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“This paper presents 
DeepBugs, a learning 

approach to name-based bug 
detection, which reasons 
about names based on a 

semantic representation and 
which automatically learns 

bug detectors instead of 
manually writing them.”
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A framework for learning-based and 
name-based bug detection

Train a classifier that distinguishes correct 
from incorrect code.

Create likely incorrect code examples from 
an existing corpus of code.

Bug detection as a binary 
classification problem

Introduction

Three bug detectors built on top of the 
framework detect: swapped function 
arguments, incorrect binary operators, and 
incorrect operands in binary operations.

Applying on a corpus of 150,000 JavaScript 
files reveal 102 programming mistakes 
(with 68% true positive rate) in real-world 
code.



Angular.js

Angular-UI-Router 
project

DSP.js library



Decide whether a given piece of code 
is correct or incorrect

Identifier names are inherently fuzzy and 
elude the precise reasoning that is 
otherwise common in program analysis.

Reason about the meaning of 
identifier names

Name-Based Bug Detector: Challenges

Given an understanding of the meaning of 
identifier names, must yield a reasonably 
low number of false positives while 
detecting actual bugs.



Formulate the problem as binary 
classification

This representation, called embeddings, 
preserves semantic similarities, such as the 
fact that length and count are similar.

Use a learned vector representation 
of identifiers.

Name-Based Bug Detector: Solutions

Train a model to distinguish correct from 
incorrect code.



A framework that supports different classes of 
name-related bugs

DeepBug



The framework extracts positive training examples from a code corpus, applies a simple 
transformation to also create large amounts of negative training examples, trains a model 

to distinguish these two, and finally uses the trained model for identifying mistakes in 
previously unseen code. 



Drill-Down

(3) Train a model to distinguish correct and incorrect examples.

(1) Extract and generate training data from the corpus. 

(2)  Represent code as vectors. (Word2Vec)

(4)  Predict bugs in previously unseen code. 



(1)
Generating Training Data

Huge amount of existing code 
provides ample of examples of 
likely correct code. In contrast, it is 
non-trivial to obtain many 
examples of code that suffers 
from a particular bug pattern.● Implementations of τ that apply simple 

AST-based code transformations will be 
covered later.



(2.1)
Embeddings: Identifiers and Literals

Semantic similarity does not 
always correspond to lexical 
similarity. Thus, a representation 
of identifiers that preserves 
semantic similarities is required.

● consider literals in code, such as true and 
23.

● Word2Vec.



(2.2)
Vector Representations of Positive 

and Negative Code Examples

Given code snippets extracted 
from a corpus, our approach uses 
the embeddings for identifiers to 
represent each snippet as a vector 
suitable for learning.



(3)
Training and Querying a Bug 

Detector

Based on the vector 
representation of code snippets, a 
bug detector is a model that 
distinguishes between vectors that 
correspond to correct and 
incorrect code examples, 
respectively.

● Feedforward neural network



Three examples of name-based bug 
detectors built on top of the DeepBugs 

framework.

NAME-BASED 
BUG DETECTORS



Accidentally 
swapped 
function 

arguments

Incorrect binary 
operators

Incorrect 
operands in 

binary 
expressions

Examples



Training Data Generator:
Create training examples from given code. Traverse the AST of each file in the code corpus and 
visits each call site that has two or more arguments. Extract the following:

Swapped Function Arguments



Training Data Generator:
Create for each call site a positive example

Swapped Function Arguments

and a negative example

To create the negative example, we simply swap the arguments w.r.t. the order in the 
original code.



Code representation:

● Transform Xpos and Xneg from tuples of strings into vectors.

● Each name n is represented as E(n), where E is the learned embedding.

● Represent type names as vectors. 

○ Define a function T that maps each built-in type in JavaScript to a randomly chosen binary 

vector of length 5.

● Compute code representation for Xpos or Xneg as the concatenation the individual vectors.

Swapped Function Arguments



Training Data Generator:
Create training examples from given code. Traverse the AST of each file in the code corpus and 
from each binary operation extract the following:

Wrong Binary Operator



Training Data Generator:
Create a positive and negative example

Wrong Binary Operator

The operator op′≠op is a randomly selected binary operator different from the original 
operator likely to create incorrect code.



Code representation:

● Create a vector representation of each positive and negative example by mapping each 

string in the tuple to a vector and by concatenating the resulting vectors.

● To map a kind of AST node K to a vector, we use a map K that assigns to each kind of AST 

node in JavaScript a randomly chosen binary vector of length 8.

Wrong Binary Operator



The intuition is that identifier names help to decide whether an operand fits another given 
operand and a given binary operator.

Training Data Generator:
The training data generator extracts the same information as in the last example, and then 
replaces one of the operands with a randomly selected alternative.

Wrong Operand in Binary Operation



Training Data Generator:
Create a positive example

Wrong Operand in Binary Operation

and a negative example

To create negative examples that a programmer might also create by accident, use 
alternative operands that occur in the same file as the binary operation. For example, 
given bits << 2, the approach may transform it into a negative example bits << next.

or



Code representation:

● Same as previous example.

Wrong Operand in Binary Operation
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● How effective is the approach at distinguishing correct from incorrect code?

