
Memory	Corrup+on	

Basic	Memory	
Corrup+on	A3acks	

Original	slides	were	created	by	Prof.	Dan	Boneh	

Memory	corrup+on	a3acks	
•  	A3acker’s	goal:	

–  Take	over	target	machine					(e.g.		web	server)	
•  Execute	arbitrary	code	on	target	by		
hijacking	applica+on	control	flow	leveraging	memory	
corrup+on	

•  Examples.	
–  Buffer	overflow	a3acks	
–  Integer	overflow	a3acks	
–  Format	string	vulnerabili+es	

Example	1:			buffer	overflows	
•  Extremely	common	bug	in	C/C++	programs.	

–  First	major	exploit:		1988	Internet	Worm.			fingerd.	

	

	
0

100

200

300

400

500

600

1995 1997 1999 2001 2003 2005

Source:		NVD/CVE	

≈ 20%	of	all	vuln.	

What	is	needed	
•  Understanding	C	func+ons,	the	stack,	and	the	heap.	
•  Know	how	system	calls	are	made	
•  The	exec()	system	call	

•  A3acker	needs	to	know	which	CPU	and	OS	used	on	the	target	machine:	

– Our	examples	are	for		x86		running		Linux	or	Windows	
– Details	vary	slightly	between	CPUs	and	OSs:	

•  Li3le	endian	vs.	big	endian			(x86 vs. Motorola)	
•  Stack	Frame	structure					(Unix	vs.	Windows)	

Linux	process	memory	layout	

unused	 0x08048000	

run	+me	heap	

shared	libraries	

user	stack	

0x40000000	

0xC0000000	

%esp	

brk	

Loaded		
from	exec	

0	

excep+on	handlers	

Stack	Frame	

arguments	

return	address	
stack	frame	pointer	

local	variables	
SP	

Stack	
Growth	

high	

low	

What	are	buffer	overflows?	
void func(char *str) {
 char buf[128];

 strcpy(buf, str);
 do-something(buf);

}

Suppose	a	web	server	contains	a	func+on:	

When	func()	is	called	stack	looks	like:	

argument:			str	
return	address	

stack	frame	pointer	

char	buf[128]	

SP	

What	are	buffer	overflows?	
void func(char *str) {
 char buf[128];

 strcpy(buf, str);
 do-something(buf);

}

What	if		*str			is		136	bytes	long?				
Afer			strcpy:	

argument:			str	
return	address	

stack	frame	pointer	

char	buf[128]	

SP	

*str	 Problem:			
						no	length	checking	in		strcpy()	

char	buf[128]	

return	address	

Basic	stack	exploit	
Suppose				*str					is	such	that		
							afer		strcpy		stack	looks	like:	

Program	P:				exec(“/bin/sh”)	

	

	

When			func()			exits,		the	user	gets	shell		!	
Note:		a3ack	code	P	runs	in	stack.	
	
	

Program	P	

low	

high	

The	NOP	slide	
Problem:			how	does	a3acker		

							determine	ret-address?	
	
Solu+on:			NOP	slide	
•  Guess	approximate	stack	state		

when	func()	is	called	

•  Insert	many	NOPs	before	program	P:	
	nop			,				xor	eax,eax					,				inc	ax	

	

char	buf[128]	

return	address	

NOP	Slide	

Program	P	

low	

high	

Details	and	examples	
•  Some	complica+ons:	

–  Program			P		should	not	contain	the	‘\0’		character.	
– Overflow	should	not	crash	program	before		func()		exists.	

•  (in)Famous	remote	stack	smashing	overflows:	
–  (2007)		Overflow	in	Windows	animated	cursors	(ANI).					LoadAniIcon()	

–  (2005)		Overflow	in	Symantec	Virus	Detec+on	

 test.GetPrivateProfileString "file", [long string]

Many	unsafe	libc	func+ons	
	strcpy	(char	*dest,		const	char	*src)	
	strcat	(char	*dest,	const	char	*src)	
	gets	(char	*s)	
	scanf	(const	char	*format,	…)											and	many	more.	

•  “Safe”	libc	versions		strncpy(),	strncat()		are	misleading	
–  e.g.		strncpy()			may	leave	string	unterminated.	

•  Windows	C	run	+me		(CRT):	
–  strcpy_s	(*dest,	DestSize,	*src):			ensures	proper	termina+on	

Buffer	overflow	opportuni+es	
•  Excep+on	handlers:					(Windows	SEH	a3acks)	

–  Overwrite	the	address	of	an	excep+on	handler	in	stack	frame.	

