
Presented By:
Andrew Calvano

Binary Code Function Similarity Problem

● Binary code is output during compilation and is contained in an
executable or library file.

● Binary code is organized into functions
○ Usually one source code function corresponds to one binary code function

● Similarity task is to compute measure of similarity between binary
functions
○ Used to determine if function A is directly or indirectly related to function B

● Particularly difficult to compute similarity of functions across different
architectures

Example
● Function compiled from same source file in two different binaries
● First binary

○ Compiled by GCC v7.3.0 (x86_64) with no optimizations
● Second binary

○ Compiled by GCC v5.5.0 (Aarch64) with -O3
● The goal is to determine that the two different functions are the same

Applications

● Anything that requires comparing of code from syntactic and semantic
point of view
○ Vulnerability Detection
○ Malware Analysis
○ Reverse Engineering
○ Plagiarism Detection, Copyright Violations, Patent Infringement, etc.
○ Authorship Attribution

Reverse Engineering
● When looking at executables or firmware images usually do not have access

to debug symbols or source code
● Useful to identity semantically relevant functions to figure out what code is

doing
○ Identify printf,malloc,free,etc.
○ Label code identified from previous reverse engineering efforts

● Binary code similarity can be used to help with this task
○ Used to automatically label code in an unseen binary

● Once known functions are labelled appropriately analysis becomes easier

Malware Analysis
● Determine if binary function is similar to known malicious functions

○ Develop library of malicious signatures for matching
○ Any suspicious code be examined for matches against signature database

● Use similarity metrics to perform attribution
○ Use binary similarity metrics to collect evidence of specific malicious actors

responsible
● For malware that does not sit nicely on disk static binary similarity can be problematic

○ Obfuscation through packers and cryptors can disrupt analysis tools
○ Can prevent binary code similarity from working at all
○ Dynamic binary similarity likely better for this use case

Plagiarism, Copyright, Patent Infringement

● Detect plagiarism by computing similarity of student code base
against other submitted code bases
○ Can be done at function level or by computing threshold over entire code

base
● Copyright violations and patent infringements may be detected by

comparing similarity of protected code against suspected competitors
○ May be used as evidence that an infringement or violation exists
○ Alternatively, can be used by competitor to ensure that they are not

violating any existing protections.

Vulnerability Detection

● Assessing a security patch from a closed-source vendor such as
Microsoft or Adobe
○ Need to identify differences in similar functions between unpatched

binary and patched binary
● Use binary function similarity to identify functions with high similarity

scores
○ Creates prioritized list of similar functions with minor differences
○ Differences can be used to identify semantic changes in code to

determine if patch fixes vulnerability

Vulnerability Detection

● Use binary function similarity to determine if vulnerability exists across
supported software versions
○ Vulnerability in Windows 7 may be present in Windows 8.1 or Windows

10
● Locate known vulnerable function in one version and compute

similarity in differing versions
○ Prioritize analysis of matches to determine if vulnerability exists

Vulnerability Detection

● IoT devices containing similar vulnerable code may be compiled for
different architectures and for varying hardware

● Goal is to identify vulnerable function in some firmware image and see
if it exists in other firmware images

● Compare known vulnerable function from firmware image with
functions in other firmware images

Previous Binary Similarity Strategies
● Pairwise Graph Matching and Heuristics

○ Bindiff/Diaphora
○ Bipartite graph matching

● Dynamic Analysis
○ Compare inputs/outputs of similar function candidates
○ “Blanket execution paper”

■ Synthesize environments for code to execute in and map in fake pages for
unmapped accesses

■ Collect features on execution characteristics per function
■ Use SVM to optimize execution feature weights for similarity

● Graph embedding using Codebook/centroiding
○ “Genius” paper

Genius Paper
● Generate code book (centroids) of Attributed Control Flow Graphs (ACFGs) to

be used in comparison operations
○ Raw Feature Similarity

■ Bipartite graph matching using cost function computed from ACFG features (statistical
and structural)

○ Clustering
■ Spectral clustering to create codebook (n == 16 in practice)

○ Feature Encoding
■ Maps input ACFG to higher dimensional space (size n)
■ Each dimension is distance to centroid in codebook
■ Bag of features vs VLAD encoding

○ Online Search
● Locality sensitive hashing

Attributed Control Flow Graphs
● Functions are organized into graphs based on control flow
● Control flow graphs:

○ Basic blocks
■ Instructions that execute sequentially without deviation in control flow

○ Edges between basic blocks
■ Represents possible control flow transfers based on conditional and unconditional jumps

● “Attributed Control Flow Graphs” (ACFGs)
○ Basic blocks annotated with attributes or features

■ Basic Block Level Features:
● Number of types of instructions and constants referenced, etc.

