Quantifying Program Bias

Verifying quantitative properties/ post conditions of probabilistic programs

Dennis Roellke

Motivation

Algorithm

Quick Motivation

	Motivation		Contribution		Algorithm		Optimization		Implementation		2
--	------------	--	--------------	--	-----------	--	--------------	--	----------------	--	---

"

Bias in ML/ Fairness

"

[M]any **ML** applications, especially decision makers are **introduced**, **because** they are (or let's say they were) initially thought to be **less biased** than humans.

Verifying Fairness Properties via Concentration, Bastani et al. <u>https://arxiv.org/pdf/1812.02573.pdf</u>

Motivation	Contribution	Algorithm	Optimization	Implementation	Results

What kind of ML?

(Simple) Decision Makers f(x)

- Linear Regression
- SVM
- NN

Population Model p(i)

- Generative Model that generates records of individuals By defining a probability distribution over inputs of f

Post condition in form of a quantitative property

- Here Fairness

Motivation	Contribution	Algorithm	Optimization	Implementation	Results

What kind of Fairness?

$$rac{P(Y=1|Z=0)}{P(Y=1|Z=1)} > 1-e$$
 Common, legal interpretation of Fairness

Read: The ratio between 2 sensitive groups Z=0 and Z=1 shall not exceed **e**

To verify this inequality, tight bounds are enough, the exact values are not required

Motivation	Contribution	Algorithm	Optimization	Implementation	Results

Probabilistic Condition

$$rac{P(Y=1,Z=0)\cdot P(Z=1)}{P(Y=1,Z=1)\cdot P(Z=0)} > 1-e$$

// focus on one term for simplicity of presentation

e.g. P(Y=1,Z=1)

We want to compute the probability that the population model generates a non-minority **and** the (target) decision making program hires this applicant.

The function ϕ = popModel o decision can be composed and translated in to a boolean formula, i.e. "an (arbitrary) SMT formula over an arithmetic theory"

Motivation	Contribution	Algorithm	_/	Optimization	_//	Implementation	_/	Results
		J • •				P	//	

Probabilistic Condition cont'd

 φ = popModel o decision

popModel = Z > 0 -> x1 += 5 && Z <= 0 -> x1 = x1 // rejection sampling

```
decision = (x1-x2) > -5 || x2 <= 5
```

$\varphi = Z > 0 \Rightarrow x1 += 5 \&\& Z \le 0 \Rightarrow x1 = x1$ o $(x1-x2) > -5 || x2 \le 5$

Recall: We want to compute the probability that the population model generates a non-minority **and** the (target) decision making program hires this applicant.

```
E.g. P(Y=1,Z=1) ⇔ φ = (x1-x2) > -5 || x2 <= 5 && Z <= 0
```

_						
	Motivation	Contribution	Algorithm	Optimization	 Implementation	Results

by Albarghouti et al. (OOPSLA17)

Weighted Volume Computation

Note that $\boldsymbol{\varphi}$ is a function in Rⁿ

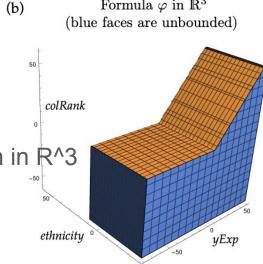
E.g., when looking at 3 (independent) variables ϕ is a region in R³

Now, the probability of satisfying ϕ can be understood as the probability of drawing a value that fall in the region Bounded by **o**

Claim:

The probability of satisfying ϕ is the volume of ϕ in Rⁿ, weighted by the probability density of each of the n variables

$$\Pr[\texttt{hire} \land \neg \texttt{min}] = \int_{arphi} p_e p_y p_c \ dV_p$$



Formula φ in \mathbb{R}^3

Motivation	Contribution	/	Algorithm	\square	Optimization		Implementation		Results
------------	--------------	---	-----------	-----------	--------------	--	----------------	--	---------

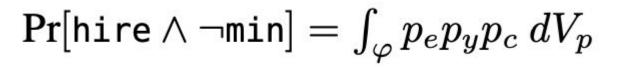
by Albarghouti et al. (OOPSLA17)

Weighted Volume Computation Problem

How do we compute a numerical value for this integral?