•  Func+on	pointers:				(e.g.		PHP	4.0.2,			MS	MediaPlayer	Bitmaps)	

–  Overflowing		buf		will	override	func+on	pointer.	

•  Longjmp	buffers:		longjmp(pos)									(e.g.	Perl	5.003)	

–  Overflowing	buf	next	to	pos	overrides	value	of	pos.	

Heap	
or	

stack	
													buf[128]	 FuncPtr	

Corrup+ng	method	pointers	
•  Compiler	generated	func+on	pointers			(e.g.		C++	code)	

•  Afer	overflow	of		buf	:	

ptr	

data	

Object		T	

FP1	
FP2	
FP3	

vtable	

method	#1	
method	#2	
method	#3	

pt
r	

buf[256]	 da
ta
	

object	T	

vtable	

NOP	
slide	

shell	
code	

Finding	buffer	overflows	
•  To	find	overflow:	

– Run	web	server	on	local	machine	
– Issue	malformed	requests	(ending	with			“$$$$$”)	

•  Many	automated	tools	exist		(called		fuzzers	–	next	module)	
– If	web	server	crashes,	

	search	core	dump	for		“$$$$$”	to	find	overflow	loca+on	
	
•  Construct	exploit				(not	easy	given	latest	defenses)	

Memory	Corrup+on	

More	Memory	
Corrup+on	A3acks	

More	Corrup+on	Opportuni+es	

•  Integer	overflows:				(e.g. MS DirectX MIDI Lib)

•  Double	free:				double	free	space	on	heap	
–  Can	cause	memory	mgr	to	write	data	to	specific	loca+on	
–  Examples:				CVS	server

•  Use after free: using memory after it is freed

•  Format string vulnerabilities

Integer	Overflows					(see	Phrack	60)	
Problem:				what	happens	when	int	exceeds	max	value?	

int	m;				(32	bits)													short	s;				(16	bits)															char	c;				(8	bits)	

	c	=	0x80	+	0x80	=	128	+	128 	 	⇒					c	=	0	

	s	=	0xff80	+	0x80 	 	 	⇒					s	=	0	

	m	=	0xffffff80	+	0x80 	 	 	⇒					m	=	0	
	
Can	this	be	exploited?	
	

An	example	
void		func(char	*buf1,	*buf2,				unsigned	int	len1,	len2)	{	

 char temp[256];
 if (len1 + len2 > 256) {return -1} // length check
 memcpy(temp, buf1, len1); // cat buffers
 memcpy(temp+len1, buf2, len2);
 do-something(temp); // do stuff

}

What	if			len1	=	0x80,				len2	=	0xffffff80			?	
								⇒			len1+len2	=	0	

Second		memcpy()		will	overflow	heap	!!	

0

20

40

60

80

100

120

140

1996 1998 2000 2002 2004 2006
Source:		NVD/CVE	

Integer	overflow	exploit	stats	

Format	string	bugs	

Format	string	problem	
	 	 	int func(char *user) {
 fprintf(stderr, user);
 }

Problem:			what	if			*user = “%s%s%s%s%s%s%s”		??	
– Most	likely	program	will	crash:			DoS.	
–  If	not,	program	will	print	memory	contents.		Privacy?	
–  Full	exploit	using			user	=	“%n”	

Correct	form:				 fprintf(stdout, “%s”, user);

Vulnerable	func+ons	
Any	func+on	using	a	format	string.	
	
Prin+ng:	
	prin{,	fprin{,	sprin{,	…	
	vprin{,	vfprin{,	vsprin{,	…	

	
Logging:	
	syslog,		err,	warn	

Exploit	
•  Dumping	arbitrary	memory:	

– Walk	up	stack	un+l	desired	pointer	is	found.	

–  prin{(“%08x.%08x.%08x.%08x|%s|”)	

•  Wri+ng	to	arbitrary	memory:	

–  prin{(“hello	%n”,	&temp)			--		writes	‘6’	into	temp.	

–  prin{(“%08x.%08x.%08x.%08x.%n”)	

Memory	Corrup+on	

Pla{orm	Defenses	

Preven+ng	hijacking	a3acks	
1.  	Fix	bugs:	

– Audit	sofware	
•  Automated	tools:			Coverity,		Prefast/Prefix.		

