verified robustness properties
can increase the evasion cost of unbounded (i.e., not bounded
by the robustness properties) attackers by eliminating simple
evasion attacks.

Specifically, we propose a new distance metric that operates
on the PDF tree structure and specify two classes of robustness
properties including subtree insertions and deletions. We uti-
lize state-of-the-art verifiably robust training method to build
robust PDF malware classifiers. Our results show that, we can
achieve 92.27% average verified robust accuracy over three
properties, while maintaining 99.74% accuracy and 0.56%
false positive rate. With simple robustness properties, our ro-
bust model maintains 7% higher robust accuracy than all the
baseline models against unrestricted whitebox attacks. More-
over, the state-of-the-art and new adaptive evolutionary attack-
ers need up to 10 times larger L0 feature distance and 21 times
more PDF basic mutations (e.g., inserting and deleting objects)
to evade our robust model than the baselines.

1 Introduction
Machine learning classifiers have long been used for many

important security problems such as malware detection, spam
filtering, and online fraud detection. One of the most ubiqui-
tous applications is to detect PDF malware, which is a very
popular infection vector for both large-scale mass and targeted
attacks. Many prior research projects have demonstrated
that machine-learning-based PDF malware classifiers can
achieve almost perfect test accuracy (99%) with extremely low

false positive rate (under 0.1%) [47, 48]. Nonetheless, all the
state-of-the-art classifiers, including the proprietary ones used
by popular services like Gmail, can be evaded by trivial trans-
formations over the PDFs, such as adding invisible document
metadata, deleting the length indicator of the exploit payload,
or simply increasing the length of the document [5, 36, 61].

Since any security-relevant application of machine learning
classifiers must deal with adaptive adversaries, it is fundamen-
tally insufficient to evaluate security classifiers by measuring
the accuracy and false positive rate. Despite the abundance
of available metrics given by well-established theoretical
results in machine learning [7], none of them are suitable
to measure the robustness of the classifiers under adaptive
attackers. In order to be practically useful, a malware classifier
must be demonstrated to be secure against different types of
adaptive attacks. For example, a sample robustness property
might require that no matter how many pages from benign
documents are inserted into a PDF malware, the classifier still
must classify the modified malware as malicious. Similarly,
deletion of any non-functional objects in the PDF must not
result in a benign classification.

Ideally, a classifier should be sound with regard to a
robustness property. That is, the robustness property can
be formally verified to get strict bounds on the worst-case
behavior of the classifier. If a classifier satisfies the robustness
property, the strongest possible attacker bounded by the
specification of the property, i.e., bounded attacker, will not
be able to violate the property, no matter how powerful the
attacker is or whatever adaptive strategy she follows. For
example, even for a perfect knowledge attacker, any creative
way of inserting pages from the most-benign documents to the
malware can be verified to keep the malicious classification.

If we train classifiers to be verifiably robust against building
block attacks, we can raise the bar for more sophisticated at-
tacks to succeed. Essentially, the attacker is solving a search
problem to find an evasive PDF malware. She starts from a
malicious PDF, performs a series of manipulations to the PDF,
and eventually arrives at a solution that makes the PDF vari-
ant classified as benign without affecting its maliciousness.
To maintain malicious functionality, the PDF variant needs to
have the correct syntax and correct semantics. Therefore, ma-
nipulations from different attacks can be decomposed to many
building block operations in the parsed PDF tree. By training
building block robustness properties, we eliminate simple and

easy evasions, which increases the search cost for attackers.
In this paper, we take the first steps towards training a PDF

malware classifier with verifiable robustness properties, and
we demonstrate that such classifiers also increase the attack
cost even for the attackers not bounded by these properties.
We address several challenges in building robust PDF mal-
ware classifiers. First, previous work has shown that retraining
the malware classifier with adversarial instances drastically
increases the false positive rate [1, 28]. Since verifiably robust
training is strictly a harder problem to solve than adversarially
robust training without any verifiable bound, it is challenging to
specify robustness properties that do not increase false positive
rates yet still increase the cost for the attackers. To this end, we
propose a new distance metric for the structured PDF trees. Us-
ing a small distance for the robustness properties maintains low
false positive rate. Second, popular model choices for PDF mal-
ware classifiers are not suitable for robust training. For example,
adversarially robust training over a random forest model re-
quires manual adjustment to the complexity of trees to maintain
acceptable accuracy [33]. Therefore, we choose a neural net-
work model to leverage state-of-the-art verifiably robust train-
ing schemes. Third, to evaluate our defense, we compare the
robustness of our models against twelve different baseline mod-
els using seven attacks. We implement five attacks unrestricted
by robustness properties, including feature-space attacks as
well as application-space attacks that generate actual evasive
PDF malware. In particular, we develop adaptive attacks to tar-
get the trained robustness properties based on EvadeML [61].
We use these attacks to quantify the increase in the unbounded
attacker cost caused by the verifiable robust training.

Using our new distance metric for the PDF tree structure, we
specify two classes of robustness properties, subtree deletion
properties and subtree insertion properties. The properties
allow any possible attacks involving deletion/insertion
up to a bounded number of subtrees under the PDF root.
For example, when choosing to delete /Root/Metadata
subtree containing children /Root/Metadata/Length and
/Root/Metadata/Type, the attacker can delete either one
of the children, both children, or the whole subtree. Note
that even at the subtree distance one, the properties include
a large number of possible model inputs. For example, subtree
insertion property bounds the attacker to any one of the 42
subtrees under the PDF root. Among them, /Root/Pages
alone includes 21,195 different input features for the classifier.
This overapproximates attacker’s actions, and includes even
unknown attacks. We train seven verifiably robust models with
different robustness properties, utilizing symbolic interval
analysis [55, 56]. We measure the verified robust accuracy
(VRA) for a test set of 3,416 PDF malware. The VRA
represents the percentage of test samples that are verifiably
robust against the strongest bounded attacker. Although
adversarially robust training is known to achieve strong
robustness against a specific type of attacker, the gradient
attacker [39], our verifiably trained models can obtain superior

verifiable robustness against all possible bounded attackers
while keeping high test accuracies and low false positive rates.

Perhaps even more importantly, we show that a verifiably
robust classifier with two proposed robustness properties can
already increase the cost for the unbounded attacker. We eval-
uate our model against two unrestricted whitebox attacks and
three unrestricted blackbox attacks. In the whitebox setting,our
robust model maintains 7% higher estimated robust accuracy
(defined in Section 2.3.4) against the unrestricted gradient at-
tack and the Mixed Integer Linear Program (MILP) attack than
the baseline models. In the blackbox setting, the enhanced evo-
lutionary attack needs up to 3.6 times larger L0 distance and 21
times more PDF mutations (described in Section 4.5.1 and 4.7)
to evade our model compared to the baselines. Even the
adaptive evolutionary attack needs 10 times larger L0 distance
and 3.7 times more PDF mutations to evade our robust model.
In addition, we achieve 2% higher ERA than the strongest base-
line model against the reverse mimicry attack. The results show
that training verifiably robust PDF malware classifiers even for
carefully chosen simple robustness properties can effectively
increase the bar for the attacker to solve the evasion problem.

As defenders, making all evasion attacks on malware classi-
fiers computationally infeasible is an extremely hard problem.
However, our work shows a very promising direction to in-
crease the cost of an attacker by training malware classfiers that
are verifiably robust against different simple robustness proper-
ties. We can potentially further increase the robustness of PDF
malware classifier by specifying more complex robustness
properties. Our key contributions are summarized as follows.

• We are the first to evaluate and train verifiable robustness
properties of PDF malware classifiers. We propose a new dis-
tance metric to bound the robustness properties in the PDF
tree structure. We specify two essential robustness proper-
ties as building blocks to compose more powerful properties.

• We train verifiably robust PDF malware classifier models.
We thoroughly evaluate the robustness against twelve
baseline models, using state-of-the-art measures including
estimated robust accuracy (ERA) under gradient attacks
and verified robust accuracy (VRA) against any bounded
adaptive attacker. We can achieve 92.27% average VRA
over three robustness properties while maintaining 99.74%
test accuracy and 0.56% false positive rate.

• We can increase the bar for unrestricted attackers to evade
our verifiably robust model. Our model achieves 7% higher
ERA against the unrestricted gradient attacker up to 200,000
iterations than all the baselines. The state-of-the-art and new
adaptive evolutionary attackers need up to 10 times larger
L0 feature distance and 21 times more PDF manipulations
to evade our robust model.

2 Background
In this section, we present an overview of the PDF format

and PDF malware. Then, we introduce the features used by

1 0 obj <<
/OpenAction <<
 /JS 2 0 R
 /S /JavaScript
 >>
/Pages 3 0 R
/Type /Catalog
>> endobj

3 0 obj <<
/Count 1
/Kids [4 0 R]
/Type /Pages
>> endobj

2 0 obj <<
/Filter /FlateDecode
/Length 2660
>> stream
…
endstream
endobj

4 0 obj <<
/Parent 3 0 R
/Type /Page
>> endobj

trailer
<</Root 1 0 R /Size 5>>

(a) Example objects in a PDF malware.

/OpenAction

/Root

/JS /S

/Javascript

/FlateDecode

/Filter
Exploit

16973

/Catalog

/Type

/Pages

1
/Count

/Kids /Type

/Pages
/Type

/Page

/Length

(b) The tree structure of a PDF malware.

/Root/OpenAction
/Root/OpenAction/JS
/Root/OpenAction/JS/Filter
/Root/OpenAction/JS/Length
/Root/OpenAction/S
/Root/Pages
/Root/Pages/Count
/Root/Pages/Kids
/Root/Pages/Kids/Type
/Root/Pages/Type
/Root/Type

(c) Hidost features.
Figure 1: The objects and trailer, parsed PDF tree structure, and extracted Hidost features from an example PDF malware.

PDF malware classifiers and two main classes of attacks that
evade them. At last, we describe the robust training techniques.

2.1 PDF Malware
The Portable Document Format (PDF) contains four sec-

tions: header, body, cross-reference table, and trailer. The
header identifies the file format, version, and a magic number.
The body consists of various types of objects, including arrays,
name trees, dictionaries, etc. For example, Figure 1a shows
four PDF objects and the trailer from a PDF malware. The
trailer identifies the entrance to parse the file, along with the
cross-reference table size. Here, the entrance is the root object
1 0 obj, where the object number is 1 and the object version
is 0, and R means indirect reference. The cross-reference table
indexes all object locations in the file. Starting from the root
object, a parser resolves referred objects either using the cross-
reference table or scanning the PDF to get the object locations.

