
Secure	Architecture	
Principles	

•  Isola3on	and	Least	Privilege	
•  Access	Control	Concepts	
•  Opera3ng	Systems	
•  Browser	Isola3on	and	Least	Privilege	

Original	slides	were	created	by	Prof.	John	Mitchel		

Secure	Architecture	
Principles	

Isola3on	and	
Least	Privilege	

Principles	of	Secure	Design	
•  Compartmentaliza3on	

–  Isola3on	
–  Principle	of	least	privilege	

•  Defense	in	depth	
–  Use	more	than	one	security	mechanism	
–  Secure	the	weakest	link	
–  Fail	securely	

•  Keep	it	simple	

Principle	of	Least	Privilege	
•  What’s	a	privilege?	

–  Ability	to	access	or	modify	a	resource	
•  Assume	compartmentaliza3on	and	isola3on	

–  Separate	the	system	into	isolated	compartments	
–  Limit	interac3on	between	compartments	

•  Principle	of	Least	Privilege	
–  A	system	module	should	only	have	the	minimal	
privileges	needed	for	its	intended	purposes	

Monolithic	design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Monolithic	design	

System	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Monolithic	design	

System	

Network	

User	input	

File	system	

Network	

User	display	

File	system	

Component	design	

Network	

User	input	

File	system	

Network	

User	display	

File	system	

Component	design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Component	design	

Network	

User	input	

File	system	

Network	

User	device	

File	system	

Principle	of	Least	Privilege	
•  What’s	a	privilege?	

–  Ability	to	access	or	modify	a	resource	
•  Assume	compartmentaliza3on	and	isola3on	

–  Separate	the	system	into	isolated	compartments	
–  Limit	interac3on	between	compartments	

•  Principle	of	Least	Privilege	
–  A	system	module	should	only	have	the	minimal	
privileges	needed	for	its	intended	purposes	

Example:	Mail	Agent	
•  Requirements	

–  Receive	and	send	email	over	external	network	
–  Place	incoming	email	into	local	user	inbox	files	

•  Sendmail	
–  Tradi3onal	Unix		
– Monolithic	design	
–  Historical	source	of	many	vulnerabili3es	

•  Qmail	
–  Compartmentalized	design	

OS	Basics	(before	examples)	

•  Isola3on	between	processes	
–  Each	process	has	a	UID	

•  Two	processes	with	same	UID	have	same	permissions	
–  A	process	may	access	files,	network	sockets,	….	

•  Permission	granted	according	to	UID	
•  Rela3on	to	previous	terminology	

–  Compartment	defined	by	UID		
–  Privileges	defined	by	ac3ons	allowed	on	system	resources	

Qmail	design	
•  Isola3on	based	on	OS	isola3on	

–  Separate	modules	run	as	separate	“users”	
–  Each	user	only	has	access	to	specific	resources	

•  Least	privilege	
– Minimal	privileges	for	each	UID	
–  Only	one	“setuid”	program	

•  setuid	allows	a	program	to	run	as	different	users	
–  Only	one	“root”	program	

•  root	program	has	all	privileges	

Structure	of	qmail	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

Incoming external mail Incoming internal mail

Isola3on	by	Unix	UIDs	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmaild
user

qmailq

qmails qmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Structure	of	qmail	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	Reads	incoming	mail	directories	
Splits	message	into	header,	body	
Signals	qmail-send	

Structure	of	qmail	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	
		qmail-send	signals	

•  qmail-lspawn	if	local	
•  qmail-remote	if	remote	

Structure	of	qmail	

qmail-smtpd	

qmail-local	

qmail-lspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmail-lspawn	
•  Spawns	qmail-local		
•  qmail-local	runs	with	ID	of	user	
receiving	local	mail	

Structure	of	qmail	

qmail-smtpd	

qmail-local	

qmail-lspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmail-local	
•  Handles	alias	expansion	
•  Delivers	local	mail	
•  Calls	qmail-queue	if	needed	

