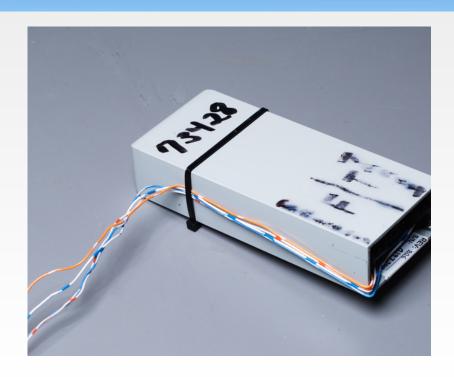


Interception

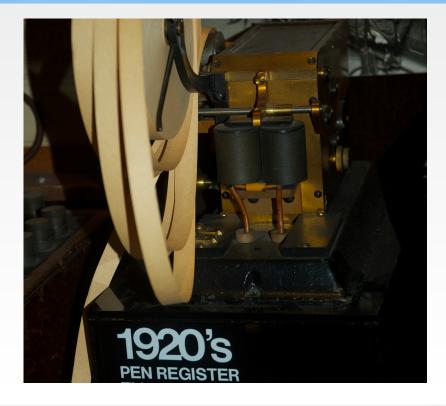
Steven M. Bellovin https://www.cs.columbia.edu/~smb



2

Classic Wiretaps

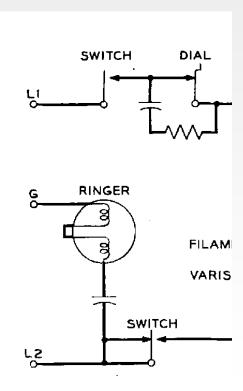
- When Katz was handed down, every residential phone line was served by a separate pair of wires from the phone company to the person's house
- If you attached a tap to those wires, you'd get only that line's calls
- Even then, a call might be to someone else in the residence


(Photo of a "loop extender" by Matt Blaze)

Classic Pen Registers

- Pen registers—including most of those in use at the time of Smith were similarly simple
- They attached to a wire pair and recorded dial pulses and perhaps touchtones
- They contained no circuitry or recording equipment capable of intercepting speech

Life is No Longer That Simple


- Virtually all communications equipment uses software
- Many features that were formerly done with inflexible hardware are now done by changeable—and often subvertible—software
- Most network media are shared: an interception device has to look at the content of a message to decide if it is relevant to the interception order
- There are many newer ways to get data, but the law hasn't always kept up

Software Control

- On older telephones, the microphone was physically disconnected from the phone line when the phone was on-hook
- Today, the microphone's connectivity is controlled by software
- Changed software, either in the phone or (sometimes) at the central office, can turn the microphone on while the phone is on-hook
- (Does your desk phone have a "speakerphone" button? Mine does...)

Using Software for Interception

- The FBI (apparently) converted a cellphone into a roving bug (allowed, US v. Tomero, 471 F. Supp. 2d 448, 2007)
 - The details in the order are suggestive but not definitive
- The FBI used a car's cellular "help" system to eavesdrop on conversations in the car (excluded, Company v. United States, 349 F.3d 1132, 1145 (9th Cir. 2002))
- Someone—probably an intelligence agency, though which one isn't known—hacked a cellphone switch in Greece to tap all calls to 100 different phones, including the prime minister's
- Researchers have shown how to activate a Mac's camera without turning on the light ("iSeeYou: Disabling the MacBook Webcam Indicator LED", Brocker and Checkoway, Usenix Security 2014)
 - Criminals have used similar abilities to spy on (mostly) women

/

How It's Done: Many Ways

- Hack the phone or computer to install new code; the new code will turn on the microphone or camera
- Control the server (the car case)
- Control the server and use it to push new code to the device (United Arab Emirates tried that: http://news.bbc.co.uk/2/hi/8161190.stm)
- Control the vendor and have it push new code to the device (most have the ability: http://www.extremetech.com/computing/196391-apple-pushes-its-first-ever-silent-automatic-security-update-to-mac-os-x-to-fix-ntp-bug)
- Order other companies to issue bogus cryptographic authentication credentials
- Physical intrusion