The four objects in this file are dictionaries, indicated by<<
and >> symbols and enclosed by obj and endobj keywords.
The dictionary object is a collection of key/value pairs. Each
key is a name object, and the value can be any object. The
root object 1 0 obj has a special type, /Catalog, and the
value of the key /OpenAction is another dictionary object.
Within /OpenAction, the object containing the JavaScript
exploit is referred to as 2 0 R. The exploit object contains a
stream that can be decoded using the /Filter indicator, and
a length field for the stream. The exploit is executed when
the file is opened. There is generally discrepancy between the
parser implementation and actual file format specification. For
example, many PDF readers do not need the correct length
field to decode the stream, and malware authors can delete the
field to evade the classifier. The rest of the PDF contains object
3 and 4 that refer to each other. The PDF structure forms a tree,
by taking the shortest path to objects via references (Figure 1b).

PDF malware exploits the vulnerabilities in the PDF reader
in order to transfer execution control, e.g., to run shellcode or
drop additional binary. PDF malware authors employ various
techniques to evade the detection, e.g., add content from
legitimate documents, crash the PDF reader, and obfuscate the
PDF content. Making PDF malware classifier robust against
trivial manipulation remains a hard problem. For example,
increasing the length of the file to be 7,050,000 bytes can
evade the Gmail PDF malware scanner [5].

2.2 PDF Malware Classifiers
In this section, we discuss two open-source PDF malware

classifiers that have attracted considerable evasion effort in
the security community, PDFrate [47] and Hidost [48].

2.2.1 PDFrate
PDFrate [47] uses a total of 202 features including counts

for various keywords and certain fields in the PDF. For
example, number of characters in the author field, number
of “endobj” keyword, sum of all pixels in all the images, and
number of JavaScript markers, etc. The classifier is a Random
Forest, with 99% accuracy and 0.2% false positive rate over
the Contagio malware dataset [4].

Simple manipulation of the PDF file can result in very
big changes in the feature values of PDFrate. For instance,
inserting pages from a benign document to the PDF malware
can increase the page count feature alone to be as big as the
maximal integer value, which also affects many other counts.
If a bounded manipulation in the PDF cannot tightly bound
the feature input to the classifier, these features are not suitable
for verifiably robust training.

2.2.2 Hidost
Hidost [48] uses Bag-of-Path features extracted from

the parsed tree structure of the PDF. It obtains the shortest
structural path to each object, including terminals and non-
terminals in the tree, and uses binary counts for these paths
as features. In the paper, the authors used only those paths that
appeared in at least 1,000 files in the corpus, which reduced the
number of paths from 9 million to 6,087. Hidost was evaluated
on a decision tree model and a SVM model. Both models have
99.8% accuracy and less than 0.06% false positive rate

The binary Bag-of-Path features are able to bound the input
to the classifier, given certain attack properties. For example,
in our dataset, if we insert anything under the /Pages subtree,
only up to 1,195 features will be flipped from 0 to 1, resulting
in a tight input bound to the classifier. Therefore, in this paper,
we choose to use Hidost features to build our robust PDF
malware classifier.

2.2.3 Automatically Evading Malware Classifiers
Several automated attacks have successfully evaded PDF

malware classifiers, under different threat models.

White-box Attacks. White-box attackers are assumed to
have perfect knowledge. They can launch precise attacks
targeting the exact model being trained, e.g., gradient-based
attack [11,36]. For instance, in the white-box setting, the Gradi-
ent Descent and Kernel Density Estimation (GD-KDE) attack
can be launched against the SVM version of PDFrate [36]. In
addition, [28] uses an approach to only add features, in order
to preserve existing malicious functionality of adversarial
malware examples [8]. The drawback of such white-box
gradient-based attacks is that the evasion instances are found in
the feature space, so they do not generate actual PDF malware.

Black-box Attacks. The threat models of black-box attacks
generally assume that the attacker does not have access to
any model parameters, but has oracle access to the prediction
labels for some samples, and in some cases also the prediction
confidence. In some settings, features and the model type
are assumed to be known as well. Xu et al. [61] use a genetic
evolution algorithm to automatically evade both PDFrate and
Hidost. The evolutionary algorithm uses a fitness score as
feedback, to guide the search in finding evasive PDF variants
by mutating the seed PDF malware. For every generation of
the population during the search, the attack uses a cuckoo
oracle to dynamically check that mutated PDFs still preserve
the malicious functionality. This check is much stronger than
static insertion-only methods used by gradient-based attacks.
Dang et al. [18] uses a more restricted threat model where
the attacker does not have access to classification scores,
and only has access to the classified label and a blackbox
morpher that manipulates the PDFs. They use the scoring
function based on Hill-Climbing to attack the classifier under
such assumptions. In this paper, we improve the attack from
the genetic evolution framework of EvadeML [61], and also
develop several adaptive attacks based on that.

2.3 Robust Training
Out of the arms race between adversarial image exam-

ples [49] and many defenses [9, 12, 13, 42, 43], two training
methods have proven to be the strongest among all. They are
adversarially robust training and verifiably robust training. We
briefly explain the training methods, and reason about why ver-
ifiably robust training provides stronger robustness guarantee.

2.3.1 Robust Optimization

Both adversarially robust training and verifiably robust
training are based on robust optimization. Let us first look at the
optimization objective used by the regular training process of
the neural network. Given an input x with the true label y, a neu-
ral network fθ parameterized by θ maps it to a label ŷ= f (x).
A loss function L(y, ŷ) is used to evaluate the errors of such
prediction, e.g., the cross-entropy loss. The training process
has the following optimization objective that minimizes the
loss to find optimal weights θ. The summation is an empirical
measure of the expected loss over the entire training dataset.

θ=argmin
θ

∑L(y,ŷ) (1)

In the adversarial setting, for the input x, there can be a set
of all possible manipulations x̃ bounded by a distance metric
Dk within distance k, i.e. x̃ ∈ Dk(x). Robust optimization
minimizes the worst case loss for all inputs in Dk(x), solving
a minimax problem with two components.

θ=argmin
θ

∑ max
x̃∈Dk(x)

L(y, fθ(x̃)) (2)

• Inner Maximization Problem: find x̃ that maximizes
the loss value within the robustness region Dk(x), i.e., the
robust loss.

• Outer Minimization Problem: minimize the maximal
loss to update the weights θ of the neural network.

The following two robust training methods solve the inner
maximization problem in different ways.

2.3.2 Adversarially Robust Training
Adversarially robust training empirically estimates the

maximal loss in Equation 2 by using different attacks. The
state-of-the-art adversarially robust training method from
Madry et al. [39] uses adversarial examples found by the
Projected Gradient Descent (PGD) attack [35] to estimate
the robust loss for the training. The training method has been
applied to benchmarking image datasets, including MNIST
and CIFAR-10. The trained models have shown robustness
against known attacks including the Projected Gradient
Descent (PGD) attack [35], Carlini-Wagner (CW) attacks [13],
Fast Gradient Sign Method (FGSM) [26], etc.

Adversarially robust training has been applied to malware
datasets. In the followup work to [61], Xu et al. [1] applied
adversarially robust training over the Contagio malware
dataset, which increased the false positive rate to as high
as 85%. Grosse et al. [28] applied the training method to
the android malware classifier using adversarial malware
examples, increasing the false positive rate to 67%.

2.3.3 Verifiably Robust Training
Verifiably robust training uses sound over-approximation

techniques to obtain the upper bound of the inner maximiza-
tion problem. Different methods have been used to formally
verify the robustness of neural networks over input regions [20,
23, 24, 31, 34, 37, 44], such as abstract transformations [25],
symbolic interval analysis [55, 56], convex polytope approx-
imation [58], semidefinite programming [45], mixed integer
programming [50], Lagrangian relaxation [22] and relaxation
with Lipschitz constant [57], which essentially solve the inner
maximization problem. By using the worst case bounds derived
by formal verification techniques,verifiably robust training [21,
41, 53, 59] can obtain such verified robustness properties.

The training method has been applied to image datasets
to increase verifiable robustness, usually with the tradeoff
of lower accuracy and higher computation and memory cost
for the training. Recent works have focused on scaling the
training method to larger networks and bigger datasets [53,59].
Since verifiably robust training techniques can train classifiers
to be sound with regard to the robustness properties, the
trained network gains robustness against even unknown
adaptive attacks. On the contrary, adversarially robust training
is limited by the specific threat model used to generate
adversarial instances for the training. Therefore, we apply
verifiably robust training to build the PDF malware classifier.
By carefully specifying useful robustness properties, our
robust model has only 0.56% false positive rate.

2.3.4 ERA and VRA
In this paper, we will use the following two metrics to

evaluate our verifiably robust PDF malware classifier.
Estimated Robust Accuracy (ERA) measures the per-

centage of test inputs that are robust against known attacks,
given a distance bound. For instance on the MNIST dataset,
Madry et al.’s training method [39] can achieve 89% ERA
against PGD attacks within a bounded distance of L∞≤0.3.

Verified Robust Accuracy (VRA) measures the percent-
age of test inputs that are verified to be correctly classified
within a distance bound. For example, Wong et al.’s training
method [59] obtains 21.78% VRA on a CIFAR10 Resnet
model within a bounded distance of L∞≤8/255.

3 Verifiably Robust PDF Malware Classifier
Since it is extremely hard, if not impossible, to have a

malware classifier that is robust against all possible attackers,
we aim to train classifiers to be robust against building block
attacks. In this section, we describe the specification and
training of robustness properties.

3.1 Robustness Properties
3.1.1 Motivation

Building block operations. A large group of evasion at-
tacks against malware classifiers can be considered as solving a
search problem, e.g., mimicry attacks [36, 52], EvadeML [61],
EvadeHC [18] and MalGAN [30]. The search starts from the
seed malware, modifies the malware to generate variants while
keeping the malicious functionality, until finding a variant
that can be classified as benign. The attacks use building block
operations to make the search process more systematic and
efficient over a large space. Specifically for PDF malware,
the operations include PDF object mutation operators [61],
random morpher [18] and feature insertion-only generator [30].
After performing the building block operations, the attacks
optimize the search based on the classifier’s feedback that
indicates the evasion progress. We want to make the search
harder by training classifiers to be robust against building

block operations. To achieve that, we consider operations
that generate PDFs with the correct syntax. A PDF variant
needs to have both correct syntax and correct semantics to stay
malicious. Though dynamic execution can confirm the same
malicious behavior, it is too expensive to do that during train-
ing. Therefore, we statically ensure the correct PDF syntax. A
syntactically correct PDF file can be parsed into a tree structure
(Figure 1b, Section 2.1). Thus, the building block operations
are a combination of insertion and deletion in the PDF tree.
Based on this insight, we design robustness properties related
to the PDF subtrees. We propose two classes of subtree
insertion and subtree deletion properties, which can be used
as the stepping stones to construct more sophisticated attacks.

