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Binary Code Function Similarity Problem

Binary code is output during compilation and is contained in an
executable or library file.

Binary code is organized into functions

o Usually one source code function corresponds to one binary code function
Similarity task is to compute measure of similarity between binary
functions

o Used to determine if function A is directly or indirectly related to function B
Particularly difficult to compute similarity of functions across different

architectures



Example

e Function compiled from same source file in two different binaries
e First binary
o Compiled by GCC v7.3.0 (x86_64) with no optimizations
e Second binary
o Compiled by GCC v5.5.0 (Aarch64) with -O3
e The goal is to determine that the two different functions are the same



Applications

e Anything that requires comparing of code from syntactic and semantic
point of view
o Vulnerability Detection

Malware Analysis

Reverse Engineering

Plagiarism Detection, Copyright Violations, Patent Infringement, etc.
Authorship Attribution

O O O O



Reverse Engineering

e \When looking at executables or firmware images usually do not have access
to debug symbols or source code
e Useful to identity semantically relevant functions to figure out what code is
doing
o ldentify printf,malloc,free,etc.
o Label code identified from previous reverse engineering efforts
e Binary code similarity can be used to help with this task
o Used to automatically label code in an unseen binary
e Once known functions are labelled appropriately analysis becomes easier



Malware Analysis

e Determine if binary function is similar to known malicious functions
o Develop library of malicious signatures for matching
o Any suspicious code be examined for matches against signature database
e Use similarity metrics to perform attribution
o Use binary similarity metrics to collect evidence of specific malicious actors
responsible
e For malware that does not sit nicely on disk static binary similarity can be problematic
o Obfuscation through packers and cryptors can disrupt analysis tools
o Can prevent binary code similarity from working at all
o Dynamic binary similarity likely better for this use case



Plagiarism, Copyright, Patent Infringement

e Detect plagiarism by computing similarity of student code base

against other submitted code bases
o Can be done at function level or by computing threshold over entire code
base
e Copyright violations and patent infringements may be detected by

comparing similarity of protected code against suspected competitors
o May be used as evidence that an infringement or violation exists
o Alternatively, can be used by competitor to ensure that they are not
violating any existing protections.



Vulnerability Detection

e Assessing a security patch from a closed-source vendor such as
Microsoft or Adobe
o Need to identify differences in similar functions between unpatched
binary and patched binary
e Use binary function similarity to identify functions with high similarity
scores
o Creates prioritized list of similar functions with minor differences
o Differences can be used to identify semantic changes in code to
determine if patch fixes vulnerability



Vulnerability Detection

e Use binary function similarity to determine if vulnerability exists across

supported software versions

o Vulnerability in Windows 7 may be present in Windows 8.1 or Windows
10

o Locate known vulnerable function in one version and compute
similarity in differing versions
o Prioritize analysis of matches to determine if vulnerability exists



Vulnerability Detection

e |oT devices containing similar vulnerable code may be compiled for

different architectures and for varying hardware
e Goal is to identify vulnerable function in some firmware image and see

if it exists in other firmware images
e Compare known vulnerable function from firmware image with

functions in other firmware images



Previous Binary Similarity Strategies

e Pairwise Graph Matching and Heuristics
o Bindiff/Diaphora
o Bipartite graph matching
e Dynamic Analysis
o Compare inputs/outputs of similar function candidates
o “Blanket execution paper”
m Synthesize environments for code to execute in and map in fake pages for
unmapped accesses
m Collect features on execution characteristics per function
m  Use SVM to optimize execution feature weights for similarity
e Graph embedding using Codebook/centroiding
o “Genius” paper



Genius Paper

e Generate code book (centroids) of Attributed Control Flow Graphs (ACFGs) to

be used in comparison operations
o Raw Feature Similarity
m Bipartite graph matching using cost function computed from ACFG features (statistical
and structural)
o Clustering
m Spectral clustering to create codebook (n == 16 in practice)
o Feature Encoding
m  Maps input ACFG to higher dimensional space (size n)
m Each dimension is distance to centroid in codebook
m Bag of features vs VLAD encoding
o Online Search
e Locality sensitive hashing



Attributed Control Flow Graphs

e Functions are organized into graphs based on control flow

e Control flow graphs:
o Basic blocks
m Instructions that execute sequentially without deviation in control flow
o Edges between basic blocks
m Represents possible control flow transfers based on conditional and unconditional jumps

e “Attributed Control Flow Graphs” (ACFGs)

o Basic blocks annotated with attributes or features
m Basic Block Level Features:
e Number of types of instructions and constants referenced, etc.
m Inter Basic Block Features:
e Number of offspring and betweenness score, etc.



