Memory Corruption

Basic Memory
Corruption Attacks

Original slides were created by Prof. Dan Boneh

Memory corruption attacks

e Attacker’s goal:

— Take over target machine (e.g. web server)

* Execute arbitrary code on target by
hijacking application control flow leveraging memory
corruption

 Examples.
— Buffer overflow attacks
— Integer overflow attacks
— Format string vulnerabilities

Example 1: buffer overflows

* Extremely common bug in C/C++ programs.
— First major exploit: 1988 Internet Worm. fingerd.

600 -
500
400
300 -
200 -
100 -

0]

1995 1997 1999 2001 2003 2005

~20% of all vuln.

Source: NVD/CVE

What is needed

Understanding C functions, the stack, and the heap.
Know how system calls are made
The exec() system call

Attacker needs to know which CPU and OS used on the target machine:
— Our examples are for x86 running Linux or Windows

— Details vary slightly between CPUs and OSs:
e Little endian vs. big endian (x86 vs. Motorola)
e Stack Frame structure (Unix vs. Windows)

Linux process memory layout

OxC0000000
%esp
0x40000000
brk '
Loaded
from exec 0x08048000

0

Stack Frame

high
arguments
return address
stack frame pointer
exception handlers
local variables Stack
Growth

low

What are buffer overflows?

Suppose a web server contains a function:

When func() is called stack looks like:

argument: str

void func (char *str) {
char buf[128];

strcpy (buf, str);
do-something (buf) ;

return address

stack frame pointer

char buf[128]

SP

What are buffer overflows?

What if *str is 136 bytes long?
After strcpy:

argument: str

*str -

void func(char *str) {
char buf[128];

strcpy (buf, str);
do-something (buf) ;

Problem:
no length checking in strcpy()

Basic stack exploit

Suppose *str is such that
after strcpy stack looks like:

Program P: exec(“/bin/sh”)

When func() exits, the user gets shell !
Note: attack code P runs in stack.

Program P

return address

char buf[128]

hiih

low

The NOP slide gt
Program P
Problem: how does attacker

determine ret-address? :
NOP Slide

Solution: NOP slide

* Guess approximate stack state
when func() is called

return address

* Insert many NOPs before program P:

char buf[128]

nop , Xxoreax,eax , incax

low

Details and examples

 Some complications:
— Program P should not contain the \O’ character.
— Overflow should not crash program before func() exists.

* (in)Famous remote stack smashing overflows:

— (2007) Overflow in Windows animated cursors (ANI). LoadAnilcon()

— (2005) Overflow in Symantec Virus Detection

test.GetPrivateProfileString "file", [long string]

Many unsafe libc functions

strcpy (char *dest, const char *src)

strcat (char *dest, const char *src)

gets (char *s)

scanf (const char *format, ...) and many more.

« “Safe” libc versions strncpy(), strncat() are misleading
— e.g. strncpy() may leave string unterminated.

 Windows C run time (CRT):
— strcpy_s (*dest, DestSize, *src): ensures proper termination

Buffer overflow opportunities

* Exception handlers: (Windows SEH attacks)
— Overwrite the address of an exception handler in stack frame.

* Function pointers: (e.g. PHP4.0.2, MS MediaPlayer Bitmaps)

Heap
buf[128] FuncPtr or

stack
— Overflowing buf will override function pointer.

* Longjmp buffers: longjmp(pos) (e.g. Perl 5.003)
— Overflowing buf next to pos overrides value of pos.

Corrupting method pointers

 Compiler generated function pointers (e.g. C++ code)

method #1
method #2
method #3

Object T

e After overflow of buf:

ol

object T

Finding buffer overflows

* To find overflow:
— Run web server on local machine
— Issue malformed requests (ending with “SSSSS”)
 Many automated tools exist (called fuzzers — next module)

— |f web server crashes,
search core dump for “SSSSSS” to find overflow location

e Construct exploit (not easy given latest defenses)

Memory Corruption

More Memory
Corruption Attacks

More Corruption Opportunities

Integer overflows: (e.g. MS DirectX MIDI Lib)

Double free: double free space on heap

— Can cause memory mgr to write data to specific location
— Examples: CVS server

Use after free: using memory after it is freed

Format string vulnerabilities

Integer OVe rﬂ OWS (see Phrack 60)

Problem: what happens when int exceeds max value?

intm; (32 bits) shorts; (16 bits) char c; (8 bits)
c =0x80 +0x80 =128 + 128 = ¢=0
s = Oxff80 + 0x80 = s=0
m = Oxffffff80 + Ox80 = m=0

Can this be exploited?