False positive rate. It is crucial to maintain low false pos-
itive rate for security classifiers due to the Base-Rate Fal-
lacy [10]. If we train classifiers with evasive malware variants
without enforcing a proper bound, the classifier will have very
high false positive rate. Since attacks often mimic benign be-
havior, the feature vectors of unbounded variants are close to
benign vectors, which affects the false positive rate. Therefore,
we need a distance metric to define the robustness properties
to capture the similarity between the PDF malware and its vari-
ants. Since the Lp norm distance in the feature space does not
capture whether the corresponding PDF variant has the correct
syntax, we propose a new distance metric for the PDF subtree.

3.1.2 Subtree Distance Metric
Subtree Distance Definition. We propose a new distance

metric to bound the attacker’s building block operations over
a PDF malware. The subtree distance between two PDFs x and
x′ is, the number of different subtrees of depth one in the two
PDF trees. These subtrees are directly under the root object
in the PDF, regardless of their height and the number of nodes
in them. Formally,

d(x, x′) = #{(rootx.subtrees ∪ rootx′ .subtrees) −
(rootx.subtrees∩rootx′ .subtrees)}

We first take the union of the subtrees with depth one from
two PDFs, and then remove the intersection of the two subtree
sets (identical subtrees). The distance d(x,x′) is the cardinality
of the resulting set.

If the attacker inserts benign pages into the PDF malware
under the /Root/Pages subtree (Figure 1b), this operation
will not exceed subtree distance one, no matter how long the
malicious PDF document becomes. Changing an arbitrary
subtree in the PDF may have different Lp norm distances de-
pending on which subtree is manipulated. For example, in the
Hidost binary path features, manipulating /Root/Metadata
is bounded by L1 ≤ 4, whereas changing /Root/Pages can
be up to L1≤1195. However, under the subtree distance, they
are both within the distance one bound.

We use the subtree distance to define robustness properties.
Each property corresponds to an over-approximated set
Dk(x)= {x̃|d(x,x̃)≤ k}. The set captures all PDF malware x̃
that can be possibly generated by changes in arbitrary k subtree

regions under the root of the malware seed x, regardless of
the feature extraction method. Since insertion and deletion
are building block operations, we formulate these robustness
properties at distance one before composing more complicated
robustness properties.

3.1.3 Subtree Insertion and Deletion Properties

Subtree Insertion Property (Subtree Distance 1): given
a PDF malware, all possible manipulations to the PDF
bounded by inserting an arbitrary subtree under the root, do
not result in a benign prediction by the classifier.

The attacker first chooses any one of the subtrees, and
then chooses an arbitrary shape of the subtree for the
insertion. Some subtrees are commonly seen in benign
PDFs, which can be good insertion candidates for eva-
sion, e.g., /Root/Metadata, /Root/StructTreeRoot,
/Root/ViewerPreferences. Although the subtree distance
for the property is only one, the total number of allowable
insertions is on the order of the sum of exponentials for the
number of children under each subtree.

The property over-approximates the set of semanti-
cally correct and malicious PDFs. For example, if we
insert /Root/Names/JavaScript/Names/JS but not
/Root/Names/JavaScript/Names/S, the javascript is no
longer functional. Moreover, we over-approximate the
attacker’s possible actions. Attacks are usually based on
some optimization procedure rather than exhaustive search.
However, if a known attack fails to find succesful insertion in a
subtree, unknown attacks may succeed. Therefore, the property
can overestimate the worst case behavior of the classifier.

Subtree Deletion Property (Subtree Distance 1): given a
PDF malware, all possible manipulations to the PDF bounded
by deleting an arbitrary subtree under the root, do not result
in a benign prediction by the classifier.

For the PDF malware example shown in Figure 1b, this prop-
erty allows deleting any one of the following: /Root/Type,
/Root/Pages, and /Root/OpenAction. Note that this allows
any combination of deletion under non-terminal nodes
/Root/Pages and /Root/OpenAction.

Some exploit triggers may be lost or the program semantics
may be broken by deleting content from the malware. The
robustness property covers an over-approximated set of
evasive PDF malware, and enforces that they are always
classified as malicious. It is acceptable to include some
non-malicious PDFs in the robustness region, as long as we
do not increase the false positive rate for benign PDFs.

3.1.4 Other Properties

We do not specify other common properties like replace-
ment, since many can be viewed as a combination of insertions
and deletions. The robustness properties can be generalized
to up to N subtree distance, where N=42 in our feature space.
Next, we describe properties with larger distances.

Subtree Deletion Property (Subtree Distance 2): the
strongest possible attackers bounded by deletions within any
two subtrees under the root, cannot make the PDF classified
as benign.

Subtree Insertion Property (Subtree Distance N − 1):
the strongest possible attackers bounded by insertions within
all but one subtree under the root, cannot make the PDF
classified as benign.

Monotonic Property and Subtree Insertion Property
(Distance N): Incer et al. [32] have proposed to enforce the
monotonic property for malware classifiers. The monotonic
property states that an attacker cannot evade the classifier by
only increasing the feature values. Specifically, if two feature
vectors satisfy x ≤ x′, then the classifier f guarantees that
f (x) ≤ f (x′). They enforce monotonicity for both benign
and malicious classes, such that inserting features into any
executable makes it appear more malicious to the classifier.
The property is so strong that it decreased the temporal
detection rate of the classifier by 13%.

To compare against the monotonic property, we propose
the subtree insertion property at distance N. In other words,
the insertion is unrestricted by any subtree, and it is allowed
for all features. We focus on this property for the malicious
PDFs, which is a key difference from the monotonic property.

Larger distances bound a larger set of evasive malware vari-
ants, which can make malicious feature vectors more similar to
benign ones and affect the false positive rate. In our evaluation,
we train all five properties and several combinations of them
using mixed training technique (Table 4).

3.2 Training the Properties
Given the over-approximated set of inputs Dk(x) for each

robustness property, we use sound analysis of the neural
network to obtain the corresponding robust loss.

Sound analysis definition. A sound analysis over the
neural network fθ represents a sound transformation Tf from
the input to the output of fθ. Formally, given input x∈X and
a property Dk(x) bounded by distance k, the transformation
Tf is sound if the following condition is true: ∀x∈X, we have
{ fθ(x̃)|x̃ ∈ Dk(x)} ⊆ Tf (Dk(x)) That is, the sound analysis
over-approximates all the possible neural network outputs for
the property. Using Tf (Dk(x)), we can compute the robust loss
in Equation 2.

Training. Existing works have shown that training only
for the robustness objective degrades regular test accuracy,
and combining the two objectives helps smooth the conflict
between the two [27,41,53]. Consequently, we adopt the same
principle to train for a combined loss as below.

L=L(y, fθ(x))+ max
x̃∈Dk(x)

L(y, fθ(x̃)) (3)

In Equation 3, the left-hand side of the summation denotes
the regular loss for the training data point (x, y), and the
right-hand side represents the robust loss for any manipulated x̃

Bounded by
Robustness Properties?

Whitebox Access?

Adaptive?

Bounded, Whitebox, Adaptive
(1) (2): VRA, ERA

Yes No

Unbounded, Whitebox, Adaptive
(3) (4): ERA, L0

Yes No

Unbounded, Blackbox, Adaptive
(7): ERA, L0, Trace Length

Unbounded, Blackbox, Non-adaptive
(5) (6): ERA, L0, Trace Length

Yes No

Attackers

Figure 2: Different types of attackers in our evaluation.

bounded by distance k satisfying a defined robustness property
Dk(x). We give the same weights to combine the two parts of
the loss, to equally optimize the regular loss and the robust
loss. The robust loss is computed by the worst case within the
bounded region of every training data input. More implementa-
tion details about robust training can be found in Section 4.1.4.

4 Evaluation
We train seven verifiably robust models and compare

them against twelve baseline models, including neural
network with regular training, adversarially robust training,
ensemble classifiers, and monotonic classifiers1. We answer
the following questions in the evaluation.

• Do we have higher VRA and ERA if the attackers are
restricted by the robustness properties?

• Do we have higher ERA against unrestricted attackers?

• How much do we raise the bar (e.g., L0 distance in
features and mutation trace length) for the unrestricted
attackers to evade our robust models?

We use seven different attackers to evaluate the models.
When choosing the attackers, we consider three factors, i.e.,
whether the attacker is bounded by the robustness properties,
whether the attacker has whitebox access to the model, and
whether the attacker is adaptive. Figure 2 shows the categories
where every attacker belongs to, and the evaluation metrics we
use for the category. The detailed threat model for each attacker
((1) to (7)) is shown in Table 1. In the table, we have marked
whether each attacker generates realizable inputs that are real
PDF malware. We evaluate attacks producing both realizable
and non-realizable inputs since robustness against them are
equally important. Tong et al. [51] have shown that robustness
against feature-space attacks on non-realizable inputs can be
generalized to robustness against realizable attacks.

Machine. We use a desktop machine for all the experiments.
The machine is configured with Intel Core i7-9700K 3.6 GHz
8-Core Processor, 64 GB physical memory, 1TB SSD, Nvidia
GTX 1080 Ti GPU, and it runs a 64-bit Ubuntu 18.04 system.
To run the genetic evolution attacks, we set up the Cuckoo
sandbox with 32 virtual machines running Windows XP SP3
32 bit and Adobe Acrobat Reader 8.1.1.

1Our code is available at https://github.com/surrealyz/pdfclassifier

4.1 Models

4.1.1 Datasets

We obtain the PDF malware dataset from Contagio [3].
The malicious PDFs include web exploit PDFs and email
attachments for targeted attacks. We split the dataset into 70%
train set and 30% test set, summarized in Table 2. In total, we
have 13K training PDFs and 6K test PDFs. We use the Hidost
feature extractor to extract structural paths features, with the
default compact path option [2, 48]. The input features have
3,514 dimensions, representing all the distinct path features
from the training dataset.

Robustness Properties. In our experiments, we focus on
five robustness properties as labeled from A to E in Table 3.
For brevity, we will refer to the four robustness properties as
property A (subtree deletion distance one), B (subtree insertion
distance one), C (subtree deletion distance two), D (subtree in-
sertion distance 41) and E (subtree insertion distance 42). They
are defined in Section 3.1. Every subtree is represented by a con-
tinuous range of indices in the binary feature vector, so inser-
tion and deletion can be bounded by a corresponding interval.