– Rewrite	sofware	in	a	type	safe	languange		(Java,	ML)	
•  Difficult	for	exis+ng	(legacy)	code	…	

2.  Concede	overflow,		but	prevent	code	execu+on	

3.  	Add	run+me	code	to	detect	overflows	exploits	
– Halt	process	when	overflow	exploit	detected	
– StackGuard,		LibSafe,	…	

Marking	memory	as	non-execute			(W^X)

Prevent	a3ack	code	execu+on	by	marking	stack	and	heap	as	non-executable	

•  NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
–  NX	bit	in	every	Page	Table	Entry	(PTE)	

•  Deployment:		
–  Linux	(via	PaX	project);				OpenBSD	
– Windows:		since	XP	SP2				(DEP)	

•  	Visual	Studio:			/NXCompat[:NO]	

•  Limita+ons:	
–  Some	apps	need	executable	heap			(e.g.	JITs).	
–  Does	not	defend	against	`Return	Oriented	Programming’	exploits	

Examples:			DEP	controls	in	Windows	

DEP	termina+ng	a	program	

A3ack:		Return	Oriented	Programming		(ROP)	

•  	Control	hijacking	without	execu+ng	code	

	

args
ret-addr

sfp

local buf

stack

exec()
printf()

“/bin/sh”

libc.so

Response:			randomiza+on	
•  ASLR:							(Address	Space	Layout	Randomiza+on)	

– Map	shared	libraries	to	rand	loca+on	in	process	memory	
	⇒			A3acker	cannot	jump	directly	to	exec	func+on	

– Deployment:				(/DynamicBase)	
•  Windows	7: 	8	bits	of	randomness	for	DLLs	

– aligned	to	64K	page	in	a	16MB	region			⇒			256	choices	
•  Windows	8: 	24	bits	of	randomness	on	64-bit	processors	

•  Other	randomiza+on	methods:	
–  Sys-call	randomiza+on:				randomize	sys-call	id’s	
–  Instruc+on	Set	Randomiza+on	(ISR)	

ASLR	Example	
Booting twice loads libraries into different locations:

Note:			everything	in	process	memory	must	be	randomized		
	 	stack,			heap,			shared	libs,			base	image	

• Win	8	Force	ASLR:				ensures	all	loaded	modules	use	ASLR	

More	a3acks	:			JiT	spraying	
Idea: 	1.	Force	Javascript	JiT	to	fill	heap	with	 	 	 	

	 	executable	shellcode		

	 	2.	then	point	SFP	anywhere	in	spray	area	

heap	

vtable	

NOP		slide	 shellcode	
execute	enabled	execute	enabled	

execute	enabled	 execute	enabled	

Memory	Corrup+on	

Run-+me	Defenses	

Run	+me	checking:	StackGuard	

•  Many	run-+me	checking	techniques	…	
–  we	only	discuss	methods	relevant	to	overflow	protec+on	

•  Solu+on	1:		StackGuard	
–  Run	+me	tests	for	stack	integrity.		
–  Embed	“canaries”	in	stack	frames	and	verify	their	integrity	
prior	to	func+on	return.	

str ret sfp local	
top	
of	

stack	
canary	str ret local	 canary	
Frame	1	Frame	2	

sfp

Canary	Types	
•  Random	canary:	

–  Random	string	chosen	at	program	startup.	
–  Insert	canary	string	into	every	stack	frame.	
–  Verify	canary	before	returning	from	func+on.	

•  Exit	program	if	canary	changed.					Turns	poten+al	exploit	into	DoS.		
–  To	corrupt,	a3acker	must	learn	current	random	string.	

•  Terminator	canary:							Canary	=		{0,	newline,	linefeed,	EOF}	
–  String	func+ons	will	not	copy	beyond	terminator.	
–  A3acker	cannot	use	string	func+ons	to	corrupt	stack.		

StackGuard	(Cont.)	
•  StackGuard	implemented	as	a	GCC	patch	

–  Program	must	be	recompiled	
	
•  Minimal	performance	effects:			8%	for	Apache	

•  Note:	Canaries	do	not	provide	full	protec+on	
–  Some	stack	smashing	a3acks	leave	canaries	unchanged	

•  Heap	protec+on:		PointGuard	
–  Protects	func+on	pointers	and	setjmp	buffers	by	encryp+ng	them:			
e.g.	XOR	with	random	cookie	

–  Less	effec+ve,		more	no+ceable	performance	effects	

StackGuard	enhancements:		ProPolice	
•  ProPolice	(IBM) - gcc 3.4.1. (-fstack-protector)