■ Inter Basic Block Features:
● Number of offspring and betweenness score, etc.

Diagram of ACFG from paper

Genius Approach

Genius Evaluation Results

Genius Limitations

● Codebook generation very slow
● ACFG extraction slow

○ Requires betweenness centrality metric
● Recall

○ Top-K results count as positive matches
○ For small values of K recall is not good at all
○ Only 27% of the time in eval is correct match rated 1 in top-K

query results

Gemini Overview
● Improve state of the art in binary function similarity detection using deep

learning
○ Specifically, be able to apply to compare functions across different platforms and

architectures (x86,ARM,MIPS,etc.)
● Feed-forward neural network to learn graph embeddings

○ Training data is pairs of similar and dissimilar binary functions
○ Can retrain on demand to incorporate expert supplied data

● Create graph embeddings for unseen functions for use in comparison
operations

● Evaluate computed graph embedding network with test set for similarity
analysis

Gemini Workflow

Graph Embeddings
● A numerical vector encapsulating raw features of graph
● Useful to compare with instead of comparing raw features directly which may

be expensive
● Embeddings can be quickly indexed and stored for comparison
● Embeddings created from different ACFGs can be compared quickly using

methods such as cosine or euclidean distance
● As Example:

○ Take 7 features from ACFG and embed into an embedding vector of size
64

Adapted structure2vec embedding network
● Neural network model to create embeddings from a graph structure

○ Incorporates knowledge of graph topology in embedding creation
● Each vertex in graph has a vector of raw features and an embedding vector
● Network propagates vertex features across vertex embeddings based on

graph topology
● During embedding process:

○ Vertex embedding vector updates includes neighbor vertex embedding vectors
○ Runs for T iterations where T is “number of hops” in graph

● Entire graph embedding is created by using aggregation operation over all
vertex embedding vectors at the end of T iterations

Dimensions
Xv = 1 x d
W1 = d x p
μ = 1 x p
P1 ... PN = p x p
W2 = p x p

T = 1
X1 [1, 2, 3, 4]

μ1
(0) [0, 0, 0, 0, 0, 0]

X2 [2, 1, 3, 4]

μ2
(0)

 [0, 0, 0, 0, 0, 0]

X3 [1, 2, 3, 4]

μ3
(0)

 [0, 0, 0, 0, 0, 0]

X4 [1, 2, 3, 4]

μ4
(0)

 [0, 0, 0, 0, 0, 0]

X5 [1, 2, 3, 4]

μ5
(0)

 [0, 0, 0, 0, 0, 0]

X6 [1, 2, 3, 4]

μ6
(0)

 [0, 0, 0, 0, 0, 0]

Node 1

Node 2

Node 3

Node 5

Node 4

Node 6

T = N
X1 [1, 2, 3, 4]

μ1
(T-1)

 [-0.4, 0.29, -0.13,
0.61, -0.64, 0.47]

X2 [2, 1, 3, 4]

μ2
(T-1)

 [-0.5, -0.88,
0.48, 0.47, 0.91,
0.48]

X3 [3, 1, 2, 4]

μ3
(T-1)

 [-0.79, -0.1, -0.9,
-0.64, 0.86, -0.39]

X4 [4, 3, 2, 1]

μ4
(T-1)

 [-0.08, 0.63,
0.01, 0.98, 0.31,
0.13]

X5 [2, 4, 3, 1]

μ5
(T-1)

 [-0.99, 0.67, -0.92,
-0.0, 0.7, -0.22]

X6 [3, 2, 1, 4]

μ6
(T-1)

 [-0.44, 0.8, 0.66,
-0.9, -0.49, -0.17]

Node 1

Node 2

Node 3

Node 5

Node 4

Node 6

Final

X1 [1, 2, 3, 4]

μ1
(T)

 [-0.63, -0.15, -0.35,
-0.28, 0.71, 0.32]

X2 [2, 1, 3, 4]

μ2
(T)

 [0.9, 0.55, -0.68,
-0.66, 0.3, 0.9]

X3 [1, 2, 3, 4]

μ3
(T) [0.63, 0.12,

-0.62, -0.11, -0.81,
0.69]

X4 [1, 2, 3, 4]

μ4
(T)

 [-0.65, -0.49, 0.56,
-0.97, -0.85, -0.7]

X5 [1, 2, 3, 4]

μ5
(T)

 [0.17, 0.23,
-0.81, -0.38, 0.46,
0.5]

X6 [1, 2, 3, 4]

μ6
(T)

 [0.67, 0.64,
-0.63, -0.74, 0.92,
0.09]

