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What’s happening?



Problem

- Programs have complex dependencies
- Control flow
- Data flow

- Program Analysis
- Examples:

- Taint Analysis
- Symbolic Execution

- Do not scale well



Solution

- Use ML to automatically learn dependencies
- ML can excel at finding relationships in data

- NLP: tagging parts-of-speech in a sentence 
- Finding them is useful

- Code Coverage
- Debugging
- Vulnerability Discovery



Outline

- Learn Dependencies 
- Examine 1 program dynamically

- Neuro-symbolic Execution
- Learn path dependencies

- Examine many programs statically
- Idea of “Big Code”
- Binaries

- Learn dependency between variable and registers
- Source Code

- Learn dependency between variable use and definition



Neuro-symbolic Execution: 
Augmenting Symbolic Execution 

with Neural Constraints  
Dongdong She



Problem

Symbolic execution has many limitations.
- Poor scalability by path explosion.
- Language-specific implementation.
- Failure to model complex dependencies.
- Limited expressiveness of satisfying theories.



A simple example



Locations of interest

Candidate Vulnerability Point(CVP)
- Statically analyze program in advance.
- Identify two specific program locations.

- Division operations (check zero division).
- Boundary checking in buffer accesses.  

- Instrument CVP to record values of 
denomimators/ index number for further training.



Neuro-symbolic execution

- Represent most of program logic with 
symbolic constraints.

- Approximate the remaining logic that is 
hard to solve with NN.

- Solve the combination of exact constraints 
& approximated constraints.

Constraints = S_1 ^ N_1 ^ N_2 ^ S_2 



Neuro-symbolic execution

How to generate the neuro-constraints?



Neuro-constraints



Neuro-constraints

100,000 samples



Neuro-constraints



Overview

Hybrid mode design (symbolic mode and neural mode)



Neural Mode

● MLP + ReLU
● Simple regression model
● 100,000 samples



Constraints



Constraints



How to solve mixed constraints

Symbolic constraints 

Optimization objectives of the neural net





Constraints => Loss













Debin: Recovering Stripped 
Info from Binaries

Kexin Pei



Binaries with debug symbols

x86 malware samples from VirusShare



Stripped Binaries



Challenges
1. No mapping from registers and memory 
offsets to semantic variables



Challenges
2. No names and types



DeBIN: Recovering debug info



Design Choice
How will you do this?



Recap: importance of dependency

1. Naive way of doing this? 
a. Feature template
b. Individual classification

2. Smarter way of doing this? 
a. RNN/LSTM
b. Sequential dependency

3. More advanced (best result):
a. PGM(CRF,MRF,Bayesian 

Network)/TreeLSTM/GNN/GCN/GGNN...
b. Structured learning



How does Debin work?



Step 1: Recovering Variables



Step 1: Recovering Variables



Extremely randomized trees

Decision tree:
- One dataset
- All features
Random forest:
- Multiple sampled sub-dataset
- Sampled set of features
Extremely Randomized trees:
- Randomized division of feature values



Step 2: Predicting names and types



Pairwise Feature functions



Factor Feature functions

Factors:
- All nodes that appear in the same ϕ 

expression of BAP-IR
- Function node of a call and its 

arguments
- Elements that are accessed in the 

same statement



Learning to predict



End-to-end recovery of debug information



End-to-end recovery of debug information



End-to-end recovery of debug information



Implementation



Evaluation

- How accurate is DeBIN’s variable 
recovery?

- How accurate is DeBIN’s name and 
type prediction?

- Is DeBIN useful for malware 
inspection?



Variable recovery accuracy



Name and type prediction accuracy



Evaluation of name and type prediction



Malware inspection

Inspected 35 x86 malware from VirusShare



Summary



How can we improve?



Learning To Represent 
Programs with Graphs

Abhishek Shah



Problem

Neural Networks have understood:
- Images
- Speech
- Language
- Source Code ?



Problem

Question: what’s the bug?



Problem

Do what I want, not what I wrote

Question: what’s the bug?