–  Rearrange	stack	layout	to	prevent	ptr	overflow.	
	 args	

ret	addr	
SFP	

CANARY	
local	string	buffers	

local	non-buffer	variables	
Stack	
Growth	 pointers,	but	no	arrays	

String	
Growth	

copy	of	pointer	args		

Protects	pointer	args	and	local	
pointers	from	a	buffer	overflow	

MS	Visual	Studio		/GS					[since	2003]	
Compiler	/GS	op+on:	

–  Combina+on	of	ProPolice	and	Random	canary.	
–  If	cookie	mismatch,	default	behavior	is	to	call				_exit(3)	

	Func+on	prolog:	
						sub			esp,	8					//	allocate	8	bytes	for	cookie	
						mov			eax,	DWORD	PTR	___security_cookie	
						xor			eax,	esp					//	xor	cookie	with	current	esp	
						mov			DWORD	PTR	[esp+8],	eax		//	save	in	stack	

Func+on	epilog:	
						mov			ecx,	DWORD	PTR		[esp+8]	
						xor			ecx,	esp	
						call		@__security_check_cookie@4	
						add			esp,	8	

Enhanced	/GS	in	Visual	Studio	2010:	
–  /GS	protec+on	added	to	all	func+ons,	unless	can	be	proven	unnecessary	

/GS	stack	frame	
args	

ret	addr	
SFP	

CANARY	
local	string	buffers	

local	non-buffer	variables	
Stack	
Growth	 pointers,	but	no	arrays	

String	
Growth	

copy	of	pointer	args		

excepaon	handlers	

Canary	protects	ret-addr	and		
excep+on	handler	frame	

Evading	/GS	with	excep+on	handlers	
•  When	excep+on	is	thrown,	dispatcher	walks	up	excep+on	list	

un+l	handler	is	found			(else	use	default	handler)	

high	
mem	next	 handler	next	 handler	next	 handler	

0xffffffff	

buf	

SEH	frame	SEH	frame	

Afer	overflow:				handler	points	to	a3acker’s	code	
excep+on	triggered		⇒			control	hijack	

ptr	to	
a3ack	code	

Main	point:				excep+on	is	triggered	before	canary	is	checked	

next	

Defenses:			SAFESEH	and	SEHOP			
•  /SAFESEH:				linker	flag	

–  Linker	produces	a	binary	with	a	table	of	safe	excep+on	handlers	
–  System	will	not	jump	to	excep+on	handler	not	on	list	

•  /SEHOP:				pla{orm	defense			(since	win	vista	SP1)	
–  Observa+on:				SEH	a3acks	typically	corrupt	the	“next”	entry	in	SEH	list.	
–  SEHOP:		add	a	dummy	record	at	top	of	SEH	list	
–  When	excep+on	occurs,	dispatcher	walks	up	list	and	verifies	dummy	

record	is	there.			If	not,	terminates	process.	

Summary:	Canaries	are	not	full	proof	
•  Canaries	are	an	important	defense	tool,	but	do	not	prevent	all	

control	hijacking	a3acks:	

–  Heap-based	a3acks	s+ll	possible	

–  Integer	overflow	a3acks	s+ll	possible	

–  /GS	by	itself	does	not	prevent	Excep+on	Handling	a3acks	
	 	(also	need	SAFESEH	and	SEHOP)	

What	if	can’t	recompile:		Libsafe	
•  Solu+on	2:		Libsafe	(Avaya	Labs)	

–  Dynamically	loaded	library						(no	need	to	recompile	app.)	
–  Intercepts	calls	to		strcpy	(dest,	src)	

•  Validates	sufficient	space	in	current	stack	frame:	
	|frame-pointer	–	dest|	>	strlen(src)	

•  If	so,	does	strcpy.			Otherwise,	terminates	applica+on	

dest ret-addr sfp
top	
of	

stack	
src buf ret-addr sfp

Libsafe	strcpy	 main	

How	robust	is	Libsafe?	

strcpy()	can	overwrite	a	pointer	between	buf	and	sfp.	

dest ret-addr sfp high	
memory	src buf ret-addr sfp

Libsafe	strcpy	 main	

low	
memory	

More	methods	…	
Ø  	StackShield	

§  At	func+on	prologue,	copy	return	address	RET	and	SFP	to	
“safe”	loca+on		(beginning	of	data	segment)	