Structure	of	qmail	

qmail-smtpd	

qmail-remote	

qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmail-remote	
•  Delivers	message	to	remote	MTA	

root

Isola3on	by	Unix	UIDs	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

qmaild
user

qmailq

qmails qmailr

qmailr user
setuid user

qmailq – user who is allowed to read/write mail queue

setuid

root

Least	privilege	

qmail-smtpd	

qmail-local	qmail-remote	

qmail-lspawn	qmail-rspawn	

qmail-send	

qmail-inject	

qmail-queue	

root

setuid

Android	process	isola3on	

•  Android	applica3on	sandbox	
–  Isola3on:	Each	applica3on	runs	with	its	own	UID	in	own	VM	

•  Provides	memory	protec3on	
•  Communica3on	limited	to	using	Unix	domain	sockets	
•  Only	ping,	zygote	(spawn	another	process)	run	as	root	

–  Interac3on:	reference	monitor	checks	permissions	on	inter-
component	communica3on		

–  Least	Privilege:	Applica3ons	announces	permission		
•  User	grants	access	at	install	3me	

Secure	Architecture	
Principles	

Access	Control	
Concepts	

Access	control		
•  Assump3ons	

–  System	knows	who	the	user	is	
•  Authen3ca3on	via	name	and	password,	other	creden3al		

–  Access	requests	pass	through	gatekeeper	(reference	monitor)	
•  System	must	not	allow	monitor	to	be	bypassed	

Resource	
User	
process	

Reference	
monitor	

access	request	

policy	

?	

Access	control	matrix				[Lampson]	

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subjects	

Objects	

Implementa3on	concepts	
•  Access	control	list	(ACL)	

–  Store	column	of	matrix		
			with	the	resource	

•  Capability	
–  User	holds	a	“3cket”	for		
			each	resource	
–  Two	varia3ons	

•  store	row	of	matrix	with	user,	under	OS	control	
•  unforgeable	3cket	in	user	space	

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access	control	lists	are	widely	used,	ocen	with	groups	
Some	aspects	of	capability	concept	are	used	in	many	systems	

ACL	vs	Capabili3es	
•  Access	control	list	

–  Associate	list	with	each	object	
–  Check	user/group	against	list	
–  Relies	on	authen3ca3on:	need	to	know	user	

•  Capabili3es	
–  Capability	is	unforgeable	3cket	

•  Random	bit	sequence,	or	managed	by	OS	
•  Can	be	passed	from	one	process	to	another	

–  Reference	monitor	checks	3cket	
•  Does	not	need	to	know	iden3fy	of	user/process	

ACL	vs	Capabili3es	

	
Process	P	
User	U	

	
Process	Q	
User	U	

	
Process	R	
User	U	

	
Process	P	
Capabilty	c,d,e	

	
Process	Q	

	
Process	R	
Capabilty	c	

Capabilty	c,e	

ACL	vs	Capabili3es	
•  Delega3on	

–  Cap:	Process	can	pass	capability	at	run	3me	
–  ACL:	Try	to	get	owner	to	add	permission	to	list?	

•  More	common:	let	other	process	act	under	current	user	
•  Revoca3on	

–  ACL:	Remove	user	or	group	from	list	
–  Cap:	Try	to	get	capability	back	from	process?	

•  Possible	in	some	systems	if	appropriate	bookkeeping	
–  OS	knows	which	data	is	capability	
–  If	capability	is	used	for	mul3ple	resources,	have	to	revoke	all	or	none	…	

•  Indirec3on:	capability	points	to	pointer	to	resource	
–  If	C	→	P	→	R,	then	revoke	capability	C	by	seeng	P=0	

Roles		(aka	Groups)	
•  Role	=	set	of	users	

–  Administrator,	PowerUser,	User,	Guest	
–  Assign	permissions	to	roles;	each	user	gets	permission	

•  Role	hierarchy	
–  Par3al	order	of	roles	
–  Each	role	gets	
	permissions	of	roles	below	

–  List	only	new	permissions	
			given	to	each	role	

Administrator	

Guest	

PowerUser	

User	

Role-Based	Access	Control	
Individuals	 Roles	 Resources	

engineering	

marke3ng	

human	res	

Server	1	

Server	3	

Server	2	

Advantage:	users	change	more	frequently	than	roles	

Access	control	summary	
•  Access	control	involves	reference	monitor	

–  Check	permissions:	〈user	info,	ac3on〉→	yes/no	
–  Important:	no	way	around	this	check	