An example

void func(char *bufl, *buf2, unsigned intlenl, len2) {
char temp[256];

if (len1 + len2 > 256) {return -1} // length check
memcpy(temp, buf1, len1); // cat buffers
memcpy(temp+len1, buf2, len2);

do-something(temp); // do stuff

What if lenl =0x80, len2 = Oxffffff80 >
= lenl+len2=0

Second memcpy() will overflow heap !!

Integer overflow exploit stats

140 -
120 -
100 -
80 -
60 -
40 -
20 -

o Source: NVD/CVE
1996 1998 2000 2002 2004 2006

Format string bugs

Format string problem

int func(char *user) {
fprintf (stderr, user);

}

Problem: whatif *user = “%S%s%s%s%Ss%s%s” ??

— Most likely program will crash: DoS.

— If not, program will print memory contents. Privacy?

— Full exploit using user = "%n"

Correct form: fprintf(stdout, “%s”, user);

Vulnerable functions

Any function using a format string.

Printing:
printf, fprintf, sprintf, ...
vprintf, vfprintf, vsprintf, ...

Logging:
syslog, err, warn

* Dumping arbitrary memory:
— Walk up stack until desired pointer is found.

— printf(“%08x.%08x.%08x.%08x | %s|"”)

* Writing to arbitrary memory:

— printf(“hello %n”, &temp) -- writes ‘6" into temp.

— printf(“%08x.%08x.%08x.%08x.%n")

Memory Corruption

Platform Defenses

Preventing hijacking attacks

1. Fix bugs:

— Audit software
* Automated tools: Coverity, Prefast/Prefix.

— Rewrite software in a type safe languange (Java, ML)
 Difficult for existing (legacy) code ...

2. Concede overflow, but prevent code execution

3. Add runtime code to detect overflows exploits
— Halt process when overflow exploit detected
— StackGuard, LibSafe, ...

Marking memory as hon-execute

Prevent attack code execution by marking stack and heap as non-executable

« NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
— NX bit in every Page Table Entry (PTE)

e Deployment:
— Linux (via PaX project); OpenBSD
— Windows: since XP SP2 (DEP)
Visual Studio: /NXCompat[:NO]

* Limitations:
— Some apps need executable heap (e.g. JITs).
— Does not defend against 'Return Oriented Programming’ exploits

Examples: DEP controls in Windows

~ o

Performance Options
I Visual Effects I Advanced | Data Execution Prevention

Data Execution Prevention {DEP) helps protect
against damage from viruses and other security
threats. How does it work?

@ Turn on DEP for essential Windows programs and services

only
() Turn on DEP For all programs and services except those I Data Execution Prevention - Microsoft Windows @
select:

To help protect your computer, Windows has closed this program.

Name: Windows Explorer
g\-' Publisher: Microsoft Corporation

[Close Message |

Data Execution Prevention helps protect against damage from viruses and other
security threats. What should I do?

Add...

Your computer's processor supports hardware-based DEP.

DEP terminating a program

[OK] [Cancel] [Apply]

Attack: Return Oriented Programming (ROP)

* Control hijacking without executing code

stack libc.so

« ASLR: (Address Space Layout Randomization)

— Map shared libraries to rand location in process memory
=> Attacker cannot jump directly to exec function

— Deployment: (/DynamicBase)
* Windows 7: 8 bits of randomness for DLLs
— aligned to 64K page in a 16MB region = 256 choices
* Windows 8: 24 bits of randomness on 64-bit processors

e QOther randomization methods:

— Sys-call randomization: randomize sys-call id’s
— Instruction Set Randomization (ISR)