Symbolic Interval Analysis. We implement verifiably
robust training using Symbolic Interval Analysis [55, 56] as
the sound over-approximation method. Symbolic interval
analysis uses intervals to bound the adversarial input range to
the model, then propagates the range over the neural network
while keeping input dependency. When passing the interval
through the non-linearity in the neural network, we do linear
relaxation of the input interval, and bound the output interval
by two equations [55]. The analysis tightly over-estimates
the output range, which we use to compute the robust loss
(Equation 2, Section 2.3.1).

We parse and manipulate the PDFs using the modified
version of pdfrw parser that handles malformed PDF mal-
ware [60]. When a subtree is deleted, the paths it contains and
objects with zero reference are deleted. If the subtree contains
any object referenced by other nodes, the object still exists
along with the other paths. Within the regular training dataset,
we have successfully parsed 6,867 training and 3,416 testing
PDF malware to train and evaluate the robustness properties.
Table 3 shows the number of intervals we extract for each
property, separated by training and testing sets.

4.1.2 Model Architecture and Hyperparameters

Among the models we evaluate, many are neural networks
or have neural networks as the basic component. We use
the same model architecture and training hyperparameters
for all the neural network models. We follow previous
work [28, 29, 46] to build a feed-forward neural network with
two hidden layers, each with 200 neurons activated by ReLU,
and a final layer of Softmax activation. We train all neural
network models for 20 epochs, using the Adam Optimizer,
with mini-batch size 50, and learning rate 0.01.

Knowledge and Access Bounded
Realizable Model Training Classification Knows by

Attacker Input Type Eval Feat Arch Wgts Alg, Data Label Score Defense Property
(1) Bounded Arbitrary Attacker X I VRA X X X X X X X X
(2) Bounded Gradient Attacker 7 I ERA X X X X X X X X

(3) Unbounded Gradient Attacker 7 II ERA X X X X X X X 7
(4) MILP Attacker 7 II ERA X X X X X X X 7
(5) Enhanced Evolutionary Attacker X II ERA X X 7 7 X X 7 7
(6) Reverse Mimicry Attacker X II ERA X X 7 7 X X 7 7
(7) Adaptive Evolutionary Attacker X III ERA X X 7 7 X X X 7

Table 1: We evaluate our models using seven types of attackers. They represent, two strongest bounded adaptive attackers (Type I),
four state-of-the-art unbounded attackers (Type II), and the new adaptive unbounded attacker (Type III). Only attackers (1) and (2)
are restricted by the robustness property. The gradient and MILP attackers ((2), (3), (4)) operates on non-realizable feature-space
inputs. The other attackers operate on realizable inputs, among which attacker (1) overapproximates realizable inputs.

Dataset Training PDFs Testing PDFs
Malicious 6,896 3,448
Benign 6,296 2,698

Table 2: The Contagio [3] dataset used for regular training.

Training Testing
Robustness Property Intervals Intervals
A: Subtree Deletion Distance 1 30,655 15,672
B: Subtree Insertion Distance 1 288,414 143,472
C: Subtree Deletion Distance 2 62,445 33,711
D: Subtree Insertion Distance 41 288,414 143,472
E: Subtree Insertion Distance 42 6,867 3,416

Training Testing
Number of PDF Malware 6,867 3,416

Table 3: Five robustness properties and the corresponding num-
ber of intervals used to train and test VRA. The intervals are
extracted from 6,867 training and 3,416 testing PDF malware.

4.1.3 Baseline Models

Baseline Neural Network. We train the baseline neural
network model with the regular training objective (Equation 1,
Section 2.3.1), using the regular training dataset (Table 2).
The model has 99.9% test accuracy and 0.07% false positive
rate. The performance is consistent with those reported in
PDFrate [47] and Hidost [48] (Section 2.2).

Adversarially Robust Training. We use the new subtree
distance metric to adversarially retrain the neural network.
We train five models corresponding to A, B, C, D, and A+B
properties. For the deletion properties, we train with deleting
one or two entire subtrees; and for the insertion properties,
we train with inserting one or 41 full subtrees. The resulting
performance of the models are shown in Table 4. All models
have more than 99% accuracy. The Adv Retrain A, B models
maintain the same 0.07% FPR as the baseline neural network.
The other three models have slightly higher FPR up to 0.15%.

Ensemble Classifiers. Ensemble methods use multiple
learners to boost the performance of the base learner. We
implement two ensemble classifiers.

Ensemble A+B. The provable robustness property is, if
a PDF variant is generated by subtree insertion bounded by
distance one to a PDF, the variant has the same prediction
as the original PDF. The ensemble classifies the PDF as

malicious, if an arbitrary full subtree deletion results in
malicious class by the base learner. We augment the regular
training dataset with an arbitrary subtree deleted from both
malicious and benign PDFs, which maintains the performance
for original PDFs because they also need to be tested under
multiple deletion operations. Ensemble A+B achieves 99.87%
accuracy and 0.26% FPR.

Ensemble D. The provable robustness property is, if a
PDF variant is generated by inserting up to 41 subtrees in a
PDF, it has the same prediction as the original PDF. For the
base learner, we train a neural network to classify the original
malicious and benign PDFs as if they were generated by up to
41 subtree insertions. Consequently, we augment the training
dataset by keeping one subtree from all PDFs to train the base
learner. To build the ensemble, we test every single subtree of
the unseen PDFs, and predict the malicious class if any subtree
is classified as malicious. The Ensemble D model has 99.96%
accuracy and 0.07% FPR.

Monotonic Classifiers. Monotonic classifiers [32] are
the most related work to ours. We follow Incer et al. [32] to
use Gradient Boosted Decision Trees [15] with monotonic
constraint. After comparing different tree depths, we find that
the results do not significantly differ in this dataset. Therefore,
we train multiple monotonic classifiers with different number
of learners (10, 100, 1K, and 2K), where each learner is a de-
cision tree of depth 2. The classifiers are named by the number
of learners they have (Table 4). The monotonic classifiers
have an average of 99% accuracy and under 2% FPR, which
shows much better performance in a small Contagio dataset
compared to results in [32]. Since monotonic property is such
a strong enforcement for the classifier’s decision boundaries,
the malware classifier in [32] has 62% temporal detection rate
over a large scale dataset containing over 1.1 million binaries.

Note that the ensembles and monotonic classifiers are the
only models we train with properties for both malicious and
benign PDFs. For all the other models, we train properties for
only malicious PDFs.

4.1.4 Verifiably Robust Models

Robust Training. We train seven verifiably robust models
and name them with the properties they are trained with. We

use the same model architecture and the same set of hyperpa-
rameters as the baseline neural network model (Section 4.1.2).
During training, we optimize the sum of the regular loss and the
robust loss in each epoch, as defined in Equation 3. At the mini-
batch level, we randomly mix batches belonging to different
properties. For example, to train the Robust A+B model, we do
mixed training for regular accuracy, the insertion property, and
the deletion property alternately by mini-batches, in order to ob-
tain two properties as well as high accuracy in the same model.

The left side of Table 4 contains the test accuracy (Acc),
false positive rate (FPR), and training time for the models.

Training Time. The robust models with insertion proper-
ties (Robust B, Robust D, Robust A+B, Robust A+B+E) took
more than an hour to train, since they have significantly more
intervals (Table 3) than deletion properties. On the contrary,
Robust A and Robust C models can be trained by 11 and
25 minutes, respectively. The average training time for each
mini-batch is 0.036s. Efficiently scaling the number of training
points, input dimension, and network size can be achieved by
techniques from [27, 53, 59].

Accuracy and FPR. All the robust models, except the
Robust D model, can maintain over 99% test accuracy while
obtaining verifiable robustness. Robust D model dropped
the test accuracy only a little to 98.96%. Training robustness
properties increased the false positive rates by under 0.5%
for Robust A, B, and A+B models, which are acceptable. For
models C and D, the false positive rates increased to 1.04%
and 2.3% respectively. Models with property E (Robust E and
Robust A+B+E), have FPR 1.93% and 1.89%, similar to those
of the monotonic classifiers. The false positive rate increases
more for the insertion properties (B and E) than the subtree
deletion property (A). The FPR is also larger for a bigger
distance under the same type of operation (C vs A, and D vs B).

4.2 Bounded Arbitrary Attacker
Strongest Possible Bounded Attacker. The bounded arbi-

trary attacker has access to everything (Table 1). The attacker
can do anything to evade the classifier, under the restriction
that attacks are bounded by the robustness properties.

4.2.1 Results

We formally verify the robustness of the models using
symbolic interval analysis to obtain VRA, over all the 3,461
testing malicious PDFs (Table 3). For example, 99% VRA for
property B means that, 99% of 3,416 test PDFs will always be
classified as malicious, for arbitrary insertion attacks restricted
by one of the subtrees under the PDF root. No matter how
powerful the attacker is after knowing the defense, she will
not have more than 1% success rate.

Table 4 shows all the VRAs for the baseline models and
verifiably robust models. Our key observations are as follows.

Baseline NN: It has robustness for the deletion properties,
but not robust against insertion.

Adversarially Robust Training: All adversarially re-
trained models can increase the VRAs for deletion properties,
except Adv Retrain B model. Adv Retrain B model is trained
with insertion at distance one, which shows conflict with the
deletion properties and decreased VRAs for property A and
C, compared to the baseline NN. Adv Retrain C achieves the
highest VRAs for both property A and C.

Ensemble Classifiers: We conduct the interval analysis
according to the ensemble setup, described in Appendix A.1.
Ensemble A+B has 97% and 99% VRAs for property A and
B, respectively. However, the VRA for property C is only 7%
and the VRA is zero for property D and E. On the other hand,
Ensemble D does not have VRA for any property, despite
the ensemble setup. Since the the base learner in Ensemble D
needs to classify an arbitrary subtree after certain deletion and
insertion operations, it is not enough to gain VRA by learning
specific subtree from the training dataset.

Monotonic Classifiers: All the monotonic classifiers have
insertion VRAs that are the same as the test accuracy, due
to the monotonic constraints enforced during the training
time. Except the model with 10 learners, all the models have
over 99% VRAs for properties B, D, and E. We utilize the
monotonic property of the models to find lower bound of
deletion VRAs. For property A, we verify the classifier’s
behavior on a malicious test PDF, if every possible mutated
PDF with an arbitrary full subtree deletion is always classified
correctly. Since the original malicious PDF features are larger,
based on the monotonic property, any partial deletion will also
result in malicious classification for these PDFs. This gives us
between 5.74% and 8.78% VRAs for the monotonic classifiers
under property A. Similarly, by testing the lower bound of two
subtree deletion, we verify the monotonic classifiers to have
0 VRA for property C.