•  Access	control	matrix	
–  Access	control	lists	vs	capabili3es	
–  Advantages	and	disadvantages	of	each	

•  Role-based	access	control	
–  Use	group	as	“user	info”;		use	group	hierarchies		

Secure	Architecture	
Principles	

Opera3ng	Systems	

Unix	access	control	

•  Process	has	user	id	
–  Inherit	from	crea3ng	process	
–  Process	can	change	id	

•  Restricted	set	of	op3ons	
–  Special	“root”	id		

•  All	access	allowed	
•  File	has	access	control	list	(ACL)	

–  Grants	permission	to	user	ids	
–  Owner,	group,	other	

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Unix	file	access	control	list	
•  Each	file	has	owner	and	group	
•  Permissions	set	by	owner	

–  Read,	write,	execute	
–  Owner,	group,	other	
–  Represented	by	vector	of	
					four	octal	values	

•  Only	owner,	root	can	change	permissions	
–  This	privilege	cannot	be	delegated	or	shared	

•  Se3d	bits	–	Discuss	in	a	few	slides	

rwx	 rwx	rwx	-	
ownr	 grp	 othr	

se3d	

Ques3on	
•  Owner	can	have	fewer	privileges	than	other	

–  What	happens?	
•  Owner	gets	access?	
•  Owner	does	not?	

Priori3zed	resolu3on	of	differences	
				if	user	=	owner	then	owner		permission	
											else	if	user	in	group	then	group		permission	
																		else	other		permission	

Process	effec3ve	user	id	(EUID)	
•  Each	process	has	three	Ids		(+	more	under	Linux)	

–  Real	user	ID							(RUID)	
•  same	as	the	user	ID	of	parent	(unless	changed)	
•  used	to	determine	which	user	started	the	process		

–  Effec3ve	user	ID		(EUID)	
•  from	set	user	ID	bit	on	the	file	being	executed,	or	sys	call	
•  determines	the	permissions	for	process	

–  file	access	and	port	binding	
–  Saved	user	ID					(SUID)	

•  So	previous	EUID	can	be	restored	

•  Real	group	ID,	effec3ve	group	ID,	used	similarly		

Process	Opera3ons	and	IDs	
•  Root	

–  ID=0	for	superuser	root;	can	access	any	file	
•  Fork	and	Exec	

–  Inherit	three	IDs,	except	exec	of	file	with	setuid	bit	
•  Setuid	system	call		

–  seteuid(newid)	can	set	EUID	to	
•  Real	ID	or	saved	ID,	regardless	of	current	EUID	
•  Any	ID,	if	EUID=0	
	

•  Details	are	actually	more	complicated	
–  Several	different	calls:	setuid,	seteuid,	setreuid	

Se3d	bits	on	executable	Unix	file	
•  Three	se3d	bits	

–  Setuid	–	set	EUID	of	process	to	ID	of	file	owner	
–  Setgid	–	set	EGID	of	process	to	GID	of	file	
–  S3cky	

•  Off:	if	user	has	write	permission	on	directory,	can	
rename	or	remove	files,	even	if	not	owner	

•  On:	only	file	owner,	directory	owner,	and	root	can	
rename	or	remove	file	in	the	directory	

Example	

…;	
…;	
exec();	

RUID	25	 SetUID	

program	

…;	
…;	
i=getruid()	
setuid(i);	
…;	
…;	

RUID	25	
EUID	18	

RUID	25	
EUID	25	

-rw-r--r--	
file	

-rw-r--r--	
file	

Owner	18	

Owner	25	

read/write	

read/write	

Owner	18	

Unix	summary	
•  Good	things	

–  Some	protec3on	from	most	users	
–  Flexible	enough	to	make	things	possible	

•  Main	limita3on	
–  Too	temp3ng	to	use	root	privileges	
–  No	way	to	assume	some	root	privileges	without	all	root	
privileges	

Weakness	in	isola3on,	privileges	
•  Network-facing	Daemons		

–  Root	processes	with	network	ports	open	to	all	remote	par3es,	e.g.,	
sshd,	cpd,	sendmail,	…	