Solution - Learning from “Big Code”

How to feed programs into Neural Networks?
- Sequence of Tokens (Hindle et al., 2012)
- Parse Tree (Bielik et al., 2016)

Key Insight: 
- Expose semantics to NN via a Graph

- Avoid shallow, textual structure by using 
data flow and type information



Outline

- Primer on Graph Neural Networks
- Converting Programs to Graphs
- Learning Representations with Graph NNs
- Downstream Tasks
- Evaluation



Primer on Graph NNs

- Why use Graphs? 
- Graphs describe a system and the complex 

dependencies within them
- Use Cases

- Node Classification → is a node malicious?
- Link Detection → are these two transactions 

linked in the blockchain?



Primer on Graph NNs

- Modern DL Techniques
- CNNs → fixed-size images with spatial locality
- RNNs → ordered sequences



Primer on Graph NNs

- Modern DL Techniques
- CNNs → fixed-size images with spatial locality
- RNNs → ordered sequences

- Properties of Graphs
- No obvious ordering
- Not fixed sizes
- Non-obvious or non-existent spatial locality



Primer on Graph NNs

- Building a Graph NN (focus on embedding)
- Need an encoder

- Such that similarity in original graph is preserved in 
embedded space



Primer on Graph NNs

- Building a Graph NN (focus on embedding)
- Need an encoder

- Such that similarity in original graph is preserved in 
embedded space

- Need a similarity metric
- Learning → minimizing the distance between 

similar nodes



Primer on Graph NNs



Primer on Graph NNs

- something



Primer on Graph NNs

- For now, shallow encoding
- Each node has a unique vector 

(“embedding-lookup”)
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Primer on Graph NNs

- For now, shallow encoding
- Each node has a unique vector 

(“embedding-lookup”)
- Similarity

- Connected? or Share Neighbors? 
- One Idea: dot products between node 

embeddings ~ edge existence
- Adjacency Matrix defines ground truth for edge 

existence
- Take the difference between the two



Primer on Graph NNs

- Similarity



Primer on Graph NNs

- Similarity



Primer on Graph NNs
- Encoder

- Main insight: generate node embeddings 
based on local neighborhoods



Primer on Graph NNs
- Encoder

- Main insight: generate node embeddings 
based on local neighborhoods

- NNs to aggregate information (msg) per layer



Primer on Graph NNs
- “Deep” Encoder

- Main insight: generate node embeddings 
based on local neighborhoods

- NNs to aggregate information (msg) per layer
- Each node has unique computation graph



Primer on Graph NNs
- Setup

- Graph G = (V, A, X)
- V → Vertex Set
- A → Adjacency Matrix
- X → matrix of node features

- Name, id, relationship status
- Layer 0 embedding → input feature vector



Primer on Graph NNs



Primer on Graph NNs



Primer on Graph NNs



Primer on Graph NNs



Primer on Graph NNs



Primer on Graph NNs



Primer on Graph NNs
- What if we want to go deeper?

- Overfitting from parameters



Primer on Graph NNs



Primer on Graph NNs



Gated Graph NN



Gated Graph NN



Gated Graph NN



Outline

- Primer on Graph Neural Networks
- Converting Programs to Graphs
- Learning with Graph NNs
- Downstream Tasks
- Evaluation



Converting Programs to Graphs
Key Insight: 
- Expose semantics to NN via a Graph

- Avoid shallow, textual structure by 
using data flow and type information



Converting Programs to Graphs
Graph: (V, E, X)
- V (AST nodes)

- Grammar-Rule-Named Nonterminals
- Named Program Tokens

- E
- Syntactic 
- Semantic

- Discussion:
- What are examples of syntactic and 

semantic edges?