ASLR Example

Booting twice loads libraries into different locations:

ntlanman.dll O0=6D7F0000 | Microsoft® Lan Manager
ntrnarta. dll O=x75370000 | “Windows NT MARTA provider
ntshruidll O=6F2C0000 | Shell extensions for sharing
ole32.dll O0=76160000 | Microsoft OLE for Windows
ntlanman.dll O=x6DA90000 | Microsoft® Lan Manager
ntrarta. dll Ox75660000 | Windows NT MARTA provider
ntshruidll 0=6D3D0000 | Shell extensions for sharing
ole32.dll 0x763C0000 | Microsoft OLE for Windows

Note: everything in process memory must be randomized

stack, heap, shared libs, base image

* Win 8 Force ASLR:

ensures all loaded modules use ASLR

ldea:

More attacks : JiT spraying

1. Force Javascript JiT to fill heap with
executable shellcode

2. then point SFP anywhere in spray area

deay

Memory Corruption

Run-time Defenses

Run time checking: StackGuard

* Many run-time checking techniques ...
— we only discuss methods relevant to overflow protection

e Solution 1: StackGuard
— Run time tests for stack integrity.

— Embed “canaries” in stack frames and verify their integrity
prior to function return.

Frame 2 Frame 1

top
[tocal ERRERN sfo [ret [str]| tocol [NERRRM sfo [ret [str] of

stack
<

e Random canary:
— Random string chosen at program startup.
— Insert canary string into every stack frame.

— Verify canary before returning from function.
* Exit program if canary changed. Turns potential exploit into DoS.

— To corrupt, attacker must learn current random string.

e Terminator canary: Canary = {0, newline, linefeed, EOF}
— String functions will not copy beyond terminator.
— Attacker cannot use string functions to corrupt stack.

StackGuard (Cont.)

StackGuard implemented as a GCC patch
— Program must be recompiled

Minimal performance effects: 8% for Apache

Note: Canaries do not provide full protection
— Some stack smashing attacks leave canaries unchanged

Heap protection: PointGuard

— Protects function pointers and setjmp buffers by encrypting them:
e.g. XOR with random cookie

— Less effective, more noticeable performance effects

StackGuard enhancements: ProPolice

 ProPolice iBM) - gcc3.4.1. (-fstack-protector)
— Rearrange stack layout to prevent ptr overflow.

String ares
Growth ret addr Protects pointer args and local

SFP pointers from a buffer overflow

Stack local string buffers
Growth local non-buffer variables } pointers, but no arrays

copy of pointer args

MS Visual StUd|O /GS [since 2003]

Compiler /GS option:
— Combination of ProPolice and Random canary.

— If cookie mismatch, default behavior is to call _exit(3)
Function prolog: Function epilog:
sub esp,8 //allocate 8 bytes for cookie mov ecx, DWORD PTR [esp+8]
mov eax, DWORD PTR ___security_cookie Xor ecx, esp
Xor eax, esp //xor cookie with current esp call @__security_check_cookie@4
mov DWORD PTR [esp+8], eax // save in stack add esp, 8

Enhanced /GS in Visual Studio 2010:

— /GS protection added to all functions, unless can be proven unnecessary

/GS stack frame

args

Strin
Growtgh ret addr 7
Canary protects ret-addr and
SFP r :
exception handler frame
exception handlers -
Stack local string buffers
Growth local non-buffer variables } pointers, but no arrays
copy of pointer args

Evading /GS with exception handlers

* When exception is thrown, dispatcher walks up exception list
until handler is found (else use default handler)

After overflow: handler points to attacker’s code
exception triggered = control hijack

Main point: exception is triggered before canary is checked

Oxffffffff
\ SEH frame SEH frame
1 Hi
ptr to l high
next handler I next ttack code next handler mem

o

Defenses: SAFESEH and SEHOP

 /SAFESEH: linker flag
— Linker produces a binary with a table of safe exception handlers

— System will not jump to exception handler not on list

 /SEHOP: platform defense (since win vista SP1)

— Observation: SEH attacks typically corrupt the “next” entry in SEH list.

— SEHOP: add a dummy record at top of SEH list

— When exception occurs, dispatcher walks up list and verifies dummy
record is there. If not, terminates process.