Verifiably Robust Models: We can increase the VRA from
as low as 0% to as high as 99%, maintaining high accuracy,
with under 0.6% increase in FPR in properties A and B.

Training a model with one robustness property can make it
obtain the same type of property under a different distance. For
example, Robust A model is trained with property A (distance
one), but it has also gained VRA in property C (distance two),
that is higher than the baseline NN model.

If we only train one type of property at a time, the other
properties may be lost. For example, Robust B and Robust
D models both have decreased VRA in the deletion property,
compared to the baseline NN model. This indicates the
conflicts between training for different tasks in general.

The strongest models according to the VRA evaluation are
Ensemble A+B, monotonic classifiers, Robust A+B, and Ro-
bust A+B+E. While Adv Retrain A+B has slightly lower VRA
than Adv Retrain C, it is more robust against unrestricted gra-
dient attack (Appendix A.3) since it is trained with more prop-
erties. Robust A+B has slightly lower VRA in property B than
the monotonic and ensemble baselines, but it has 85.28% VRA
for property C. Robust A+B+E has gained VRA in all prop-

Gained Verified Robust Accuracy (VRA, %)
Property A Property B Property C Property D Property E

Acc FPR Train Trained Distance: 1 Distance: 1 Distance: 2 Distance: 41 Distance: 42
Model (%) (%) (m) Prop. Subtree Del. Subtree Ins. Subtree Del. Subtree Ins. Subtree Ins.
Baseline NN 99.95 0.07 <1 None 90.25 0 49.82 0 0
Adv Retrain A 99.95 0.07 1 A 99.24 0 84.20 0 0
Adv Retrain B 99.95 0.07 8 B 85.50 0 38.20 0 0
Adv Retrain C 99.93 0.11 2 C 99.21 0 88.91 0 0
Adv Retrain D 99.93 0.11 14 D 93.47 0 50.00 0 0
Adv Retrain A+B 99.92 0.15 7 A,B 98.51 0 87.47 0 0
Ensemble A+B 99.87 0.26 2 A,B 97.22 99.97∗ 7.43 0 0
Ensemble D 99.95 0.07 2 D 0 0 0 0 0
Monotonic 10 98.91 1.89 <1 E 5.74∗ 98.91∗ 0∗ 98.91∗ 98.91∗

Monotonic 100 99.04 1.78 1 E 7.67∗ 99.04∗ 0∗ 99.04∗ 99.04∗

Monotonic 1K 99.06 1.78 4 E 8.78∗ 99.06∗ 0∗ 99.06∗ 99.06∗

Monotonic 2K 99.06 1.78 8 E 8.78∗ 99.06∗ 0∗ 99.06∗ 99.06∗

Robust A 99.84 0.33 11 A 99.77 0 89.43 0 0
Robust B 99.72 0.59 102 B 46.43 99.77 1.26 0 0
Robust C 99.54 1.04 25 C 99.94 0 99.77 0 0
Robust D 98.96 2.30 104 D 18.00 92.21 9.84 99.91 99.91
Robust E 99.14 1.93 6 E 62.68 91.86 6.12 99.21 99.21
Robust A+B 99.74 0.56 84 A,B 99.68 91.86 85.28 0 0
Robust A+B+E 99.15 1.89 84 A,B,E 99.03 99.00 58.58 88.96 88.99
∗VRA numbers are computed through the model property, not symbolic interval analysis.

Table 4: The verified robust accuracy (VRA) computed from 3,461 test PDF malware. The name of the monotonic classifier repre-
sents the number of trees in the model. For the other models, the name for the model corresponds to the property it is trained with. Al-
though monotonic classifiers have higher VRA for insertion properties (B, D, E), Robust A+B and Robust A+B+E have strong VRA
in both insertion and deletion properties, and therefore they are more robust against unrestricted attacks (Section 4.3 to Section 4.7).

erties. Although the monotonic classifiers have higher VRA
in insertion properties, since Robust A+B and Robust A+B+E
have strong VRA in both insertion and deletion properties, they
are more robust against unrestricted attacks than the monotonic
classifiers, as shown by the results in the following sections.

4.3 Gradient Attackers
The gradient attacker has perfect knowledge, but the evasive

feature vector found by the attack may not correspond to a real
evasive PDF. We implement bounded and unbounded gradient
attackers to evaluate the ERA for all neural network models.

4.3.1 Implementation
State-of-the-art Bounded Attacker. We implement the

bounded gradient attacker for each robustness property. For
example, for property B, we first choose an arbitrary subtree
from the PDF malware seed. Then, we take the gradient of
the benign label with regard to the input feature, and increase
the feature for the input index with the highest gradient value.
We repeat this until either an evasion instance is found or
the whole bounded region is inserted to be ones. If any of
the subtree choices succeeds, the attack can succeed for the
malware seed within the property. Similarly, we perform the
bounded gradient attacks for the other properties.

State-of-the-art Unbounded Attacker. We implement the
unbounded gradient attacker that performs arbitrary insertion
and deletion guided by gradients, unrestricted by all robustness

Robustness Property (ERA, %)
Model A B C D E
Baseline NN 98.51 0 88.44 0 0
Adv Retrain A+B 99.8 84.6 91.42 87.3 94.7
Robust E 67.1 99.27 19.15 99.27 99.27
Robust A+B 99.77 99.97 91.04 0 0
Robust A+B+E 99.56 99.91 90.66 99.21 99.21

Table 5: ERA under bounded gradient attack. The correspond-
ing VRAs in Table 4 are the lower bound of ERA values.

properties. The attack stops when all evasive instances are
found, or until 200,000 iterations.

4.3.2 Results
Bounded Gradient Attack. We evaluate the ERA

restricted by each robustness property. Since VRA over-
approximates possible attacks, VRA is the lower bound
for the ERA against any specific attack. We show the ERA
for the most representative models in Table 5, with further
details in Appendix A.2. All the ERA numbers are higher
than the corresponding VRA in Table 4. For the Adv Retrain
A+B model, the gap between VRA and ERA is quite large.
While it has 0 VRA for property B and D (Table 4), the ERA
values under bounded gradient attack are 84.6% and 87.3%
respectively. One interesting observation is that the ERA of
property E is higher than property D, which is also higher
than property B. It shows that the greedy algorithm (gradient

Model ERA (%)
Baseline NN 0
Adv Retrain A+B 0
Ensemble A+B 0
Monotonic 100 48.8
Robust A+B 0
Robust A+B+E 50.8

Table 6: ERA under reverse
mimicry attack. Robust A+B+E
is the most robust one.

●

●
●

●

●
● ●

● ●0.00

0.25

0.50

0.75

1.00

0 5 10 15
L0

E
R

A

●

Monotonic 10
Monotonic 100
Monotonic 1K
Monotonic 2K

Figure 3: MILP attack: the monotonic
classifiers can be evaded by up to 15 feature
changes.

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
L0

E
R

A

Baseline NN
Adv Retrain A+B
Ensemble A+B
Robust A+B

Figure 4: Enhanced evolutionary attack: Ro-
bust A+B requires up to 3.6 times larger L0 dis-
tance to be evaded compared to the baselines.

L0 for ERA (%) at 200K
Model ERA=0 attack iterations
Baseline NN 19 0
Adv Retrain A+B N/A 0.32
Robust A 36 0
Robust D N/A 0.03
Robust A+B N/A 7.38
Robust A+B+E 68 0

Table 7: Robust A+B model maintains 7% higher ERA against
the unrestricted gradient attack than the other five models.

descent) is not effective at evading this model, since the attack
could have used the solution from property B to reduce the
ERA for the other two properties to at least 84.6%. Although
Adv Retrain A+B has a higher ERA in property D and E
against the gradient attack than the Robust A+B model, both
models have 0 VRA in these properties. Since there always
exist stronger attacks that can reduce the ERA [54], VRA
provides a stronger robustness guarantee than ERA.

Unbounded Gradient Attack. Our verifiably robust model
can improve the ERA against the unrestricted gradient attack
by 7% up to 200,000 iterations. Table 7 shows the attack results
on five representative models. The unrestricted gradient attack
can reduce the ERA for three models to 0 given enough allow-
able L0 distance in feature changes. Baseline NN is the first
to reach 0 ERA at L0 =19, whereas Robust A+B+E requires
the largest L0 distance (68) to reach 0 ERA. For the other three
models, Robust A+B is the most robust one. It maintains 7.38%
ERA even after 200,000 attack iterations. The ERA converges
for Adv Retrain A+B, Robust D and Robust A+B models
against the unrestricted gradient attack (Appendix A.3.2).
Further details about the attack can be found in Appendix A.3.

We convert the evasive feature vectors to real PDFs. Given
each feature index change, we either delete the corresponding
PDF object, or insert the object with minimal number of
children in the benign training dataset. Inserting object
with minimal children makes the features from constructed
PDF close to the evasive features. On average, the ERA of
models against the real evasive PDF malware is 94.25%, much
higher than 0.62% ERA against evasive feature vectors, since
unrestricted gradient attack often breaks the PDF semantics
(Appendix A.4). Due to the inherent limitation of feature-space
attacks, we also evaluate robustness of the models against
realizable attacks from Section 4.5 to Section 4.7.

4.4 MILP Attacker
State-of-the-art Unbounded Attacker. The Mixed

Integer Linear Program (MILP) attacker is the unbounded
whitebox attacker for the GBDT monotonic classifiers,
proposed by Kantchelian et al. [33]. The attack formulates
the evasion problem as a Mixed Integer Linear Program. The
variables in this program are predicates and leaves in all the
decision trees. We set the objective of the linear program to
minimize the L0 distance between the seed malware feature
vector and the variant vector. The constraints to solve the linear
program include model misclassification, consistency among
leaves and predicates, and several variables being integer. The
solution to the MILP represents the malware feature vector
manipulation. We use the re-implementation from [14] to
conduct the MILP attack.

4.4.1 Result
The MILP attack can succeed for all the 3416 test malicious

PDFs against all four monotonic classifiers. We plot the ERA
values with different L0 distance (number of feature changes)
in Figure 3. The Monotonic 10 model is the weakest among
them. With only 2 feature deletion, 10% of PDFs can be
evaded, e.g., deleting /Root/Names/JavaScript/Names and
/Root/Names/JavaScript/Names/JS/Filter. Everything
can be evaded by up to six feature changes for the 10 learner
model. Using 100 learners can increase the L0 distance for
evasion. However, using more learners does not increase the
robustness after 100 learners. All the monotonic classifiers
can be evaded by up to 15 feature changes. In comparison,
when L0 = 15, the ERA for Robust A+B is 10.54%. Under
different whitebox attacks, Robust A+B is more robust than
the monotonic classifiers.

