
1

Security and Software
Engineering

Steven M. Bellovin
AT&T Labs – Research

http://www.research.att.com/~smb

2

“If our software is buggy, what does
that say about its security?”

--Robert H. Morris

3

Some Principles of
Software Engineering

• Simplicity is a virtue.
• If code is complex, you don’t know if it’s

correct (but it probably isn’t).
• Break up complex systems into simple,

well-defined modules.

4

Security is Hard

• “Reasonable” assumptions don’t apply.
– File name length bounds don’t apply.
– Any input field can be arbitrarily weird.

• Your adversary is creating improbabilities.
– Race conditions will happen.

• “Nature is subtle but not malicious” – but
the hackers are both.

5

Case Study: rcp and rdist

• rcp and rdist use the rsh protocol.
• The rsh protocol requires that the client

program be on a privileged port.
• Thus, rcp and rdist run as root.
• Both have a long history of security holes…

6

Solutions

• Don’t implement the protocol directly in rcp
and rdist; invoke the rsh command.

• Or invoke a small, trusted program that sets
up the connection and passes back an open
file descriptor.

• Best of all, use a real authentication
mechanism.

7

Case Study: Encrypting telnet

• The DES library wanted 56-bit keys plus
proper parity.

• The “generate a 64-bit random key” routine
didn’t set the parity bits properly.

• When handed a bad key, the DES library
treated the key as all zeroes.

• With probability 255/256, the session was
encrypted with a known, constant key!

8

Analysis

• Interface definitions matter.
• Interfaces should be consistent – why did

the encryption routine and the key
generation routine behave differently?

• Error-checking matters.

9

Case Study: Many C Programs

• About half of all newly-reported security
holes are due to buffer overflows in C.

• This shouldn’t be possible!
• Tony Hoare warned us of this in his Turing

Award lecture:

10

Hoare’s Turing Award Lecture:

“The first principle was security… A
consequence of this principle is that every
occurrence of every subscript of every
subscripted variable was on every occasion
checked at run time… I note with fear and
horror that even in 1980, language designers
and users have not learned this lesson.”

11

Case Study: ftpd

• Original Berkeley implementation (and many of
its descendants) used yacc to parse network input.

• USER and PASS were separate commands.
• Result: flag-setting, ubiquitous flag-testing,

global state – and at least three different security
holes.
– Newer ftpd’s have more complex access control

mechanisms – and more security holes.

12

Solution

• Separate the login code from the rest.
– Put it in a separate, small program: ~100 lines.

• Activate your strong security measures
(chroot, setuid) in the login module.

• The remaining thousands of lines of code
can run unprivileged.
– (Let the OS do access control – it’s good at it.)

13

Cryptography is Even Harder

• The oldest (public) cryptographic protocol
was published in 1978.

• A flaw was found in 1983.
• The original authors found a flaw in the

revised protocol in 1994.
• A new error in the original was found in

1996.
• Note: the protocol was only 5 lines long!

Bug Fixes

• Most system penetrations caused by known
vulnerabilities, for which patches already
exist.

• But blindly patching production systems is
dangerous.

• There’s a new scheme afoot to have vendors
automatically install patches...

15

Today’s Challenges

• Large-scale, heterogeneous distributed
systems.
– Must design for component “failure”.

• Limited security tools (firewalls, hardened
hosts, cryptography).

• Ubiquitous networking.
• Mobile code or near-code.

16

Firewalls and Databases

Firewall

Database Web Server
The
Net

17

The Wrong Choice

Database Web Server
The
Net

Firewall

14

Firewalls

• Firewalls are touted as a solution to the
network security problem.

• Nonsense – they’re the network’s response
to the host security problem.

• The real function of a firewall is to keep bad
guys away from complex, buggy code.

• Today’s firewalls are getting very
complex…

18

Where to From Here?

• Sound software engineering matters more
than ever.

• Shipping code on “Internet time” has
exacerbated the problem.
– But the economy seems to have solved it…

• We need to add a new dimension to our
modular decomposition: security.