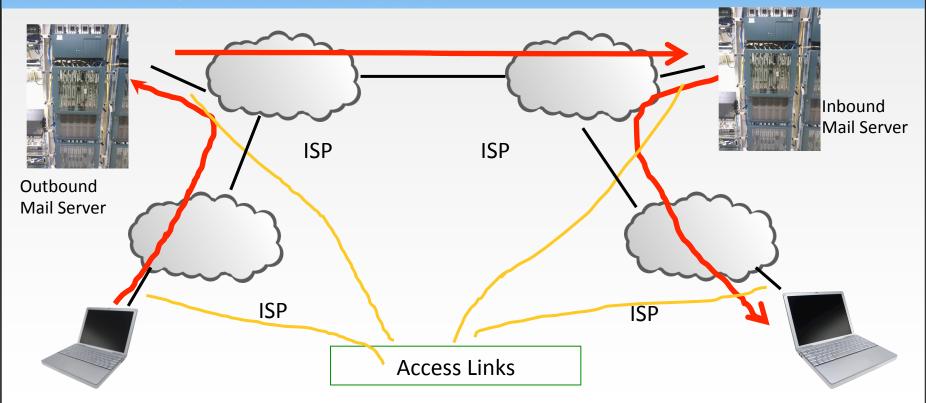
The Internet

- The Internet is composed of many different networks linked together by special computers known as routers
- Computers—hosts—are attached to networks
 - Each computer has one or more IP (Internet Protocol) addresses
 - IP addresses are the (very) rough equivalent of phone numbers
- Services are provided by regular computers attached to the Internet, not by the network
 - This is very different than how the phone network functions
 - ISPs can run mail servers—but so can Google, and so can I
- A given computer can offer many different services: email, Web, and more
 - Which service is being requested on a computer is determined by the *port number*
 - Port 25 is for email, port 80 is for Web, port 443 is for encrypted Web, etc.

Tapping the Internet

- Example: a pen register order or full-content warrant for Chris Doe
- Attach an eavesdropping device to some network
 - It's best to tap a network link very close to the target—ideally, the access link
- Remember that the medium is shared
 - The eavesdropping device *must* look at every packet (a fragment of a message) to determine if it has the right IP address
 - Sometimes, a different conversation has to be tapped to learn the target's IP address
 - It *must* verify that the packet has the right port number (e.g., email)
 - It may have to examine the *content* of the packets to verify that they're Chris Doe's email and not Pat Doe's—even if it's a pen register order

Sending Email


- A user composes a message using some email app
 - The message has a *header* (From:, To:, etc.) and a *body*
- It is then uploaded to her *outbound email server*
 - A special protocol known as SMTP (Simple Mail Transfer Protocol) is used for this
 - The message is probably also copied to the Sent Messages folder via the IMAP protocol
- This server sends to to the recipient's inbound mail server, also via SMTP
- The recipient's email app downloads it, probably via the IMAP protocol
- Note that there are four different network connections (using two protocols) and four different computers
 - (It's actually far more complicated than that)

11

Sending Email

3 May 2012 //

Sending Myself Email—An SMTP Transcript

220 machshav.com ESMTP Exim 4.82 Tue, 11 Mar 2014 19:43:03 +0000

HELO eloi.cs.columbia.edu

250 machshav.com Hello eloi.cs.columbia.edu [2001:18d8:ffff:16:12dd:b1ff:feef:8868]

MAIL FROM:<smb@eloi.cs.columbia.edu>

250 OK

RCPT TO:<smb@machshav.com>

250 Accepted

DATA

354 Enter message, ending with "." on a line by itself

To: <smb2132@columbia.edu>

Subject: Test

This is a test

250 OK id=1WNSaS-0001z5-1d QUIT

221 machshav.com closing connection

---- Message body

smb--Metadata

Conversation With A Third Party

220 machshav.com ESMTP Exim 4.82 Tue, 11 Mar 2014 19:43:03 +0000

HELO eloi.cs.columbia.edu

250 machshav.com Hello eloi.cs.columbia.edu [2001:18d8:ffff:16:12dd:b1ff:feef:8868]