Recall:

 $\varphi = (x1-x2) > -5 || x2 \le 5 \&\& Z \le 0$



o colRank	
-50 50 ethnicity	yExp
	-50 gixp
	2

Formula φ in \mathbb{R}^3

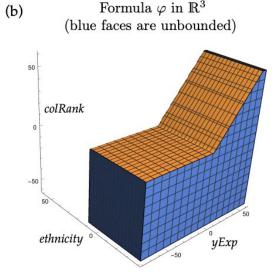
(blue faces are unbounded)

(b)

Implementation

Weighted Volume Computation Observations

- If the region specified by the formula is a (hyper) rectangular region it has constant upper and lower bounds in all dimensions and integration is simple
- 2. An SMT formula can be *symbolically* decomposed in to infinite (hyper) rectangles.



Algorithm

Optimization

Implementation

Weighted Volume Computation Intuition

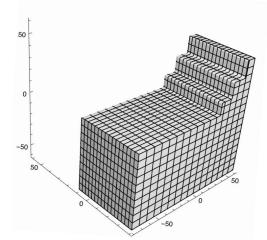
Use m = $\text{Re}(\boldsymbol{\varphi})$ To find disjoint (hyper) rectangles that each under-approximate $\boldsymbol{\varphi}$

Computing their weighted volume serves a lower bound

Upper bound?

```
Well, Volume(φ) + Volume(!φ) = 1, so
Upper_bound = 1 - lower_bound of Volume(!φ)
```

Under approximation of φ as a union of hyperrectangles



Algorithm

Optimization

Implementation

Limitations

The to-be-verified probabilistic program is Loop Free (i.e. no RNN)

The probability distributions are univariate gaussian/ laplacian of constant parameters, i.e. programs are in static single assignment form (SSA)

SMT solver may be black box

Motivation	Contribution	Algorithm	 Optimization	_/	Implementation	_/	Results
		,	0,000.000				

Contributions

1. Symbolic Volume Computations over SMT formulas

$$\int_{\varphi} \prod_{x_i \in \mathcal{X}_{\varphi}} p_i(x_i) \, d\mathcal{X}_{\varphi}$$

Known to be #P-hard

Existing techniques

- a. restrict $\boldsymbol{\phi}$ to linear inequalities
- b. restrict integrands to polynomial or simple distributions
- c. compute approximate solutions w/ only probabilistic guarantees
- d. restrict ϕ to bounded regions
- 2. Based on black box SMT solvers
- 3. A novel technique for approximately encoding PDFs as formulas, and using them to guide the SMT solver towards exact solutions

Motivation	Contribution	Algorithm	 Optimization	 Implementation	_//	Results
Wouvalion	Contribution	Algoniinn	Optimization	implementation		Results

COMS E6998

Algorithm

Motivation Contribution Algorithm

Optimization

Implementation

Weighted Volume Computation Algorithm

- 1. Hyperrectangular Decomposition
 - a. Represent $\boldsymbol{\phi}$ as rectangles (Re($\boldsymbol{\phi}$))
- 2. Hyperrectangular Sampling
 - a. Use and SMT solver to find models of $Re(\mathbf{\phi})$

For each hyperrectangle we sample, we compute its weighted volume and add it to our current solution. Therefore, the current solution maintained by the algorithm is the weighted volume of an underapproximation of ϕ —that is, a lower bound on the exact weighted volume of ϕ

Hyperrectangular Decomposition

The potential number hyperrectangulars is infinite

Thus they are characterized symbolically using universal quantifiers:

$$\square_{\varphi} \equiv \left(\bigwedge_{x \in \mathcal{X}_{\varphi}} l_x \leqslant u_x\right) \land \forall \mathcal{X}_{\varphi} . \left(\bigwedge_{x \in \mathcal{X}_{\varphi}} l_x \leqslant x \leqslant u_x\right) \Rightarrow \varphi$$