•  Rootkits		
–  System	extension	via		dynamically	loaded	kernel	modules	

•  Environment	Variables		
–  System	variables	such	as	LIBPATH	that	are	shared	state	across	

applica3ons.	An	aqacker	can	change	LIBPATH	to	load	an	aqacker-
provided	file	as	a	dynamic	library	

Weakness	in	isola3on,	privileges	
•  Shared	Resources		

–  Since	any	process	can	create	files	in	/tmp	directory,	an	untrusted	
process	may	create	files	that	are	used	by	arbitrary	system	processes	

•  Time-of-Check-to-Time-of-Use	(TOCTTOU)	
–  Typically,	a	root	process	uses	system	call	to	determine	if	ini3a3ng	user	

has	permission	to	a	par3cular	file,	e.g.	/tmp/X.	
–  Acer	access	is	authorized	and	before	the	file	open,	user	may	change	

the	file	/tmp/X	to	a	symbolic	link	to	a	target	file	/etc/shadow.	

Access	control	in	Windows	
•  Some	basic	func3onality	similar	to	Unix	

–  Specify	access	for	groups	and	users	
•  Read,	modify,	change	owner,	delete		

•  Some	addi3onal	concepts	
–  Tokens	
–  Security	aqributes	

•  Generally 		
– More	flexible	than	Unix	

•  Can	define	new	permissions	
•  Can	give	some	but	not	all	administrator	privileges	

Iden3fy	subject	using	SID	
•  Security	ID	(SID)	

–  Iden3ty	(replaces	UID)	
•  SID	revision	number	
•  48-bit	authority	value	
•  variable	number	of	
Rela3ve	Iden3fiers	
(RIDs),	for	uniqueness	

–  Users,	groups,	computers,	
domains,	domain	members	
all	have	SIDs	

Process	has	set	of	tokens	
•  Security	context	

–  Privileges,	accounts,	and	groups	associated	with	the	
process	or	thread	

–  Presented	as	set	of	tokens	
•  Impersona3on	token		

–  Used	temporarily	to	adopt	a	different	security	context,	
usually	of	another	user	

•  Security	Reference	Monitor		
–  Uses	tokens	to	iden3fy	the	security	context	of	a	process	or	
thread	

Object	has	security	descriptor	
•  Security	descriptor	associated	with	an	object	

–  Specifies	who	can	perform	what	ac3ons	on	the	object	
•  Several	fields	

–  Header		
•  Descriptor	revision	number		
•  Control	flags,	aqributes	of	the	descriptor	

–  E.g.,	memory	layout	of	the	descriptor	
–  SID	of	the	object's	owner	
–  SID	of	the	primary	group	of	the	object		
–  Two	aqached	op3onal	lists:		

•  Discre3onary	Access	Control	List	(DACL)	–	users,	groups,	…	
•  System	Access	Control	List	(SACL)	–	system	logs,	..		

Example	access	request	

Group1:	Administrators	
Group2:	Writers	

Control	flags 		

Group	SID	
DACL	Pointer	
SACL	Pointer	
					Deny	
					Writers	
					Read,	Write	
					Allow	
					Mark	
					Read,	Write	

Owner	SID	

Revision	Number	

Access	token	

Security	
descriptor	

Access	request:	write	
Ac3on:	denied	

•  User Mark requests write permission
•  Descriptor denies permission to group
•  Reference Monitor denies request
(DACL for access, SACL for audit and logging)	

Priority:	
Explicit	Deny	
Explicit	Allow	
Inherited	Deny	
Inherited	Allow	

User:				Mark	

Impersona3on	Tokens			
(compare	to	setuid)	

•  Process	adopts	security	aqributes	of	another	
–  Client	passes	impersona3on	token	to	server	

•  Client	specifies	impersona3on	level	of	server	
–  Anonymous	

•  Token	has	no	informa3on	about	the	client	
–  Iden3fica3on	

•  Obtain	the	SIDs	of	client	and	client's	privileges,	but	server	
cannot	impersonate	the	client	

–  Impersona3on	
•  Impersonate	the	client	

–  Delega3on	
•  Lets	server	impersonate	client	on	local,	remote	systems	

Weakness	in	isola3on,	privileges	
•  Similar	problems	to	Unix	

–  E.g.,	Rootkits	leveraging	dynamically	loaded	kernel	modules	
•  Windows	Registry		