● Does the approach find bugs in production JavaScript code?

● How long does it take to train a model and, once a model has been trained, to predict bugs?

● How useful are the learned embeddings of identifiers compared to a simpler vector representation?

Main Research Questions



● Used 150,000 JavaScript files provided by the authors of earlier work as a corpus of code.

● Corpus contains 68.6 million lines of code.

● 100,000 files for training and the remaining 50,000 files for validation.

● All experiments are performed on a single machine with 48 Intel Xeon E5-2650 CPU cores, 

64GB of memory, and a single NVIDIA Tesla P100 GPU

Experimental Setup



● Table 3 summarizes the training and validation data that DeepBugs extracts and generates 

for the three bug detectors.

● Half of the examples are positive and negative code examples, respectively.

Extraction and Generation of Training Data



● Train each bug detector with the 100,000 training files, then apply the trained bug detector 

to the 50,000 validation files.

● Manually inspect code locations that the bug detectors report as potentially incorrect.

● Sort all reported warnings by the probability that the code is incorrect.

● Inspect the top 50 warnings per bug detector.

● Classify each warning in one of three categories.

○ Bug.

○ Code quality problem.

○ False positive.

Warnings in Real-World Code



● Out of the 150 inspected warnings, 95 warnings point to bugs and 7 warnings point to a code 

quality problem, i.e., 68% of all warnings point to an actual problem.

Warnings in Real-World Code: Results



● Evaluate the accuracy and recall of each bug detector based on automatically seeded bugs.

● Accuracy - how many of the classification decisions that the bug detector makes are correct.

● Recall -  how many of all bugs in a corpus of code that the bug detector finds.

● Use training data generator to extract correct code examples Cpos and to artificially create 

likely incorrect code examples Cneg.

● Query the bug detector D with each example c, which yields a probability D(c) that the 

example is buggy.

● Compute the accuracy:

Accuracy and Recall of Bug Detectors



Accuracy and Recall of Bug Detectors



● More warnings are likely to reveal more bugs, thus increasing recall, but are also more likely 

to report false positives.

● A developer inspects all warnings where the probability D(c) is above some threshold t.

● Model this process by turning the bug detector D into a boolean function:

● Compute recall:

● Measure the number of false positives:

Accuracy and Recall of Bug Detectors



● Figure 2 shows the recall of the three bug 

detectors as a function of the threshold for 

reporting warnings.

Accuracy and Recall of Bug Detectors



● As expected, the recall decreases when the threshold increases

● For a threshold of t = 0.5, the three bug detectors report a total of 116,941 warnings, which 

corresponds to roughly one warning per 196 lines of code. 

● For a threshold of t = 0.9, the number reduces to 11,292, i.e., roughly one warning per 2,025 

lines of code

● In practice, we expect developers to inspect only the top-ranked warnings

Accuracy and Recall of Bug Detectors



● Training time consists of the time to gather code examples and of time to train the classifier.

● Prediction time consist of the time to extract code examples and the time to query the 

classifier with each example.

● Running both training and prediction on all 150,000 files takes between 36 minutes and 73 

minutes per bug detector.

● The average prediction time per JavaScript file is below 20 milliseconds.

Efficiency



● Evaluate the usefulness of learned embeddings both quantitatively and qualitatively.

● Quantitative evaluation: compare DeepBugs with learned embeddings to a simpler variant of 

the approach that uses a baseline vector representation.

○ Compare the learned embeddings with the baseline w.r.t. accuracy and recall.

Findings:

● For all three bug detectors, the learned embeddings increase the recall.

● The bug detectors achieve relatively high accuracy and recall even with randomly created 

embeddings.

Usefulness of Embeddings and Vocabulary



● Qualitative assessment: show for a set of identifiers which other identifiers are the most 

similar according to the learned embeddings.

●  Figure 3 shows the ten most similar identifiers for name, wrapper, and msg:

FIndings: The embeddings encode similarities between

● Abbreviated and non-abbreviated identifiers: 

msg and message

● lexically similar identifiers: name and getName

● lexically dissimilar identifiers such as name and Identifier, or wrapper and container.

Usefulness of Embeddings and Vocabulary



Vocabulary:

●  Total number of unique tokens in the training data set is about 2.4 million.

● |V| = 10, 000, i.e., consider the 10,000 most frequent tokens.

● Figure shows that a small number of tokens covers a large percentage of the occurrences of 

tokens. Default vocabulary size covers over 90% of all occurrences of tokens.

Usefulness of Embeddings and Vocabulary



Conclusions



The key insights that enable the approach are: 

(i) that reasoning about identifiers based on a learned, semantic representation of names is 

beneficial 

(ii) that artificially seeding bugs through simple code transformations yields accurate bug 

detectors that are effective also for real-world bugs. 

“Applying the framework and three bug detectors built on top of it to a large corpus of 

code shows that the bug detectors have an accuracy between 89% and 95%, and that 

they detect 102 programming mistakes with a true positive rate of 68%.”

In the long term, we envision our work to complement manually designed bug detectors by 

learning from existing code and by replacing some of the human effort required to create bug 

detectors with computational effort.



Thanks!
You can find me on: Piazza!

Any questions?