MAIL FROM:<smb@eloi.cs.columbia.edu>

250 OK

RCPT TO:<smb@machshav.com>

250 Accepted

DATA

354 Enter message, ending with "." on a line by itself

---- Message body

250 OK id=1WNSaS-0001z5-1d

QUIT

221 machshav.com closing connection

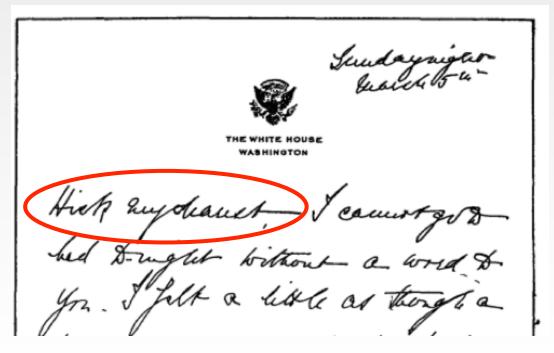
smb--Metadata

What the Recipient Sees

To: <smb2132@columbia.edu>

Subject: Test

Message body


This is a test

smb--Metadata

A Letter from Eleanor Roosevelt to Lorena Hicks (March 1933)

It begins "Hick my dearest".

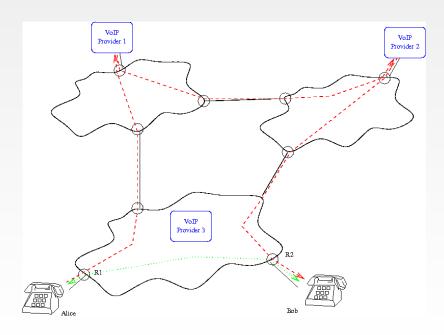
(excerpt from Amazon.com)

Things to Note

- The SMTP envelope—that's the technical term!—can have different information than the message headers
- Unlike the phone network, anyone can run their own mail servers
 - I personally run two, one personal and one professional
 - This complicates third party doctrine analysis
- The reality of email is far more complex than I've outlined here
 - Example: many people read their email via a Web browser—and the NSA has stated that even for them, picking out just the From/To information from a Webmail session is very difficult
- I haven't even begun to address server-resident email, virus scanning, spam filtering, and the like, let alone all of the other metadata that's present

A Few Other Problematic Aspects of Wiretapping on the Internet

- IP addresses are used by every router along the path of a network connection
- TCP port numbers are of interest only to the receiving host, and are generally *not* used by intermediate routers
 - DoJ's 2005 Electronic Surveillance Manual says that they're fair game for pen register orders
 - The technical aspects of this are *very* complex, and fact-specific
- DoJ's 2010 Prosecuting Computer Crimes manual warns prosecutors to contact them about which parts of a URL are content and which are metadata
 - My own analysis suggests that they're quite correct—even I was surprised at how complex a question that is
- There have been very few in-depth technical/legal analyses of less-used Internet protocols to determine which parts are content and which are metadata
- Taps are done by software—and tapping software, like all software, can be buggy
 - Both exculpatory and incriminating information can be missed
 - Because of the packet nature of the Internet, it's easy for parts of a conversation to be missed


From a FOIAed FBI Memo

VoIP is Hard to Tap

- The call is set up via the VoIP carriers, who may be in other jurisdictions
 - This is where the pen register information would be gathered
- The actual conversation uses a different Internet path
 - The call may be encrypted
- The ISPs are not involved, and can't lend assistance

Encryption on the Internet

- It exists, but except for email from the user to the mail server and some Web traffic, it's very hard to use
- "You don't go through strong security, you go around it"
 - Modern algorithms are probably impossible to break if properly used
 - But—they're rarely used correctly
 - Guess at passwords (or find them written down)
 - Look for software bugs or program design flaws
 - Find a plaintext copy of the message, e.g., on the mail server
 - Monitor non-access links
- Most technologists agree that encryption "back doors" or "golden keys" are a bad idea for technical reasons