Converting Programs to Graphs
Syntactic Edges
Blue → Children
Black → NextToken
- Order saved



Converting Programs to Graphs
Semantic Edges

 x, y = Foo();
 while (x > 0)
      x = x + y;

- Let’s focus on y at line 3



Converting Programs to Graphs
Semantic Edges

 x, y = Foo();
 while (x > 0)
      x = x + y;

- LastUse/Read(y3) → Line {1, 3}
- Line 3 due to loop

- LastWrite(y3) →     Line 1



Converting Programs to Graphs
Semantic Edges

 x, y = Foo();
 while (x > 0)
      x = x + y; 



Converting Programs to Graphs
- Other Edges

- Can use any other program analysis
- Points-to analysis
- Formal Parameter <-->Argument Match
- Conditional Guards
- ReturnsTo



Converting Programs to Graphs
Variable Type Information
- Map variable type to max of set of 

supertypes
- List<int> → max({List<int>, List<K>})

Discussion: any flaws?



Converting Programs to Graphs
Variable Type Information
- Map variable type to max of set of 

supertypes
- Boolean → max({Boolean, Any}) → Any
- Scalar → max({Scalar, Any}) → Any



Converting Programs to Graphs
Variable Type Information
- Use dropout mechanisms: randomly select 

subset
- Boolean → max({Any}) → Any
- Scalar → max({Scalar}) → Scalar



Learning with Graph NNs

- T = 0 (Initial Node Representation)
- Concatenate Name with Type string embedding

- Run Gated Graph NN propagation for 8 steps
- 8 was experimentally determined



Downstream Tasks

- We have an embedding… now what?



Downstream Task 1 - VarNaming



Downstream Task 1 - VarNaming

- Goal: predict correct name at slot t
- Edit Graph

- Insert new node at slot t (“hole”)



Downstream Task 1 - VarNaming

- Goal: predict correct name at slot t
- Edit Graph

- Insert new node at slot t (“hole”)
- Run Gated Graph NN for 8 steps
- Feed representation into trained GRU to predict 

name as a sequence 



Downstream Task 2 - VarMisuse

- Found several real-world bugs



Downstream Task 2 - VarMisuse
- Goal: predict correct token at slot t

- Only type-correct tokens allowed at slot t
- Edit Graph

- Insert new node at slot (“hole”)
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Downstream Task 2 - VarMisuse
- Goal: predict correct token at slot t

- Only type-correct tokens allowed at slot t
- Edit Graph

- Insert new node at slot (“hole”)
- Connect it without node v-dependent edges → 

context (i.e. c(t) )
- Connect it with node v-dependent edges → 

usage representation (i.e. u(t, v) )
- Edges include LastUse and LastWrite
- Add usage node per type-correct variable

- Run Gated Graph NN for 8 steps
- Correct Variable Usage 

- Node v that maximizes trained W(c(t), u(t, v))



Evaluation

- Dataset
- 29 C# projects (~3 million lines of code)
- Graphs on average: ~2300 nodes, ~8400 edges

- Baseline
- VarMisuse (predict variable usage)

- LOC → 2 layer bidirectional GRU
- AVGB1RNN → LOC + simple variable usage dataflow



Evaluation

- Dataset
- 29 C# projects (~3 million lines of code)
- Graphs on average: ~2300 nodes, ~8400 edges

- Baseline
- VarMisuse (predict variable usage)

- LOC → 2 layer bidirectional GRU
- AVGB1RNN → LOC + simple variable usage dataflow

- VarNaming (predict name)
- AVGLBL → Log-bilinear model (NLP-inspired) 
- AVGB1RNN (birectional RNN)



Evaluation

- LOC → captures little information
- AVGLBL/AVGB1RNN → captures some info
- Generalization --> unknown types/vocabulary



Evaluation

- LOC → captures little information
- AVGLBL/AVGB1RNN → captures some info
- Generalization --> unknown types/vocabulary



Evaluation

- Lacking semantic info hurts both
- Lacking syntactic info hurts VarMisuse



Evaluation

- Only syntactic info impacts both
- Only semantic info impacts VarMisuse
- Node initial labeling impacts VarNaming



Contributions

- VarMisuse tasks and its practicality
- Learning Program Representations 

over Graphs



Questions/Discussion

- References
- http://snap.stanford.edu/proj/embeddings-

www/


