
1

Security and Software
Engineering

Steven M. Bellovin
AT&T Labs – Research

http://www.research.att.com/~smb

2

Click to add title

 “If our software is buggy, what does
 that say about its security?”

 --Robert H. Morris

3

Some Principles of
Software Engineering

Simplicity is a virtue.
If code is complex, you don’t know if it’s

correct (but it probably isn’t).
Break up complex systems into simple, well-

defined modules.

4

Security is Hard

“Reasonable” assumptions don’t apply.
File name length bounds don’t apply.
Any input field can be arbitrarily weird.

Your adversary is creating improbabilities.
Race conditions will happen.

“Nature is subtle but not malicious” – but the
hackers are both.

5

Case Study: rcp and rdist

rcp and rdist use the rsh protocol.
The rsh protocol requires that the client

program be on a privileged port.
Thus, rcp and rdist run as root.
Both have a long history of security holes…

6

Solutions

Don’t implement the protocol directly in rcp
and rdist; invoke the rsh command.

Or invoke a small, trusted program that sets
up the connection and passes back an open
file descriptor.

Best of all, use a real authentication
mechanism.

7

Using an Outboard Program

Separates functions
Improves modularity
Improves security.
Maybe a small loss in efficiency -- but note

the difference between "efficiency" and
efficiency: why do the wrong thing
quickly?

8

Case Study: Kerberized telnet

The DES library wanted 56-bit keys plus proper
parity, in a 64-bit number.

The “generate a 64-bit random key” code used by
telnet didn’t set the parity bits properly.

When handed a bad key, the DES library treated the
key as all zeroes.

With probability 255/256, the session was
encrypted with a known, constant key!

9

Analysis

Interfaces matter.
Interfaces should be consistent – why did the

encryption routine and the key generation
routine behave differently?
If there was no key generation routine, there

should have been.
Error-checking matters.

10

Case Study: Many C Programs

About half of all newly-reported security
holes are due to buffer overflows in C.

This shouldn’t be possible!
Tony Hoare warned us of this in his Turing

Award lecture:

11

Hoare’s Turing Award Lecture:

“The first principle was security… A
consequence of this principle is that every
occurrence of every subscript of every
subscripted variable was on every occasion
checked at run time… I note with fear and
horror that even in 1980, language designers
and users have not learned this lesson.”

12

How to Fix Buffer Overflows

Write better C.
Admittedly, that's hard, even with the best intent

and the best programmers.
Use C++ with the string class.
Use Java.
Use Stackguard.
Use the bounds-checking C compiler.

13

Case Study: ftpd

Original Berkeley implementation (and many of its
descendants) used yacc to parse network input.

USER and PASS were separate commands.
Result: flag-setting, ubiquitous flag-testing, global

state – and at least three different security holes.
Newer ftpd’s have more complex access control

mechanisms – and more security holes.

14

Main Loop of ftpd

Read Command

Parse command;
check login

state

Execute
command
via parser

15

Login Sequence
USER command

clear login state
Get /etc/passwd entry
Check for anonymous; set flag if so.

PASS command
If not anonymous, check password;

If failure, clear state and exit PASS
Set directory and uid from passwd entry
If anonymous, use chroot()
Set logged-in flag

16

Solution

Separate the login code from the rest.
Put it in a separate, small program: ~100 lines.

Activate your strong security measures
(chroot, setuid) in the login module.

The remaining thousands of lines of code
can run unprivileged.
(Let the OS do access control – it’s good at it.)

17

Cryptography is Even Harder

The oldest (public) cryptographic protocol
was published in 1978.

A flaw was found in 1983.
The original authors found a flaw in the

revised protocol in 1994.
A new error in the original was found in

1996.
Note: the protocol was only 5 lines long!

18

Sample Protocol Failure

A->S: A,B

S->A: CA, CB

A->B: CA, CB, {{Kab, Ta}Ka-1}Kb

We can replay a modified message 3:

B -> C: CA, CC, {{Kab, Ta}Ka-1}Kc

19

Other Rules for Cryptography

Don’t invent your own cryptographic
protocols.

Don’t invent your own ciphers.
And look askance at any product that has

done either…

20

Bug Fixes

Most system penetrations caused by known
vulnerabilities, for which patches already
exist.

But blindly patching production systems is
dangerous.

There’s a new scheme afoot to have vendors
automatically install patches...

21

Today’s Challenges

Large-scale, heterogeneous distributed
systems.
Must design for component “failure”.

Limited security tools (firewalls, hardened
hosts, cryptography).

Ubiquitous networking.
Mobile code or near-code.

22

Firewalls and Databases

Firewal
l

Databas
e

Web Server
Th
e

Net

23

The Wrong Choice

Databas
e

Web Server
Th
e

Net

Firewal
l

24

Firewalls

Firewalls are touted as a solution to the
network security problem.

Nonsense – they’re the network’s response to
the host security problem.

The real function of a firewall is to keep bad
guys away from complex, buggy code.

Today’s firewalls are getting very complex…

25

Where to From Here?

Sound software engineering matters more
than ever.

Shipping code on “Internet time” has
exacerbated the problem.
But the economy seems to have solved it…

We need to add a new dimension to our
modular decomposition: security.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

