CS155

Web Security: Session Management

*QOriginal slides were created by Prof. Dan Boneh

Same origin policy: review

Review: Same Origin Policy (SOP) for DOM:

— Origin A can access origin B’s DOM if match on
(scheme, domain, port)

This lecture: Same Original Policy (SOP) for cookies:

— Basedon: ([scheme], domain, path)

"

optional

scheme://domain:port/path?params \

Setting/deleting cookies by server

GET ...
Browser
HTTP Header:
Set-cookie:

if expires=NULL:
this session only

if expires=past date:
browser deletes cookie

NAME=VALUE ; E

domain = (when to send) ; scope
path = (when to send)

secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

Default scope is domain and path of setting URL

Scope setting rules

domain: any domain-suffix of URL-hostname, except TLD

example:
host = “login.site.com”

(write SOP)

allowed domains

disallowed domains

login.site.com
.Site.com

=> |ogin.site.com can set cookies
for all of .site.com but not for another site or TLD

Problematic for sites like

path: can be set to anything

.stanford.edu

other.site.com
othersite.com
.com

(and some hosting centers)

Cookies are identified by (name,domain,path)

cookie 1 cookie 2

name = userid name = userid
value = test value = test123
domain = login.site.com domain = .site.com
path = / path = /

secure secure

NG 7

Both cookies stored in browser’s cookie jar
both are in scope of login.site.com

istinct cookies

Reading cookies on server (eadsor)

L GET //URL-domain/URL-path
Cookie: NAME = VALUE

Browser sends all cookies in URL scope:

e cookie-domain is domain-suffix of URL-domain, and
e cookie-path is prefix of URL-path, and

 [protocol=HTTPS if cookie is “secure”]

Goal: server only sees cookies in its scope

Examples

both set by login.site.com

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com domain = .site.com
path =/ path =/

secure non-secure

http://checkout.site.com/ cookie: userid=u2
http://login.site.com/ cookie: userid=u2

https://login.site.com/ cookie: userid=ul; userid=u2

Client side read/write: document.cookie

Setting a cookie in Javascript:

77

document.cookie = “name=value; expires=...;

Reading a cookie: alert(document.cookie)

prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:
document.cookie = “name=; expires=Thu, 01-Jan-70"

document.cookie often used to customize page in Javascript

/— Javascript URL

javascript: alert(document.cookie)

http:/ /www.google.com

PREF=1D=04c9b72072f3587c:U=fcbc51c0aa01fc58:T
M=1311996999:LM=1328508072:S=sRHq71AtkSqgp5)
Y

OK

Displays all cookies for current document

Viewing/deleting cookies in Browser UI

Mame: rememberme

Content: true

Domain: .google.com

Path: /

Send For: Any kind of connection

Accessible to Script: Yes
Created: Tuesday, November 29, 2011 10:02:48 PM

* Remove

Cookie protocol problems

Cookie protocol problems

Server is blind:
— Does not see cookie attributes (e.g. secure, HttpOnly)
— Does not see which domain set the cookie

Server only sees: Cookie: NAME=VALUE

Example 1: login server problems

1. Alicelogsinat login.site.com
login.site.com sets session-id cookie for .site.com

2. Alice visits evil.site.com

overwrites .site.com session-id cookie
with session-id of user “badguy”

3. Alice visits course.site.com to submit homework
course.site.com thinks it is talking to “badguy”

Problem: course.site.com expects session-id from login.site.com;
cannot tell that session-id cookie was overwritten

Example 2: “secure” cookies are not secure

Alice logs in at https://accounts.google.com

set-cookie: SSID=A7_ ESAgDpKYk5TGnf; Domain=.google.com; Path=/ ;
Expires=Wed, 09-Mar-2023 18:35:11 GMT; Secure; HttpOnly
set-cookie: SAPISID=wj1gYKLFy-RmWybP/ANtKMtPIHNambvdl4; Domain=.google.com;Path=/ ;
Expires=Wed, 09-Mar-2023 18:35:11 GMT; Secure

(" Alice visits http://www.google.com (cleartext) A
* Network attacker can inject into response
Set-Cookie: SSID=badguy; secure
_ _and overwrite secure cookie)

Problem: network attacker can re-write HTTPS cookies !
= HTTPS cookie value cannot be trusted

Interaction with the DOM SOP

Cookie SOP path separation:
x.com/A does not see cookies of x.com/B

Not a security measure: x.com/A has access to DOM of x.com/B

{ <iframe src=“x.com/B"></iframe> }

alert(frames[0].document.cookie);

Path separation is done for efficiency not security:
x.com/A is only sent the cookies it needs

Cookies have no integrity

User can change and delete cookie values
* Edit cookie database (FF: cookies.sqlite)
 Modify Cookie header (FF: TamperData extension)

Silly example: shopping cart software
Set-cookie: shopping-cart-total = 150 (S)

User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total =15 (S)

Similar problem with hidden fields
<INPUT TYPE="hidden” NAME=price VALUE="150">

Not so Sllly ... (asof 2/2000)

D3.COM Pty Ltd: ShopFactory 5.8

@Retail Corporation: @Retail

Adgrafix: Check It Out

Baron Consulting Group: WebSite Tool
ComCity Corporation: SalesCart

Crested Butte Software: EasyCart

Dansie.net: Dansie Shopping Cart

Intelligent Vending Systems: Intellivend
Make-a-Store: Make-a-Store OrderPage
McMurtrey/Whitaker & Associates: Cart32 3.0
pknutsen@nethut.no: CartMan 1.04