After converting the evasive feature vectors to real PDFs,
none of them are still malicious, since the MILP attack
deletes the exploit (Appendix A.4). Next, we will evaluate the
strongest models against unrestricted black box attacks that
ensure the maliciousness of evasive PDF variants.

4.5 Enhanced Evolutionary Attacker
State-of-the-art Unbounded Attacker. The enhanced

evolutionary attacker has black-box oracle access to the model,
including the classification label and scores, and she is not
bounded by the robustness properties. The attack is based on
the genetic evolution algorithm [61].

4.5.1 Implementation
The genetic evolution attack evades the model prediction

function by mutating the PDF malware, using random deletion,
insertion, and replacement, guided by a fitness function. We
implemented two strategies to enhance the evolutionary attack,
with details and the experiment set up in Appendix A.5.

4.5.2 Results
Within the 500 PDF malware seeds that exhibit network

behavior from previous work [61], we can detect 495 PDFs
with signatures using our cuckoo sandbox. All the PDF
malware seeds belong to the testing PDF set in Table 2. By
round robin, we go through the list of randomly scheduled
PDFs by rounds of attacks, until all of them are evaded.

We run the attack on the best baseline and robust models:
Baseline NN, Adv Retrain A+B, Ensemble A+B, Monotonic
Classifiers, Robust A+B, and Robust A+B+E. For four models
without property E, the attack has succeeded in generating
evasive variants for all PDF seeds. It takes between three days
to two weeks to evade each model. The attack is not effective
against monotonic classifier and Robust A+B+E model. Al-
though the attack can identify that deletion is preferred to evade
the models, sometimes it deletes the exploit. We design adap-
tive evolutionary attacks to evade these models in Section 4.7.

L0 distance. The enhanced evolutionary attack needs up
to 3.6 times larger L0 distance, and 21 times more mutations
(Appendix A.6) to evade our robust model than the baselines.
We plot the ERA for different models under various L0 dis-
tances to generate evasive PDF variants in Figure 4. For hidost
features, the L0 distance also means the number of feature
changes. To evade the baseline NN model, at least 49 features
need to be changed. The ERA of the model quickly drops to
zero at 133 features. The Adv Retrain A+B and Ensemble
A+B both require more changes to be fully evaded, up to 252
and 300 respectively. Compared to these baselines, our Robust
A+B model needs the most number of feature changes (475)
to be evaded, 3.6 times of that against the Baseline NN. The
smallest L0 distances to generate one evasive PDF malware
variant are 49, 39, 134, and 159 for Baseline NN, Adv Retrain
A+B, Ensemble A+B, and Robust A+B, respectively.

4.6 Reverse Mimicry Attacker
State-of-the-art Unbounded Attacker. The reverse

mimicry attacker injects malicious payload into a benign PDF,
which is outside of all five robustness properties. We have
proposed robustness properties for malicious PDFs, not benign
ones. The attacker uses the same strategy for all models, and
thus she does not need to know model internals or the defenses.

4.6.1 Implementation
We implement our own reverse mimicry attack, similar to the

JSinject [40]. We use peepdf [6] static analyzer to identify the
suspicious objects in the PDF malware seeds, and then inject
these objects to a benign PDF. We inject different malicious

payload into a benign file, whereas the JSinject attack injects
the same JavaScript code into different benign PDFs. Within
the PDF malware seeds, 250 of them retained maliciousness
according to the cuckoo oracle. Some payload are no longer
malicious because there can be object dependencies within the
malware not identified by the static analyzer. We test whether
the models can detect the 250 PDFs are malicious.

4.6.2 Results
We measure ERA as the percentage of correctly classified

PDFs for the strongest models against whitebox attacks in
Table 6. Since this is outside all five robustness properties, the
attack can defeat most verifiably robust models and baseline
models, except the monotonic classifier and Robust A+B+E
models. The monotonic classifier has the monotonic constraint
enforced for the benign PDFs, whereas we only trained
property E for malicious PDFs for our Robust A+B+E model.
However, we still achieve 2% higher ERA than the Monotonic
100 model against the reverse mimicry attack. This shows that
verifiably robust training can generalize outside the trained
robustness properties. Since training property E incurs higher
FPR than properties with smaller subtree distances, we plan
to experiment with training insertion property with small
distance for benign samples as future work.

4.7 Adaptive Evolutionary Attacker
New Adaptive Unbounded Attacker. The adaptive evolu-

tionary attacker has the same level of black-box access as the en-
hanced evolutionary attacker (Section 4.5). She is not bounded
by the robustness properties and knows about the defense.

4.7.1 Implementation
To evade the three strongest models: the monotonic

classifier, Robust A+B, and Robust A+B+E, we design three
versions of the adaptive attacks as following.

Move Exploit Attack. The monotonic property forces the
attacker to delete objects from the malware, but deletion could
remove the exploit. Therefore, we implement a new mutation
to move the exploit around to different trigger points in the PDF
(Appendix A.7). This attack combines the move exploit muta-
tion with deletion to evade the monotonic classifier. Note that
the move exploit mutation is not effective against Robust A+B,
since it is covered by the insertion and deletion properties.

Scatter Attack. To evade Robust A+B, we insert and delete
more objects under different subtrees. We keep track of past
insertion and deletion operations separately, and prioritize new
insertion and deletion operations to target a different subtree.

Move and Scatter Combination Attack. To evade the
Robust A+B+E model, we combine the move exploit attack
and the scatter attack, to target all the properties of the model.

4.7.2 Results
The adaptive attacks need 10 times larger L0 distance

(Figure 5), and 3.7 times more mutations (Appendix A.6) to

0.00
0.25
0.50
0.75
1.00

0 100 200 300 400
L0

E
R

A

Robust A+B (Scatter) Robust A+B+E (Both)
Monotonic 100 (Move)

Figure 5: The decrease of robustness in ERA against adaptive
evolutionary attacks as the L0 distance increases.

evade our model than the monotonic classifier. Figure 5 shows
the L0 distance to evade the three models: Monotonic 100,
Robust A+B, and Robust A+B+E. The move exploit attack is
very effective against the Monotonic 100 model. The ERA of
Monotonic 100 quickly drops to zero at L0=10. The scatter at-
tack can reduce the mutation trace length to evade Robust A+B
compared to the nonadaptive version. However, the median L0
distance has increased from 228 (Figure 4) to 289 (Figure 5).
The minimal L0 distances to generate one evasive PDF
malware for the Monotonic 100 and Robust A+B are 1 and 263
respectively. Lastly, the move and scatter combination attack
can reduce the ERA of Robust A+C+E to 44% after running
for three weeks. The attack is stuck at premature convergence
and needs additional improvements to fully evade the model.

5 Discussion
Generalization. In the arms race against malware detection

and evasion, there has been no verifiably robust solution to the
detection problem. By setting bounds on attackers’ actions, we
can provide verifiable robustness properties in PDF malware
classifiers. We further show that such robust training can also
increase the bar for state-of-the-art unbounded attackers. Since
we specify robustness properties related to the PDF syntax, they
can be generalized to different features, datasets, and models.
Our method can be complementary to other defenses such as
feature reduction. We plan to explore all these issues regarding
the generalization of our methodology in our future work.

Scalability. Verifiably robust training using symbolic
interval analysis is faster than existing sound approximation
methods, achieving state-of-the-art tight bounds. Many
techniques can scale the training to larger neural networks
with hundreds of thousands of hidden units, and larger datasets
such as ImageNet-200 [27, 53, 55, 59]. We plan to explore the
tradeoffs between scalability and performance (e.g., accuracy,
robustness, and false positive rate) of the trained network.

Diverse Robustness Properties. The robustness properties
for insertion and deletion can be used as building blocks to
construct stronger properties. Training combinations of prop-
erties can make the evasion task even harder for the attacker. In
addition, we plan to train verifiable robustness properties for
benign PDFs, to defend against another type of evasion search
that starts from a benign PDF seed. Exploring the tradeoffs
among learning multiple robustness properties and overhead
of training will be an interesting direction for future work.

6 Related Work

Existing defenses in increasing the robustness of malware
classifiers mainly focus on using feature reduction and
adversarially robust retraining. Researchers have employed
methods including mutual information [28], expert domain
knowlege [32], information from cuckoo sandbox [51]
to remove features unrelated to maliciousness. However,
previous adversarial retraining results show severe drop in
accuracy [32], and increase in false positive rate [1, 28].

Incer et al. [32] enforced the monotonicity property to
make the malware classifier robust against attacks that
increase feature values. Thus, attackers have to conduct
more expensive feature manipulation that might remove the
malicious functionality. In comparison, we train robustness
properties not only for insertion, but also for deletion, since
deletion operations are often not costly to the attacker [61].

Our method can increase the feature distance and mutation
trace length as cost for the attacker to evade the model. Existing
works have discussed cost for the attackers to manipulate
features [38], to increase suspiciousness [16], and to solve the
combinatorial optimization problem [17]. On the other hand,
several work have explored the cost for the defender [19, 62].
Dreossi et al. [19] argued that only some adversarial examples
cause the overall control system to make catastrophic decision.
Zhang et al. [62] integrated the defender’s cost with Wong et
al.’s verifiably robust training method [58].

7 Conclusion

We are the first to train verifiable robustness properties for
PDF malware classifier. We proposed a new distance metric
in the PDF tree structure to bound robustness properties. Our
best model achieved 99.68% and 85.28% verified robust
accuracy (VRA) for the insertion and deletion properties,
while maintaining 99.74% accuracy and 0.56% false positive
rate. Our results showed that training security classifiers with
verifiable robustness properties is a promising direction to
increase the bar for unrestricted attackers.

Acknowledgements

We thank our shepherd Nicolas Papernot and the anony-
mous reviewers for their constructive and valuable feedback.
This work is sponsored in part by NSF grants CNS-18-
42456, CNS-18-01426, CNS-16-17670, CNS-16-18771,
CCF-16-19123, CCF-18-22965, CNS-19-46068; ONR grant
N00014-17-1-2010; an ARL Young Investigator (YIP) award;
a NSF CAREER award; a Google Faculty Fellowship; a
Capital One Research Grant; and a J.P. Morgan Faculty Award.
Any opinions, findings, conclusions, or recommendations ex-
pressed herein are those of the authors, and do not necessarily
reflect those of the US Government, ONR, ARL, NSF, Google,
Capital One or J.P. Morgan.

References
[1] Adversarial Machine Learning: Are We Playing the

Wrong Game? https://speakerdeck.com/evansuva/
adversarial-machine-learning-are-we-playing-
the-wrong-game.