Diagram of ACFG from paper

mov  |espsdChavar_20], edi I 10, 1, 10, 1, 11, 0, 11, 0.296] ]
mov  [esp+4Ch+n]. 18h
mov  [esp+4Ch+var_3C], edx
mov  eds, fesil [ 10,1,1,0,2,0,10,0362] |
mov  [esp+dChades), 0
mov  Jesp+aCh+sic], edx
ll; oax [0.1,1,0,3,0,5,0.19] | [[1,6,21,4,32,2.5,026]
loc_80C1B28:
cmp bp, 1
Jz  short loc_80C1888 [10,1,1,0,4,0,4,0.187] |
E -1
l l (b) The corresponding ACFG
XOr  eax, eax lea eax, [ebx+13h]
cmp  bp, 2 -
iz short loc_S0CI B4 mov  [esp+ICh+sic], offset aDI_both_c :
mov  [esp+dChdest], eax
‘ mov  |esp4dChavar_24), eax
loc_8SOC | B4S: call CRYPTO_malloc
cmp  ebx. 12h
movzx  edx, byte ptr [edi+3] mov  |esp+4Chadest], eox : dest
movex  ecx, byte pir [edi+4] mov  [esp+4Ch+sic), edi @ src
jnz  shortloc_SOC1B39 mov  [esp+4Ch+var_20], ecx
call  _memcpy
mov  ecx, |esp+4Chevar_20]

(a) Partial control flow graph of dtlsl_process heartbeat

Figure 2: An example of a code graph on Function
dtls1_process_heartbeat (Heartbleed vulnerability)



Genius Approach
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Genius Evaluation Results
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Genius Limitations

e Codebook generation very slow
e ACFG extraction slow
o Requires betweenness centrality metric
e Recall
o Top-K results count as positive matches
o For small values of K recall is not good at all
o Only 27% of the time in eval is correct match rated 1 in top-K
query results



Gemini Overview

Improve state of the art in binary function similarity detection using deep

learning
o Specifically, be able to apply to compare functions across different platforms and
architectures (x86,ARM,MIPS,etc.)
Feed-forward neural network to learn graph embeddings
o Training data is pairs of similar and dissimilar binary functions
o Can retrain on demand to incorporate expert supplied data

Create graph embeddings for unseen functions for use in comparison
operations
Evaluate computed graph embedding network with test set for similarity

analysis



Gemini Workflow
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Graph Embeddings

e A numerical vector encapsulating raw features of graph

e Useful to compare with instead of comparing raw features directly which may
be expensive

e Embeddings can be quickly indexed and stored for comparison

e Embeddings created from different ACFGs can be compared quickly using
methods such as cosine or euclidean distance

e As Example:

o Take 7 features from ACFG and embed into an embedding vector of size
64



Adapted structure2vec embedding network

Neural network model to create embeddings from a graph structure

o Incorporates knowledge of graph topology in embedding creation
Each vertex in graph has a vector of raw features and an embedding vector
Network propagates vertex features across vertex embeddings based on
graph topology
During embedding process:

o Vertex embedding vector updates includes neighbor vertex embedding vectors
o Runs for T iterations where T is “number of hops” in graph

Entire graph embedding is created by using aggregation operation over all
vertex embedding vectors at the end of T iterations



Algorithm 1 Graph embedding generation

1: Input: ACFGg = (V, &, %)
Initialize pg)) =0, forallveV

. . 2:

Dimensions ¢ 1 te T do

W, =dxp 2 forvelVdo )

M=1Xp ; = z

P,..P,=pXxp > lzzt) LueN (@) u

=pxp 6: = tanh(Wix,, + o(l,))

7: end for
8: end for{fixed point equation update}
o: return ¢(g) := Wa(Zpey 1Y)

o(l) = P1 X ReLU(Py X ...ReLU(Pyl))

—

n levels



Node 2

Node 1

X, [1,2,3,4]

u,@[0,0,0,0,0,0]

X,[2,1,3, 4]

1,[0, 0,0, 0, 0, 0]

Node 3

X, [1,2,3,4]

1,900, 0,0, 0,0, 0]

Node 5

X, [1,2,3,4]

12[0, 0,0, 0,0, 0]

Node 4
X, [1,2,3,4]
1,210,0,0,0,0,0]

Node 6

X [1, 2,3, 4]

1,2[0, 0, 0,0, 0, 0]




Il
Z

Node 1

X, [1,2,3,4]

u1(T‘1) [-0.4, 0.29, -0.13,
0.61, -0.64, 0.47]

Node 3

X, [3, 1,2, 4]

u,T [-0.79, -0.1, -0.9,
-0.64, 0.86, -0.39]

Node 4
Node 2 X,[2,1,3,4] X, [4,3,2,1]
ode —_— _
w005 08, |——— | u, ™ [-0.08, 0.63,
0°48. 047 0.91 0.01,0.98, 0.31,
048] 0.13]
forv e ) do
(z-1)