Node 1

Node 2

Node 3

Node 5

Node 4

Node 6

+

+

+

+

+
+

Embedding Network

u0
T-1

u1
T-1

un
T-1

u2
T-1

u0
T-1

u1
T-1

un
T-1

u2
T-1

u0
T-1

u1
T-1

un
T-1

u2
T-1

l0

l1

ln

l2

For each T
For each vertex

For each neighbor

+ + =

Embedding Network
For each T

For each vertex

lv0

x0
T-1

x1
T-1

xn
T-1

u0
T

u1
T

un
T

lv1

lv2

lvn

O0

O1

O2

On

u2
T

=

p0

p1

p2

pn

+

Embedding Network

u0
T

u1
T

un
T

u2
T

u0
T

u1
T

un
T

u2
T

u0
T

u1
T

un
T

u2
T

p0
T

p1
T

pn
T

p2
T

g0
T

g1
T

gn
T

g2
T

+ + =

Node 1 Node 2 Node N

Task Independent Pre-Training
● Refers to initial training of embedding network
● Learns weights for structure2vec network
● Training data conforms to “default policy”:

○ Each ACFG paired with random similar ACFG and random dissimilar ACFG
○ Similar function pairs (Ground truth +1)

■ Functions compiled from the exact same source code
○ Dissimilar function pairs (Ground truth -1)

■ Functions compiled from different source code

● Training occurs in Siamese neural network architecture joined by cosine
similarity function

○ Optimize such that cosine distance is large (close to 1) for similar and small (close to -1) for
dissimilar

Similarity Optimization

Siamese Network Architecture
● Taken from computer vision field

○ Creates high dimensional image embeddings used to compare images
○ Easier to compare then comparing raw features directly

● Uses two neural networks that share weights during training
● Joins the outputs of the network using a distance function such as cosine or

euclidean distance
● Training data consists of similar pairs and dissimilar pairs

○ Feedback based on distance measurement of the two network outputs
○ Close to 1 typically similar, close to -1 typically dissimilar

Learning the embedding network parameters
● Structure2vec network weights must be learned to created good embeddings

○ W1 (node weights)
○ P1-PN(neighbor activation)
○ W2 (entire graph)

● Training data set consists of known similar function pairs and known
dissimilar function pairs
○ Randomly chosen pairs of similar/dissimilar function

● Pairs fed to network and typical back propagation using stochastic gradient
descent from cosine distance calculation

● End of training weights are learned
○ Network can be used to compute unseen function’s embedding

Task Specific Retraining
● Retrains graph embedding network by updating with human expert supplied

knowledge
○ Additional samples of similar/dissimilar function pair ground truth data

● Create ACFGs from function pairs with ground truth data
○ Use specified ACFGs as additional training data

● Train the network for a small number of epochs more
○ Sample ACFGs from new human supplied data many times more than existing

data
■ Unclear what they mean by this notion of sampling

● After retraining new parameters can be used for embedding creation

Evaluation
● Gemini evaluated with respect to search accuracy and efficiency

○ Evaluates pre-trained model on known ground truth
○ Evaluate re-trained model on real world data

● Baselines for comparisons
○ Bipartite Graph Matching
○ Genius solution
○ ACFG extractor implemented as IDA Pro script

● Graph embedding network implemented in Tensorflow

Evaluation Datasets
● Dataset 1 (For pre-training and testing embedding network)

○ Binary functions compiled from source code with ground truth similarity information
■ Compiled for different architectures and with different optimizations

○ Total of 129,365 ACFGs extracted from 18,269 binary files produces from various OpenSSL
builds

■ Split into training, validation, and testing sets.

● Dataset 2 (Firmware images from Genius)
○ 33,045 firmware images with 8,128 being in scope
○ Obtained from 26 different IoT vendors

● Dataset 3
○ Functions with variable size ACFGs from random 16 firmware images

● Dataset 4
○ 154 vulnerable functions

Task Independent Pre-training
● Trained using training set derived from Dataset 1
● Training data

○ At each epoch training data is randomly selected
○ For each ACFG in training set

■ One similar and dissimilar ACFG is randomly selected and assigned ground truth
■ Training data randomly shuffled before being fed to siamese model

● Training details
○ Adam optimization algorithm using learning rate of .0001
○ Siamese model trained for 100 epochs
○ Mini-batch size of 10 ACFG pairs
○ T = 5 and Embedding Depth (p) = 64
○ After every epoch loss vs validation set is calculated
○ Over 100 epochs the model that achieves the lowest loss is selected

Task Independent Pre-training Evaluation
● Evaluated using dataset 1 derived testing set
● Training set and testing set contain exclusive sets of functions

○ E.g. If function A is in training set no version of function A was in testing set

● Similarity testing set constructed as:
○ For each ACFG in testing set

■ Randomly select 1 similar ACFG in testing set
■ Randomly select 1 dissimilar ACFG in testing set