[2] Hidost: Toolset for extracting document structures from PDF
and SWF files. https://github.com/srndic/hidost.

[3] M. Parkour. 16,800 clean and 11,960 malicious files for signa-
ture testing and research. http://contagiodump.blogspot.
com/2013/03/16800-clean-and-11960-malicious-
files.html.

[4] M. Parkour. contagio: Version 4 april 2011 - 11,355+ ma-
licious documents - archive for signature testing and re-
search. http://contagiodump.blogspot.com/2010/08/
malicious-documents-archive-for.html.

[5] NDSS Talk: Automatically Evading Classifiers (including
Gmail’s). https://jeffersonswheel.org/2016/ndss-
talk-automatically-evading-classifiers-
including-gmails.

[6] peepdf: Powerful Python tool to analyze PDF documents.
https://github.com/jesparza/peepdf.

[7] sklearn: Classification metrics. https://scikit-
learn.org/stable/modules/model_evaluation.html#
classification-metrics.

[8] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens. DREBIN: Effective and Explainable Detection
of Android Malware in Your Pocket. In Ndss, volume 14, pages
23–26, 2014.

[9] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to
adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

[10] S. Axelsson. The base-rate fallacy and its implications for the
difficulty of intrusion detection. In Proceedings of the 6th ACM
Conference on Computer and Communications Security, pages
1–7. ACM, 1999.

[11] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against
machine learning at test time. In Joint European conference
on machine learning and knowledge discovery in databases,
pages 387–402. Springer, 2013.

[12] X. Cao and N. Z. Gong. Mitigating evasion attacks to deep
neural networks via region-based classification. In Proceedings
of the 33rd Annual Computer Security Applications Conference,
pages 278–287. ACM, 2017.

[13] N. Carlini and D. Wagner. Towards evaluating the robustness of
neural networks. In IEEE Symposium on Security and Privacy
(SP), pages 39–57. IEEE, 2017.

[14] H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh. Robust
decision trees against adversarial examples. 2019.

[15] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pages
785–794. ACM, 2016.

[16] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci,
M. Antonakakis, and N. Vasiloglou. Practical attacks against
graph-based clustering. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1125–1142. ACM, 2017.

[17] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song.
Adversarial attack on graph structured data. arXiv preprint
arXiv:1806.02371, 2018.

[18] H. Dang, Y. Huang, and E.-C. Chang. Evading classifiers by
morphing in the dark. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages
119–133. ACM, 2017.

[19] T. Dreossi, S. Jha, and S. A. Seshia. Semantic adversarial deep
learning. arXiv preprint arXiv:1804.07045, 2018.

[20] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output
range analysis for deep feedforward neural networks. In NASA
Formal Methods Symposium, pages 121–138. Springer, 2018.

[21] K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic,
B. O’Donoghue, J. Uesato, and P. Kohli. Training verified learn-
ers with learned verifiers. arXiv preprint arXiv:1805.10265,
2018.

[22] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A
dual approach to scalable verification of deep networks. arXiv
preprint arXiv:1803.06567, 2018.

[23] R. Ehlers. Formal verification of piece-wise linear feed-forward
neural networks. 15th International Symposium on Automated
Technology for Verification and Analysis, 2017.

[24] M. Fischetti and J. Jo. Deep neural networks as 0-1 mixed
integer linear programs: A feasibility study. arXiv preprint
arXiv:1712.06174, 2017.

[25] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev. Ai 2: Safety and robustness
certification of neural networks with abstract interpretation. In
IEEE Symposium on Security and Privacy (SP), 2018.

[26] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. In International Conference
on Learning Representations (ICLR), 2015.

[27] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin,
J. Uesato, T. Mann, and P. Kohli. On the effectiveness of
interval bound propagation for training verifiably robust models.
arXiv preprint arXiv:1810.12715, 2018.

[28] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel. Adversarial perturbations against deep neural networks
for malware classification. arXiv preprint arXiv:1606.04435,
2016.

[29] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna:
Explaining deep learning based security applications. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 364–379. ACM, 2018.

[30] W. Hu and Y. Tan. Generating adversarial malware exam-
ples for black-box attacks based on gan. arXiv preprint
arXiv:1702.05983, 2017.

[31] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verifi-
cation of deep neural networks. In International Conference on
Computer Aided Verification (CAV), pages 3–29. Springer, 2017.

[32] I. Incer, M. Theodorides, S. Afroz, and D. Wagner. Adversar-
ially robust malware detection using monotonic classification.
In Proceedings of the Fourth ACM International Workshop on
Security and Privacy Analytics, pages 54–63. ACM, 2018.

[33] A. Kantchelian, J. Tygar, and A. Joseph. Evasion and hardening
of tree ensemble classifiers. In International Conference on
Machine Learning, pages 2387–2396, 2016.

[34] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient smt solver for verifying deep neural
networks. In International Conference on Computer Aided
Verification (CAV), pages 97–117. Springer, 2017.

[35] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[36] P. Laskov et al. Practical evasion of a learning-based classifier:
A case study. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 197–211. IEEE, 2014.

[37] A. Lomuscio and L. Maganti. An approach to reachability
analysis for feed-forward relu neural networks. arXiv preprint
arXiv:1706.07351, 2017.

[38] D. Lowd and C. Meek. Adversarial Learning. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining, pages 641–647. ACM, 2005.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
Towards deep learning models resistant to adversarial attacks.
International Conference on Learning Representations (ICLR),
2018.

[40] D. Maiorca, I. Corona, and G. Giacinto. Looking at the bag is
not enough to find the bomb: an evasion of structural methods
for malicious pdf files detection. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and
communications security, pages 119–130. ACM, 2013.

[41] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract
interpretation for provably robust neural networks. In
International Conference on Machine Learning (ICML), pages
3575–3583, 2018.

[42] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pages 506–519.
ACM, 2017.

[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.
Distillation as a defense to adversarial perturbations against
deep neural networks. arXiv preprint arXiv:1511.04508, 2015.

[44] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses
against adversarial examples. International Conference on
Learning Representations (ICLR), 2018.

[45] A. Raghunathan, J. Steinhardt, and P. S. Liang. Semidefinite
relaxations for certifying robustness to adversarial examples.
In Advances in Neural Information Processing Systems, pages
10900–10910, 2018.

[46] J. Saxe and K. Berlin. Deep neural network based malware
detection using two dimensional binary program features. In
Malicious and Unwanted Software (MALWARE), 2015 10th
International Conference on, pages 11–20. IEEE, 2015.

[47] C. Smutz and A. Stavrou. Malicious pdf detection using
metadata and structural features. In Proceedings of the 28th
annual computer security applications conference, pages
239–248. ACM, 2012.

[48] N. Šrndic and P. Laskov. Detection of malicious pdf files based
on hierarchical document structure. In Proceedings of the 20th
Annual Network & Distributed System Security Symposium,
pages 1–16. Citeseer, 2013.

[49] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. International Conference on Learning
Representations (ICLR), 2013.

[50] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness
of neural networks with mixed integer programming. arXiv
preprint arXiv:1711.07356, 2017.

[51] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik.
Improving robustness of ml classifiers against realizable evasion
attacks using conserved features. In 28th USENIX Security
Symposium (USENIX Security 19), pages 285–302, 2019.

[52] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion
detection systems. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 255–264.
ACM, 2002.

[53] S. Wang, Y. Chen, A. Abdou, and S. Jana. Mixtrain: Scalable
training of formally robust neural networks. arXiv preprint
arXiv:1811.02625, 2018.

[54] S. Wang, Y. Chen, A. Abdou, and S. Jana. Enhancing
gradient-based attacks with symbolic intervals. arXiv preprint
arXiv:1906.02282, 2019.

[55] S. Wang, K. Pei, W. Justin, J. Yang, and S. Jana. Efficient
formal safety analysis of neural networks. Advances in Neural
Information Processing Systems (NIPS), 2018.

[56] S. Wang, K. Pei, W. Justin, J. Yang, and S. Jana. Formal security
analysis of neural networks using symbolic intervals. 27th
USENIX Security Symposium, 2018.

[57] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Bon-
ing, I. S. Dhillon, and L. Daniel. Towards fast computation
of certified robustness for relu networks. arXiv preprint
arXiv:1804.09699, 2018.

[58] E. Wong and Z. Kolter. Provable defenses against adversarial
examples via the convex outer adversarial polytope. In Inter-
national Conference on Machine Learning, pages 5283–5292,
2018.

[59] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling
provable adversarial defenses. Advances in Neural Information
Processing Systems (NIPS), 2018.

[60] W. Xu. PDF-Malware-Parser for EvadeML. https:
//github.com/mzweilin/PDF-Malware-Parser.

[61] W. Xu, Y. Qi, and D. Evans. Automatically Evading Classifiers.
In Proceedings of the 2016 Network and Distributed Systems
Symposium, 2016.

[62] X. Zhang and D. Evans. Cost-Sensitive Robustness against
Adversarial Examples. arXiv preprint arXiv:1810.09225, 2018.

A Appendix

A.1 VRA for Ensemble Classifiers

A.1.1 Ensemble A+B VRA

Property A. A test PDF is verified to be safe within property
A, if all the possible subtree deletion with distance one is safe.
Therefore, for each interval representing one subtree deletion,
we require that any of the corresponding two subtree deletion
is classified as malicious.

Property B. Property B is the provable robustness property
of Ensemble A+B. If any mutated PDF is generated by inserting
one arbitrary subtree to a malicious PDF, it has the same clas-
sification result as the malicious PDF seed. Therefore, we use
the test accuracy of malicious PDFs as the VRA for property B.

Property C. A test PDF is verified to be safe within property
C, if all the possible subtree deletion with distance two is safe.
Therefore, for each interval representing two subtree deletion,
we require that any of the corresponding three subtree deletion
is classified as malicious.

Property D. A test PDF is verified to be safe within property
D, if all the possible subtree insertion at distance 41 is safe.
Therefore, we test whether any interval representing 40 subtree
insertion on a malicious test PDF can be classified as malicious.

Property E. A test PDF is verified to be safe within property
E, if all the possible subtree insertion in the entire feature space
is safe. Therefore, we test whether any interval representing
all-but-one (41) subtree insertion on a malicious test PDF can
be classified as malicious.

A.1.2 Ensemble D VRA

Property A and C. A test PDF is verified to be safe for a dele-
tion property, if any subtree after some deletion is classified as
malicious. Therefore, for each test PDF, we check whether any
interval representing the lower bound of all zeros and the upper
bound of the original subtree can be classified as malicious.