Rich Media Technologies: JustAddCommerce 5.0
SmartCart: SmartCart

Web Express: Shoptron 1.2

Source: http://xforce.iss.net/xforce/xfdb/4621

Solution: cryptographic checksums

Goal: data integrity

Requires server-side secret key k unknown to browser

Generate tag: T < MAGsign(k, SID Il name |l value)

< 5
Browser Set-Cookie: NAME = value k
. —
>
Cookie: NAME =

value

Verify tag: MACverify(k, SID Il name |l value, T)

Binding to session-id (SID) makes it harder to replay old cookies

Example: ASPNET

System.Web.Configuration.MachineKey
— Secret web server key intended for cookie protection
Creating an encrypted cookie with integrity:

HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =
HttpSecureCookie.Encode (cookie);

Decrypting and validating an encrypted cookie:

HttpSecureCookie.Decode (cookie);

Session Management

Sessions

A sequence of requests and responses from one browser
to one (or more) sites

— Session can be long (e.g. Gmail) or short

— without session mgmt:
users would have to constantly re-authenticate

Session mgmt: authorize user once;
— All subsequent requests are tied to user

Pre-history: HTTP auth

GET /index.html

HTTP request:

HTTP response contains:

WWW-Authenticate: Basic realm="Password Required”

Authentication Required

C

"Password Required”

Q A username and passweord are being requested by https://crypto.stanford.edu. The site says:

User Name: hellol

Passwor d: eesssssse

[

OK

| [cancel

J

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRIeHQ=

HTTP auth problems

Hardly used in commercial sites:

* User cannot log out other than by closing browser

— What if user has multiple accounts?
multiple users on same machine?

e Site cannot customize password dialog
* Confusing dialog to users

* Easily spoofed

Session tokens

Browser web site
GET /index.html S

< :
set anonymous session token

GET /books.html

>
anonymous session token
. check
LPJOST /do-Ic;Lgln - > credentials
sername & passwor
< - - (crypto)
elevate to a logged-in session token
POST /checkout N Validate

logged-in session token token

Storing session tokens:
Lots of options (but none are perfect)

Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

Embed in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

In a hidden form field:
<input type="hidden” name="sessionid” value="kh7y3b”>

Storing session tokens: problems

Browser cookie: browser sends cookie with every request,
even when it should not (CSRF)

Embed in all URL links: token leaks via HTTP Referer header

(or if user posts URL in a public blog)

In a hidden form field: does not work for long-lived sessions

Best answer: a combination of all of the above.

The HTTP referer header

GET /wiki/John_QOusterhout HTTP/1.1
Host: en.wikipedia.org
Keep-Alive: 300

Connection: keep-alive

Referer: http://www.google.com/search?q=john+ousterhout&ie=utf-8&os¢

Referer leaks URL session token to 3™ parties

Referer supression:
* not sent when HTTPS site refers to an HTTP site
* in HTML5:

The Logout Process

Web sites must provide a logout function:
* Functionality: let user to login as different user

e Security: prevent others from abusing account

What happens during logout:
1. Delete SessionToken from client

2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !!
= Especially risky for sites who fall back to HTTP after login

Session hijacking

Session hijacking
Attacker waits for user to login

then attacker steals user’s Session Token
é .o ” .
and "hijacks ™ session

= attacker can issue arbitrary requests on behalf of user

Example: FireSheep [2010]

Firefox extension that hijacks Facebook
session tokens over WiFi. Solution: HTTPS after login

Beware: Predictable tokens

Example 1: counter

=> user logs in, gets counter value,

can view sessions of other users

Example 2: weak MAC. token = { userid, MAC,(userid) }
e Weak MAC exposes k from few cookies.

Apache Tomcat: generateSessionld()
e Returns random session ID [server retrieves client state based on sess-id]

s

To generate: use underlying framework (e.g. ASP, Tomcat, Rails)

_

ession tokens must be unpredictable to attacker

token = MD5(current time, random nonce)

~

!

Beware: Session token theft

Example 1: login over HTTPS, but subsequent HTTP
 Enables cookie theft at wireless Café (e.g. Firesheep)

* Other ways network attacker can steal token:
— Site has mixed HTTPS/HTTP pages = token sent over HTTP
— Man-in-the-middle attacks on SSL

Example 2: Cross Site Scripting (XSS) exploits

Amplified by poor logout procedures:
— Logout must invalidate token on server

Mitigating SessionToken theft by binding
SessionToken to client’s computer

A common idea: embed machine specific data in SID

Client IP addr: makes it harder to use token at another machine
— But honest client may change IP addr during session
* client will be logged out for no reason.

Client user agent: weak defense against theft, but doesn’t hurt.

SSL session id: same problem as IP address (and even worse)

Session fixation attacks

Suppose attacker can set the user’s session token:
* For URL tokens, trick user into clicking on URL

* For cookie tokens, set using XSS exploits

Attack: (say, using URL tokens)

1. Attacker gets anonymous session token for site.com
2. Sends URL to user with attacker’s session token

3. User clicks on URL and logs into site.com
— this elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack user’s session.

Session fixation: lesson

When elevating user from anonymous to logged-in:

always issue a new session token

After login, token changes to value unknown to attacker

= Attacker’s token is not elevated.

Summary

* Always assume cookie data retrieved from client is adversarial

» Session tokens are split across multiple client state mechanisms:
— Cookies, hidden form fields, URL parameters
— Cookies by themselves are insecure (CSRF, cookie overwrite)

— Session tokens must be unpredictable and resist theft by
network attacker

* Ensure logout invalidates session on server

THE END