–  Global	hierarchical	database	to	store	data	for	all	programs		
–  Registry	entry	can	be	associated	with	a	security	context	that	
limits	access;	common	to	be	able	to	write	sensi3ve	entry	

•  Enabled	By	Default	
–  Historically,	many	Windows	deployments	also	came	with	full	
permissions	and	func3onality	enabled	

Secure	Architecture	
Principles	

Browser	Isola3on	
and	Least	Privilege	

Web	browser:	an	analogy	

Opera&ng	system	
•  Subject:	Processes	

–  Has	User	ID	(UID,	SID)	
–  Discre3onary	access	control	

•  Objects	
–  File	
–  Network	
–  …	

•  Vulnerabili3es	
–  Untrusted	programs	
–  Buffer	overflow	
–  …	

Web	browser	
•  Subject:	web	content	(JavaScript)	

–  Has	“Origin”	
–  Mandatory	access	control	

•  Objects	
–  Document	object	model	
–  Frames	
–  Cookies	/	localStorage	

•  Vulnerabili3es	
–  Cross-site	scrip3ng	
–  Implementa3on	bugs	
–  …	

The	web	browser	enforces	its	own	internal	policy.	If	the	browser	
implementa3on	is	corrupted,	this	mechanism	becomes	unreliable.	

Components	of	security	policy	
•  Frame-Frame	rela3onships	

–  canScript(A,B)	
•  Can	Frame	A	execute	a	script	that	manipulates	
arbitrary/nontrivial	DOM	elements	of	Frame	B?	

–  canNavigate(A,B)	
•  Can	Frame	A	change	the	origin	of	content	for	Frame	B?	

•  Frame-principal	rela3onships	
–  readCookie(A,S),	writeCookie(A,S)	

•  Can	Frame	A	read/write	cookies	from	site	S?	

Chromium	Security	Architecture	

•  Browser	("kernel")	
–  Full	privileges	(file	system,	
networking)	

•  Rendering	engine	
–  Up	to	20	processes		
–  Sandboxed	

•  One	process	per	plugin	
–  Full	privileges	of	browser 		

Chromium	

Communica3ng	sandboxed	
components	

See:	hqp://dev.chromium.org/developers/design-documents/sandbox/	

Design	Decisions	
•  Compa3bility	

–  Sites	rely	on	the	exis3ng	browser	security	policy	
–  Browser	is	only	as	useful	as	the	sites	it	can	render	
–  Rules	out	more	“clean	slate”	approaches	

•  Black	Box		
–  Only	renderer	may	parse	HTML,	JavaScript,	etc.	
–  Kernel	enforces	coarse-grained	security	policy	
–  Renderer	to	enforces	finer-grained	policy	decisions	

•  Minimize	User	Decisions	

Task	Alloca3on	

Leverage	OS	Isola3on	
•  Sandbox	based	on	four	OS	mechanisms	

–  A	restricted	token	
–  The	Windows	job	object	
–  The	Windows	desktop	object	
–  Windows	Vista	only:	integrity	levels	

•  Specifically,	the	rendering	engine		
–  adjusts	security	token	by	conver3ng	SIDS	to	DENY_ONLY,	adding	

restricted	SID,	and	calling	AdjustTokenPrivileges	
–  runs	in	a	Windows	Job	Object,	restric3ng	ability	to	create	new	

processes,	read	or	write	clipboard,	..	
–  runs	on	a	separate	desktop,	mi3ga3ng	lax	security	checking	of	some	

Windows	APIs		
See:	hqp://dev.chromium.org/developers/design-documents/sandbox/	

Evalua3on:	CVE	count	

•  Total	CVEs:	

•  Arbitrary	code	execu3on	vulnerabili3es:	

	

Summary	
•  Security	principles	

–  Isola3on	
–  Principle	of	Least	Privilege	
–  Qmail	example	

•  Access	Control	Concepts	
–  Matrix,	ACL,	Capabili3es	

•  OS	Mechanisms	
–  Unix	

•  File	system,	Setuid	
–  Windows	

•  File	system,	Tokens,	EFS	
•  Browser	security	architecture	

–  Isola3on	and	least	privilege	example	