Property B, D and E. A test PDF is verified to be safe
for a insertion property, if any subtree after some insertion
is classified as malicious. There are two categories. If the
inserted subtree does not exist, the interval is from all zeros
and all ones for that subtree. If the inserted subtree already
exists, the interval bound is from the original subtree features
to all ones. We check if any of these intervals can be classified
as malicious for all possible insertions.

A.2 ERA under Bounded Gradient Attack
Table 8 shows precision, recall of the models on the left side,

and the ERA under gradient attacks bounded by robustness
properties on the right side. All verifiably robust models main-
tain high precision and recall. The ERA values of the models
are higher than the corresponding VRA values in Table 4.

A.3 Unrestricted Gradient Attack Result
A.3.1 ERA

0.00

0.25

0.50

0.75

1.00

1 10 100 1000 3514
L0

E
R

A

Baseline NN
Adv Retrain A
Adv Retrain B
Adv Retrain C
Adv Retrain D
Adv Retrain A+B

Figure 6: Unrestricted gradient attack against baseline models.

0.00

0.25

0.50

0.75

1.00

1 10 100 1000 3514
L0

E
R

A

Robust A
Robust B
Robust C
Robust D
Robust E
Robust A+B
Robust A+B+E

Figure 7: Unrestricted gradient attack against our verifiably
robust models.

Figure 6 shows the ERA of the Baseline NN and adver-
sarially retrained models against unrestricted gradient attack.
Most adversarially retrained models perform similar to the
Baseline NN. Adv Retrain A+B is most robust among them
according to the ERA curve. The ERA drops more slowly as
the L0 distance increases compared to the other models.

Figure 7 shows the ERA of verifiably robust models against
unrestricted gradient attack. Robust A+B performs the best
among them, maintaining 7.38% ERA after 200,000 attack
iterations.

A.3.2 Convergence

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 40000 50000
Iterations

E
R

A

Adv Retrain A+B
Robust D
Robust A+B

Figure 8: The ERA of three models converges against the
unrestricted gradient attack.

We run the unrestricted gradient attack for 200,000
iterations, and plot the ERA for the first 50,000 iterations.

Estimated Robust Accuracy (VRA, %) against Bounded Gradient Attacker
Property A Property B Property C Property D Property E

Precision Recall Trained Distance: 1 Distance: 1 Distance: 2 Distance: 41 Distance: 42
Model (%) (%) Prop. Subtree Del. Subtree Ins. Subtree Del. Subtree Ins. Subtree Ins.
Baseline NN 99.94 99.97 None 98.51 0 88.44 0 0
Adv Retrain A 99.94 99.97 A 99.53 0 88.2 0 0
Adv Retrain B 99.94 99.97 B 89.26 9.57 60.91 14.93 14.58
Adv Retrain C 99.91 99.97 C 99.47 0 91.43 0 0
Adv Retrain D 99.91 99.97 D 97.51 0 61.18 0 0
Adv Retrain A+B 99.88 99.97 A,B 99.8 84.6 91.42 87.3 94.7
Ensemble A+B* 99.97 99.97 A,B 99.5 0 20.19 0 0
Ensemble D* 99.94 99.97 D 99.24 0 88.17 0 0
Robust A 99.74 99.97 A 99.85 0 99.53 0 0
Robust B 99.54 99.97 B 50.06 99.97 27.61 0 0
Robust C 99.19 100 C 99.94 0 99.82 0 0
Robust D 98.23 99.94 D 66.28 99.94 22.34 99.91 99.91
Robust E 98.51 99.97 E 67.1 99.27 19.15 99.27 99.27
Robust A+B 99.57 99.97 A,B 99.77 99.97 91.04 0 0
Robust A+B+E 98.54 99.97 A,B,E 99.56 99.91 90.66 99.21 99.21

Table 8: The estimated robust accuracy (ERA) against bounded gradient attacker, computed from 3,461 testing PDF malware,
over five robustness properties. *We run bounded gradient attack against the base learner of ensemble models.

Figure 8 shows that the unrestricted gradient attack converges
for Adv Retrain A+B, Robust D, and Robust A+B models. The
ERA of Robust D model stays the same after 49,128 attack
iterations, and the ERA of Robust D A+B model stays the same
after 60 attack iterations. For Adv Retrain A+B, the ERA only
decreases very slowly between 30,000 and 200,000 iterations.

A.4 Real PDFs from Unrestricted Gradient
Attack

Within the 3,416 evasive PDF vectors, we convert 495 of
them back to real PDFs, i.e., those with network signature that
can be detected by the cuckoo sandbox. Then, we measure
the ERA for features extracted from the real PDFs as the 3rd
column in Table 9. Furthermore, we check how many of these
PDFs are still malicious using the cuckoo sandbox. Then we
measure the ERA against the end-to-end attack that generates
malicious PDFs, as the last column in Table 9.

Although the neural network models have an average of
0.62% ERA against evasive feature vectors, that increases
to 35.23% if we enforce that they classify the corresponding
PDF files. The average ERA further increases to 94.25% if
we require that the generated PDFs are malicious.

For monotonic classifiers, the average ERA against evasive
feature vectors is 0%, which increases to 100% if we require
the corresponding evasive PDF to be malicious. This is
because the MILP solver always finds the action that deletes
the exploit to evade the monotonic property.

A.5 Genetic Evolution Attack
A.5.1 Fitness Function

To construct the fitness function for neural network, we
take the output of softmax as the classification scores for
malicious and benign classes, and compute log (benign) −

ERA(%)
Model Feature PDFs Malicious PDFs
Baseline NN 0 28.48 98.78
Adv Retrain A 0 7.88 92.93
Adv Retrain B 0 27.68 100
Adv Retrain C 0 8.48 92.53
Adv Retrain D 0 22.83 100
Adv Retrain A+B 0.6 39.39 100
Robust A 0 2.02 90.71
Robust B 0 88.28 100
Robust C 0 5.86 74.55
Robust D 0.03 58.38 99.6
Robust E 0 28.28 88.28
Robust A+B 7.38 99.8 100
Robust A+B+E 0 40.61 87.88
NN Models Average 0.62 35.23 94.25
Monotonic 10 0 32.73 100
Monotonic 100 0 0 100
Monotonic 1K 0 0 100
Monotonic 2K 0 0 100
Monotonic Average 0 8.18 100

Table 9: ERA according to feature vectors, corresponding
PDFs, and corresponding malicious PDFs.

log(malicious). This helps prioritize PDF variants with very
small prediction changes in the floating point number. When
the fitness score reaches zero, the attack succeeds.

A.5.2 Two Improvement Strategies
First, we improve the effectiveness of insertion and

replacement operations. Insertion and replacement use
external genomes (subtrees) from benign PDFs. The original
operations generate a lot of different PDF malware, but not
as many different feature inputs to the neural network, because
they don’t affect valid Hidost paths in the feature space.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Mutation Trace Length

E
R

A

Baseline NN
Adv Retrain A+B
Ensemble A+B
Robust A+B

Figure 9: Trace length for enhanced evolutionary attack.

Therefore, we use a trie to index the external benign genomes
with valid feature paths. Given an insertion/replacement point
in the PDF malware, we select a genome that shares the same
prefix from the trie, to effectively change the input features
to the neural network.

Second, we implement a more diverse selection strategy
for every generation of the PDF variants. Diversity is crucial
to avoid the evolutionary algorithm being stuck at premature
convergence. We keep all the variants that survived from
the previous generation, as in the original implementation.
However, for those variants that are no longer malicious
according to the cuckoo sandbox, we find replacement for
them equally by three shares. The first share selects the best
historical variant. The second share selects the historical
variants with distinct highest fitness scores, since distinct
scores show that the variants explored different mutation paths
in the search space. The last share randomly selects from a
pool of historical variants from the last four generations as well
as the original seed, since randomness helps the search process
explore more diverse paths that could lead to the solution.

A.5.3 Experiment Setup
Following Xu et al. [61], we use the same parameters for the

attack: 48 variants as the size of the population for each gen-
eration, a maximum of 20 generations per PDF for each round,
0.0 fitness stop threshold, and 0.1 mutation rate. We select four
PDFs with the most benign classification scores as the external
benign genomes, containing a total of 42,629 PDF objects.

A.6 Trace Length of Evolutionary Attacks
Enhanced Evolutionary Attack. We measure the shortest
mutation trace lengths needed to generate all the PDF variants.
Figure 9 shows how ERA decreases as the length of mutation
trace increases. The Baseline NN is the easiest to evade. One
mutation drops the ERA to 0.4%. Two mutations are sufficient
to evade the Baseline NN for all PDF seeds. The Adv Retrain
A+B and Ensemble A+B models perform better than the
Baseline NN. They can be evaded by up to 6 and 7 mutations
respectively. The Robust A+B requires most number of

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Mutation Trace Length

E
R

A

Robust A+B (Scatter)
Robust A+B+E (Move & Scatter)
Monotonic 100 (Move)

Figure 10: Trace length for adaptive evolutionary attacks.

mutations to evade compared to all other models. Robust A+B
model has higher VRA in property C than the Ensemble A+B
model (Table 4), which further increases the mutation trace
length to evade the model. The attack needs 15 mutations to
succeed in 63% of PDF seeds, and 43 mutations to succeed
in all seeds for Robust A+B. Since we can verify that Robust
A+B is robust against basic building block attack operations
(insertions and deletions), unrestricted attacks consisting of
the building block operations are harder to succeed.

Adaptive Evolutionary Attacks. We measure the mutation
trace length to evade the three models: Monotonic 100, Ro-
bust A+B, and Robust A+B+E. The move exploit attack is
very effective against the Monotonic 100 model. A single
move operation can decrease the ERA of the model to 29.70%,
e.g., moving the exploit from /Root/OpenAction/JS to
/Root/Pages/Kids/AA . On the other hand, the scatter attack
can reduce the median mutation trace length needed to evade
Robust A+B from 11 to 8 compared to the nonadaptive version
(Figure 9). The move and scatter combination attack can reduce
the ERA of Robust A+B+E to 44% with up to 14 mutations.

A.7 Move Exploit
We use the static analyzer peepdf [6] and manual analysis

to identify the following exploit triggers.

• /Root/Pages/Kids/AA

• /Root/Names/JavaScript/Names

• /Root/OpenAction/JS

• /Root/StructTreeRoot/JS

The move mutation operation identifies whether the PDF
variant has object under one of the paths, then randomly
selects one of the target paths to move the object to. Compared
to the reverse mimicry, the move operation works much better
by preserving many references (e.g., function names) in the
same PDF.