§  Upon	return,	check	that	RET	and	SFP	is	equal	to	copy.	
§  Implemented	as	assembler	file	processor	(GCC)	

Ø  	Control	Flow	Integrity		(CFI)	
§  A	combina+on	of	sta+c	and	dynamic	checking	

§  Sta+cally	determine	program	control	flow	
§  Dynamically	enforce	control	flow	integrity	

Memory	Corrup+on	

Advanced	A3acks	

Heap	Spray	A3acks	

A	reliable	method	for	exploi+ng	heap	overflows	

Heap-based	control	hijacking	
•  Compiler	generated	func+on	pointers			(e.g.		C++	code)	

•  Suppose			vtable			is	on	the	heap	next	to	a	string	object:	

ptr	

data	

Object		T	

FP1	
FP2	
FP3	

vtable	

method	#1	
method	#2	
method	#3	

pt
r	

buf[256]	 da
ta
	

object	T	

vtable	

Heap-based	control	hijacking	
•  Compiler	generated	func+on	pointers			(e.g.		C++	code)	

•  Afer	overflow	of		buf		we	have:	

ptr	

data	

Object		T	

FP1	
FP2	
FP3	
vtable	

method	#1	
method	#2	
method	#3	

pt
r	

buf[256]	 da
ta
	

object	T	

vtable	

shell	
code	

	A	reliable	exploit?				
	 	<SCRIPT	language="text/javascript">	
	 		shellcode	=	unescape("%u4343%u4343%...");	
	 	overflow-string	=	unescape(“%u2332%u4276%...”);	

	 	cause-overflow(overflow-string);								//	overflow		buf[]	
	 	</SCRIPT>	

	
Problem: 	a3acker	does	not	know	where	browser		

	places	shellcode	on	the	heap	

pt
r	

buf[256]	 da
ta
	

shellcode	vtable	

???	

Heap	Spraying					[SkyLined	2004]	
Idea: 	1.	use	Javascript	to	spray	heap		

	 	 	 	with	shellcode		(and	NOP	slides)	

	 	2.	then	point	vtable	ptr	anywhere	in	spray	area	

heap	

vtable	

NOP		slide	 shellcode	

heap	spray	area	

Javascript	heap	spraying	
 var nop = unescape(“%u9090%u9090”)
 while (nop.length < 0x100000) nop += nop

 var shellcode = unescape("%u4343%u4343%...");

 var x = new Array ()
 for (i=0; i<1000; i++) {
 x[i] = nop + shellcode;
 }

•  Poin+ng		func-ptr		almost	anywhere	in	heap	will		
cause	shellcode	to	execute.	

Vulnerable	buffer	placement	
•  Placing	vulnerable			buf[256]			next	to	object	O:	

–  By	sequence	of	Javascript	alloca+ons	and	frees	
make	heap	look	as	follows:	

–  Allocate	vuln.	buffer	in	Javascript	and	cause	overflow	

–  Successfully	used	against	a	Safari	PCRE	overflow	[DHM’08]	

object	O	

free	blocks	

heap	

Many	heap	spray	exploits	

•  Improvements:					Heap	Feng	Shui		[S’07]	
–  Reliable	heap	exploits	on	IE	without	spraying	
–  Gives	a3acker	full	control	of		IE	heap		from	Javascript	

[RLZ’08]	

(par+al)		Defenses	
•  Protect	heap	func+on	pointers							(e.g.				PointGuard)	

•  Be3er	browser	architecture:	
–  Store	JavaScript	strings	in	a	separate	heap	from	browser	heap	

•  OpenBSD	heap	overflow	protec+on:	

•  Nozzle	[RLZ’08]	:		detect	sprays	by	prevalence	of	code	on	heap	

non-writable	pages	

prevents		
cross-page	
overflows	

References	on	heap	spraying	
[1]	 	Heap	Feng	Shui	in	Javascript,	

	 	by	A.	So+rov,					Blackhat	Europe	2007	
	
[2]	 	Engineering	Heap	Overflow	Exploits	with	JavaScript	

	 	M.	Daniel,	J.	Honoroff,	and	C.	Miller,				WooT	2008	
	
[3]	 	Nozzle:	A	Defense	Against	Heap-spraying	Code	Injecaon	Aiacks,	
	 	 	by	P.	Ratanaworabhan,	B.	Livshits,	and	B.	Zorn	

	
[4]	 	Interpreter	Exploitaaon:	Pointer	inference	and	JiT	spraying,			

	 	by	Dion	Blazakis	