Ly = Zue./\f(v) Hu
1P = tanh(Wixy, + o (k)
end for

N

N
7

o(l) = P x ReLU(P, X ... ReLU(Py]))

—_

~

n levels

Node 5

X, [2,4,3,1]

u,™ [-0.99, 0.67, -0.92,
-0.0, 0.7, -0.22]

X [3,2,1,4]

b [-0.44, 0.8, 0.66,
-0.9, -0.49, -0.17]

Node 6




Final

Node 1 Node 3
X, [1,2,3,4] X, [1,2,3,4]
u,(M[-0.63, -0.15, -0.35, H,M[0.63,0.12,
-0.28, 0.71, 0.32] -0.62,-0.11, -0.81,
0.69]
+ +
Node 4
X, [1,2,3,4]
4
Node 2 X2 [21 11 3! 4] +
- | u™M]- ’
u,™ 0.9, 0.55, -0.68, My 1005 ‘_)(-)4% 0.56,
-0.66, 0.3, 0.9] 2l RREG, O

(g) = Wa(Tpey 1)

Node 5
X, [1, 2,3, 4]

u5(T) [0.17,0.23,
-0.81, -0.38, 0.46,
0.5]

+
Node 6

X [1,2,3,4]

1.7 [0.67, 0.64,
-0.63, -0.74, 0.92,
0.09]
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Embedding Network




Task Independent Pre-Training

e Refers to initial training of embedding network
o Learns weights for structure2vec network

e Training data conforms to “default policy”:
o Each ACFG paired with random similar ACFG and random dissimilar ACFG
o  Similar function pairs (Ground truth +1)
m Functions compiled from the exact same source code
o Dissimilar function pairs (Ground truth -1)
m Functions compiled from different source code

e Training occurs in Siamese neural network architecture joined by cosine

similarity function
o  Optimize such that cosine distance is large (close to 1) for similar and small (close to -1) for
dissimilar



Similarity Optimization

SM(g,g’) —_ COS(¢(9), ¢(gl)) = <¢(g)’ ¢(g ))

@I - l¢(g")I]

K
min )" (Sim(g;, g}) - yi)%.
Wi, Pi,....Pp, W, i=1( (9i, 9;) — i)



Siamese Network Architecture

e Taken from computer vision field
o Creates high dimensional image embeddings used to compare images
o Easier to compare then comparing raw features directly

e Uses two neural networks that share weights during training

e Joins the outputs of the network using a distance function such as cosine or

euclidean distance

e Training data consists of similar pairs and dissimilar pairs
o Feedback based on distance measurement of the two network outputs
o Close to 1 typically similar, close to -1 typically dissimilar
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Figure 4: Siamese Architecture



Learning the embedding network parameters

Structure2vec network weights must be learned to created good embeddings
o W1 (node weights)
o P1-PN( neighbor activation)
o W2 (entire graph)
Training data set consists of known similar function pairs and known
dissimilar function pairs
o Randomly chosen pairs of similar/dissimilar function
Pairs fed to network and typical back propagation using stochastic gradient
descent from cosine distance calculation
End of training weights are learned
o Network can be used to compute unseen function’s embedding



Task Specific Retraining

e Retrains graph embedding network by updating with human expert supplied
knowledge
o Additional samples of similar/dissimilar function pair ground truth data
e Create ACFGs from function pairs with ground truth data
o Use specified ACFGs as additional training data
e Train the network for a small number of epochs more
o Sample ACFGs from new human supplied data many times more than existing

data
m Unclear what they mean by this notion of sampling

e After retraining new parameters can be used for embedding creation



Evaluation

e Gemini evaluated with respect to search accuracy and efficiency
o Evaluates pre-trained model on known ground truth
o Evaluate re-trained model on real world data

e Baselines for comparisons
o Bipartite Graph Matching

o Genius solution
o ACFG extractor implemented as IDA Pro script

e Graph embedding network implemented in Tensorflow



Evaluation Datasets

e Dataset 1 (For pre-training and testing embedding network)
o Binary functions compiled from source code with ground truth similarity information
m Compiled for different architectures and with different optimizations
o Total of 129,365 ACFGs extracted from 18,269 binary files produces from various OpenSSL
builds
m Split into training, validation, and testing sets.
e Dataset 2 (Firmware images from Genius)
o 33,045 firmware images with 8,128 being in scope
o  Obtained from 26 different loT vendors
e Dataset 3
o Functions with variable size ACFGs from random 16 firmware images

e Dataset4
o 154 vulnerable functions



Task Independent Pre-training

e Trained using training set derived from Dataset 1

e Training data
o At each epoch training data is randomly selected
o For each ACFG in training set
m  One similar and dissimilar ACFG is randomly selected and assigned ground truth
m Training data randomly shuffled before being fed to siamese model