Note how the formula defines fixed bounds in every dimension

	Motivation		Contribution		Algorithm		Optimization		Implementation		Results
--	------------	--	--------------	--	-----------	--	--------------	--	----------------	--	---------

Hyperrectangular Decomposition cont'd

A rectangle in R² can be specified as SMT formula:

 $\varphi \equiv 0 \leqslant x_1 \leqslant 100 \land 4 \leqslant x_2 \leqslant 10$

The following holds: $\int_{\omega} p_1(x_1) p_2(x_2) dx_1 dx_2$

$$egin{aligned} &= (\int_{0}^{100} p_1(x_1) \ dx_1) (\int_{4}^{10} p_2(x_2) \ dx_2) \ &= (F_1(10) - F_1(4)) (F_2(100) - F_2(0)) \ &= (Pr[x_2 \leq 10] - Pr[x_2 \leq 4]) (Pr[x_1 \leq 100] - Pr[x_1 \leq 0]) \end{aligned}$$

In General =
$$\prod_{x_i \in \mathcal{X}_{\varphi}} \int_{H_l^m(x_i)}^{H_u^m(x_i)} p_i(x_i) dx_i$$

"Independently compute the integral along each dimension and take the product"

Motivation	Contribution	Algorithm	Optimization	Implementation	 Results

Hyperrectangular Sampling

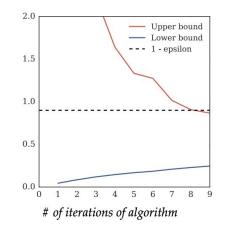
STATE <- (vol, remainder)

- Vol := current (aggregated) volume
- remainder :=remaining rectangles in the decomposition of ϕ (symbolic)
- Lower Bound

 $vol \leq \operatorname{VOL}(\varphi, \mathcal{D})$

- Upper Bound

$$1 - vol \ge \operatorname{VOL}(\varphi, \mathcal{D})$$



Motivation	Contribution	Algorithm	Optimization	Implementation	Results
mouration	Continoution	<i>ingentanti</i>	optimization	mplomontation	riocano

Algorithm

Optimization

Implementation

COMS E6998

Optimization

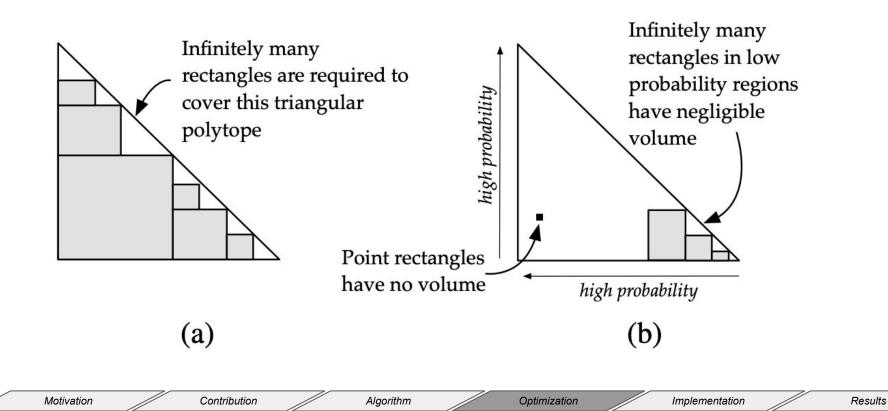
Motivation

Algorithm

Optimization

Implementation

Convergence Guarantees



Density Directed Sampling

So far, the algorithm provides no progress guarantees, when trying to find a model m of hyperrectangulars that yields the largest possible volume

$$\underset{m \models \Psi}{\arg \max} \prod_{x_i \in \mathcal{X}_{\varphi}} \int_{H_l^m(x_i)}^{H_u^m(x_i)} p_i(x_i) \, dx_i$$