Summary: Canaries are not full proof

e (Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

— Heap-based attacks still possible
— Integer overflow attacks still possible

— /GS by itself does not prevent Exception Handling attacks
(also need SAFESEH and SEHOP)

What if can’t recompile: Libsafe

e Solution 2: Libsafe (Avaya Labs)
— Dynamically loaded Iibrary (no need to recompile app.)

— Intercepts calls to strcpy (dest, src)

* Validates sufficient space in current stack frame:
| frame-pointer — dest| > strlen(src)

* If so, does strcpy. Otherwise, terminates application

top
of
stack

LibsaFg strcpy main

How robust is Libsafe?

low high
memory memory

— _/
— — o _

Libsafe strcpy main

strcpy() can overwrite a pointer between buf and sfp.

» StackShield

= At function prologue, copy return address RET and SFP to
“safe” location (beginning of data segment)

= Upon return, check that RET and SFP is equal to copy.

» |[mplemented as assembler file processor (GCC)

» Control Flow Integrity (CFl)

= A combination of static and dynamic checking
= Statically determine program control flow

= Dynamically enforce control flow integrity

Memory Corruption

Advanced Attacks

Heap Spray Attacks

A reliable method for exploiting heap overflows

Heap-based control hijacking

 Compiler generated function pointers (e.g. C++ code)

method #1
method #2
method #3

Object T

 Suppose vtable is on the heap next to a string object:

ol

object T

Heap-based control hijacking

 Compiler generated function pointers (e.g. C++ code)

method #1
method #2
method #3

Object T

e After overflow of buf

ol

object T

A reliable exploit?

<SCRIPT language="text/javascript">

shellcode = unescape("%u4343%u4343%...");
overflow-string = unescape(“%u2332%u4276%...”);

cause-overflow(overflow-string); // overflow buf]]
</SCRIPT>

Problem: attacker does not know where browser
places shellcode on the heap

>

e

Heap Spraying [SkyLined 2004]

1. use Javascript to spray heap
with shellcode (and NoP slides)

2. then point vtable ptr anywhere in spray area

Javascript heap spraying

var nop = unescape (“%u9090%u9090”)
while (nop.length < 0x100000) nop += nop

var shellcode = unescape("%u4343%u4343%...");

)

var x = new Array ()

for (i=0; 1<1000; i++) {
x[1i] = nop + shellcode;

}

Pointing func-ptr almost anywhere in heap will
cause shellcode to execute.

Vulnerable buffer placement

* Placing vulnerable buf[256] nextto object O:

— By sequence of Javascript allocations and frees

make heap look as follows:
ree blocks \>

‘\ /

— Allocate vuln. buffer in Javascript and cause overflow

heap

object O

— Successfully used against a Safari PCRE overflow [pHmos]

Many heap spray exploits

Date Browser Description [R LZ'OS]
11/2004 IE IFRAME Tag BO
04 /2005 1E DHTMIL Objects Corruption
01/2005 IE .ANI Remote Stack BO
07 /2005 IE javaprxy.dll CONM Object
03/2006 IE createTextRang RE
09 /2006 IE VML Remote BO
03/2007 1E ADODB Double Free
09 /2006 IE WebViewFolderlcon setSlice
09 /2005 FF OxAD Remote Heap BO
12/2005 FF compareTo() RE
07 /2006 FF Navigator Object RE
07 /2008 Safari Quicktime Content-Type BO

* Improvements: Heap Feng Shui [s'07]

— Reliable heap exploits on IE without spraying
— Gives attacker full control of IE heap from Javascript

(partial) Defenses

Protect heap function pointers (e.g. PointGuard)

Better browser architecture:
— Store JavaScript strings in a separate heap from browser heap

OpenBSD heap overflow protection:

prevents
cross-page
overflows

non-writable pages

Nozzle [rRLZ08] : detect sprays by prevalence of code on heap

[1]

2]

3]

4]

References on heap spraying

Heap Feng Shui in Javascript,
by A. Sotirov, Blackhat Europe 2007

Engineering Heap Overflow Exploits with JavaScript
M. Daniel, J. Honoroff, and C. Miller, WooT 2008

Nozzle: A Defense Against Heap-spraying Code Injection Attacks,
by P. Ratanaworabhan, B. Livshits, and B. Zorn

Interpreter Exploitation: Pointer inference and JiT spraying,
by Dion Blazakis