e Training details

© Adam optimization algorithm using learning rate of .0001

Siamese model trained for 100 epochs

Mini-batch size of 10 ACFG pairs

T =5 and Embedding Depth (p) = 64

After every epoch loss vs validation set is calculated

Over 100 epochs the model that achieves the lowest loss is selected

o O O O O



Task Independent Pre-training Evaluation

e Evaluated using dataset 1 derived testing set

e Training set and testing set contain exclusive sets of functions
o E.g. If function A is in training set no version of function A was in testing set

e Similarity testing set constructed as:
o For each ACFG in testing set
m Randomly select 1 similar ACFG in testing set
m Randomly select 1 dissimilar ACFG in testing set
o Total sets of ACFG ftriples in testing set: 26,265
e Similarity testing set also split
o Large graph subset (At least 10 vertices)
o Small graph subset

e General AUC claim of .971 when eval on testing set



Task Independent Pre-training Evaluation Results
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Embedding Visualization
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Figure 8: Visualizing the embeddings of the different func-
tions using t-SNE. Each color indicates one source functions.
The legend provides the source function names.



Hyperparameter Evaluation

e Hyper parameters evaluated by experimentation

e Number of epochs
o Good performance on validation set after training for 5 epochs
o Lowest loss on validation set after 100 epochs

e Embedding depth

o Depth of embedding neural network best using 2 layers

e Embedding size
o Best performance at 512 but very good performance at size 64

e ACFG Attributes

o Best performance using block level attributes + number of offspring

e Number of iterations in embedding algorithm (T)
o Best performance observed when T is 5
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Efficiency Evaluation

e Evaluated using data set 3

e Results
o ACFG extraction time
m Improves 8x on average over Genius
e Exclude betweenness feature
o Embedding generation time
m 2400x to 16000x faster than Genius
m No graph matching needed
m  Gemini implemented using parallelizable matrix operations
o Overall latency of embedding generation
m Average 386.4x faster than Genius
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Training Time Evaluation

e Evaluated due to retraining use case
o New firmware images pushed by vendors
m Need to incorporate into network model
e Each epoch trains on 206,000 examples
o Takes 5 minutes
e Performance surpasses Genius after training for 5 epochs
o Around 30 minute training time
e Best performance after training for 100 epochs
o Around 8.5 hours



Task Specific Re-training Evaluation

e Extract all ACFGs from Data Set 2 (420,558,702 functions)
e Select two vulnerable functions from Data Set 4 (same used in Genius)

e Retrain pre trained (Data Set 1) embedding network
o Compute embeddings of all functions in Data Set 2
o For each vulnerability query
m Retrieve Top K results
m Manually assign ground truth data to all top k results
e Paper claims 2 hours of manual investigation time for k = 50
o Retrain using Top K ground truth similarity pairs
o After each retraining iteration compute new embeddings of 10% of data set 2 and repeat

e Evaluate (1 retraining iteration) using same vulnerabilities as Genius
o Gemini 84% positive (84 of top-100 results) vs Genius 28% positive (14 matches of top-50)



Limitations

e They only evaluated pre trained model on code from same code base
(OpenSSL)

e Manual investigation required for retraining

e Limited to comparing similarity at the function level

o  Would struggle with inlined code
o Not possible to compare subgraph of functions

e They do not take into account data flow information
o  Only control flow information is examined which is only one component of what the code is
doing.
e Requires complete and correct recovered control flow graph
o They looked at C code bases, for C++ this can be much more difficult



Future Work

e Incorporate intraprocedural data flow information
o Train either exclusively with data flow embedding or combine with control flow embedding
o Could use as additional feature in existing graph embedding using basic block scoped data
flow information
m  Number of uses, number of defs, etc.
o Use dataflow relationships to consider additional propagation vertex neighbors

e Another paper used unsupervised learning to learn ACFG features rather than

manually selecting them
o Boosted performance by 2% positive matches on same data set

e Asm2vec (IEEE S&P 2019)

o Applies word2vec approaches to assembly code
o Approach and results not released yet?



Additional References

https://www.zynamics.com/bindiff.html

https://github.com/joxeankoret/diaphora
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-egele.pdf
https://www.cs.ucr.edu/~heng/pubs/genius-ccs16.pdf
https://www.rsaconference.com/writable/presentations/file_upload/ht-t10-bruh_-do-you-
even-diff-diffing-microsoft-patches-to-find-vulnerabilities.pdf
https://googleprojectzero.blogspot.com/2017/10/using-binary-diffing-to-discover.html
https://github.com/xiaojunxu/dnn-binary-code-similarity
https://arxiv.org/pdf/1708.06525.pdf

https://ghidra-sre.orq/
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