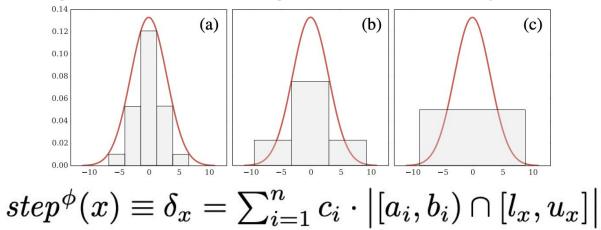
This is hard because ... p is an arbitrary density function that cannot be integrated

But we can rethink p as a stepwise function!

_						
	Motivation	Contribution	Algorithm	Optimization	Implementation	Results

ADF directed Volume Computation

Approximate each probability density function with a step function Guide the sampling towards maximizing these (stepwise) hyperrectangulars



Find a hyperrectangle such that for each dimension x, δx is greater than some lower bound lb, shrink lb using a fixed decay rate

Motivation	Contribution	Algorithm	Optimization	Implementation	Results

Sample Maximization

Further maximize the sampled hyperrectangular:

- ADF guides toward hyperrectangular with largest possible volume
- That target hyperrectangular gets further maximized
 - Greedily extend dimensions one at a time

Implementation

- Based on Z3 and RedLog (both exchangeable black boxes)
- Decompose conditional probabilities in to 4 (joint) probabilities
- Compute the weighted volume for each probability and its negation (8 total)
- Sample:
 - Obtain sample
 - Compute weighted volume
 - Update bounds
 - Check if bounds are precise enough for conclusion
 - Repeat

Algorithm

COMS E6998

Results

Motivation	Contribution	Algorithm	

Optimization

Results

Algorithm Evaluation

Decision program	Acc		Independent				Population Model Bayes Net 1				Bayes Net 2			
I B		Res	#	Vol	QE	Res	#	Vol	QE	Res	#	Vol	QE	
DT ₄	0.79	1	10	1.3	0.5	X	12	2.2	0.9	X	18	6.6	2.2	
DT ₁₄	0.71	1	20	4.2	1.4	1	38	52.3	11.4	1	73	130.9	33.6	
DT ₁₆	0.79	1	21	7.7	2.0	X	22	15.3	6.3	X	22	38.2	14.3	
\mathtt{DT}^{lpha}_{16}	0.76	1	18	5.1	3.0	1	34	32.0	8.2	1	40	91.0	19.4	
DT44	0.82	1	55	63.5	9.8	X	113	178.9	94.3	X	406	484.0	222.4	
SVM ₃	0.79	1	10	2.6	0.6	X	10	3.7	1.7	X	10	10.8	6.2	
SVM4	0.79	1	10	2.7	0.8	X	18	13.3	3.1	X	14	33.7	20.1	
SVM_4^{lpha}	0.78	1	10	3.0	0.8	1	22	15.7	3.2	1	14	33.4	63.2	
SVM ₅	0.79	1	10	8.5	1.3	X	10	12.2	6.3	TO_q		-	то	
SVM ₆	0.79	$\substack{0.02\\35.3}$	634	то	2.4	$\substack{0.09\\3.03}$	434	то	12.8	TO_q	-	-	ТО	
$NN_{2,1}$	0.65	1	78	21.6	0.8	1	466	456.1	3.4	1	154	132.9	7.2	
$NN_{2,2}$	0.67	1	62	27.8	2.0	1	238	236.5	7.2	1	174	233.5	18.2	
NN3,2	0.74	$\begin{array}{c} 0.03 \\ 674.7 \end{array}$	442	то	10.0	$\substack{0.00\\5.24}$	34	то	55.9	TO_q		-	то	
lotivation	Cont	ribution		AI	gorithm			Optimization		/	Implemen	tation		

Thanks for listening