○ Total sets of ACFG triples in testing set: 26,265

● Similarity testing set also split
○ Large graph subset (At least 10 vertices)
○ Small graph subset

● General AUC claim of .971 when eval on testing set

Task Independent Pre-training Evaluation Results

Embedding Visualization

Hyperparameter Evaluation
● Hyper parameters evaluated by experimentation
● Number of epochs

○ Good performance on validation set after training for 5 epochs
○ Lowest loss on validation set after 100 epochs

● Embedding depth
○ Depth of embedding neural network best using 2 layers

● Embedding size
○ Best performance at 512 but very good performance at size 64

● ACFG Attributes
○ Best performance using block level attributes + number of offspring

● Number of iterations in embedding algorithm (T)
○ Best performance observed when T is 5

Efficiency Evaluation
● Evaluated using data set 3
● Results

○ ACFG extraction time
■ Improves 8x on average over Genius

● Exclude betweenness feature
○ Embedding generation time

■ 2400x to 16000x faster than Genius
■ No graph matching needed
■ Gemini implemented using parallelizable matrix operations

○ Overall latency of embedding generation
■ Average 386.4x faster than Genius

Training Time Evaluation
● Evaluated due to retraining use case

○ New firmware images pushed by vendors
■ Need to incorporate into network model

● Each epoch trains on 206,000 examples
○ Takes 5 minutes

● Performance surpasses Genius after training for 5 epochs
○ Around 30 minute training time

● Best performance after training for 100 epochs
○ Around 8.5 hours

Task Specific Re-training Evaluation
● Extract all ACFGs from Data Set 2 (420,558,702 functions)
● Select two vulnerable functions from Data Set 4 (same used in Genius)
● Retrain pre trained (Data Set 1) embedding network

○ Compute embeddings of all functions in Data Set 2
○ For each vulnerability query

■ Retrieve Top K results
■ Manually assign ground truth data to all top k results

● Paper claims 2 hours of manual investigation time for k = 50
○ Retrain using Top K ground truth similarity pairs
○ After each retraining iteration compute new embeddings of 10% of data set 2 and repeat

● Evaluate (1 retraining iteration) using same vulnerabilities as Genius
○ Gemini 84% positive (84 of top-100 results) vs Genius 28% positive (14 matches of top-50)

Limitations
● They only evaluated pre trained model on code from same code base

(OpenSSL)
● Manual investigation required for retraining
● Limited to comparing similarity at the function level

○ Would struggle with inlined code
○ Not possible to compare subgraph of functions

● They do not take into account data flow information
○ Only control flow information is examined which is only one component of what the code is

doing.

● Requires complete and correct recovered control flow graph
○ They looked at C code bases, for C++ this can be much more difficult

Future Work
● Incorporate intraprocedural data flow information

○ Train either exclusively with data flow embedding or combine with control flow embedding
○ Could use as additional feature in existing graph embedding using basic block scoped data

flow information
■ Number of uses, number of defs, etc.

○ Use dataflow relationships to consider additional propagation vertex neighbors

● Another paper used unsupervised learning to learn ACFG features rather than
manually selecting them

○ Boosted performance by 2% positive matches on same data set

● Asm2vec (IEEE S&P 2019)
○ Applies word2vec approaches to assembly code
○ Approach and results not released yet?

Additional References
● https://www.zynamics.com/bindiff.html
● https://github.com/joxeankoret/diaphora
● https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-egele.pdf
● https://www.cs.ucr.edu/~heng/pubs/genius-ccs16.pdf
● https://www.rsaconference.com/writable/presentations/file_upload/ht-t10-bruh_-do-you-

even-diff-diffing-microsoft-patches-to-find-vulnerabilities.pdf
● https://googleprojectzero.blogspot.com/2017/10/using-binary-diffing-to-discover.html
● https://github.com/xiaojunxu/dnn-binary-code-similarity
● https://arxiv.org/pdf/1708.06525.pdf
● https://ghidra-sre.org/

https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-egele.pdf
https://www.cs.ucr.edu/~heng/pubs/genius-ccs16.pdf
https://www.rsaconference.com/writable/presentations/file_upload/ht-t10-bruh_-do-you-even-diff-diffing-microsoft-patches-to-find-vulnerabilities.pdf
https://www.rsaconference.com/writable/presentations/file_upload/ht-t10-bruh_-do-you-even-diff-diffing-microsoft-patches-to-find-vulnerabilities.pdf
https://googleprojectzero.blogspot.com/2017/10/using-binary-diffing-to-discover.html
https://github.com/xiaojunxu/dnn-binary-code-similarity/blob/8552d5b7a35095d901e6e3b3aec62bdc3a1d884e/graphnnSiamese.py
https://arxiv.org/pdf/1708.06525.pdf
https://ghidra-sre.org/

