
Cryptography

An Introduction to Cryptography
Steven M. Bellovin

smb@research.att.com
http://www.research.att.com/˜smb

AT&T Labs Research

Steven M. Bellovin — August 30, 2004 1



Cryptography

Outline

• What is Cryptography?

• Cryptographic Primitives

• Cryptographic Combinations and Protocols

• Cryptography and the Internet

• Threats

• References

Steven M. Bellovin — August 30, 2004 2



Introduction

What is Cryptography?

Steven M. Bellovin — August 30, 2004 3



Introduction

What is a Cryptosystem?

• K = {0,1}l

• P = {0,1}m

• C ′ = {0,1}n, C ⊆ C ′

• E : P × K → C

• D : C × K → P

• ∀p ∈ P, k ∈ K : D(E(p, k), k) = p

• It is infeasible to find F : P × C → K

Let’s start again, in English. . .

Steven M. Bellovin — August 30, 2004 4



Introduction

What is a Cryptosystem?

A cryptosystem is pair of algorithms that take a key and convert plaintext to
ciphertext and back.

Plaintext is what you want to protect; ciphertext should appear to be random
gibberish.

The design and analysis of today’s cryptographic algorithms is highly
mathematical. Do not try to design your own algorithms.

Steven M. Bellovin — August 30, 2004 5



Introduction

A Tiny Bit of History

• Encryption goes back thousands of years

• Classical ciphers encrypted letters (and perhaps digits), and yielded all
sorts of bizarre outputs.

• The advent of military telegraphy led to ciphers that produced only letters.

Steven M. Bellovin — August 30, 2004 6



Introduction

Codes vs. Ciphers

• Ciphers operate syntactically, on letters or groups of letters: A → D,
B → E, etc.

• Codes operate semantically, on words, phrases, or sentences, per this
1910 codebook

Steven M. Bellovin — August 30, 2004 7



Introduction

A 1910 Commercial Codebook

Steven M. Bellovin — August 30, 2004 8



Introduction

Properties of a Good Cryptosystem

• There should be no way short of enumerating all possible keys to find the
key from any reasonable amount of ciphertext and plaintext, nor any way to
produce plaintext from ciphertext without the key.

• Enumerating all possible keys must be infeasible.

• The ciphertext must be indistinguishable from true random values.

Steven M. Bellovin — August 30, 2004 9



Introduction

Milestones in Modern Cryptography

1883 Kerckhoffs’ Principles

1917-1918 Vernam/Mauborgne cipher (one-time pad)

1920s-1940s Mathematicization and mechanization of cryptography and
cryptanalysis

1973 U.S. National Bureau of Standards issues a public call for a standard
cipher.

1976 Diffie and Hellman describe public key cryptography

Steven M. Bellovin — August 30, 2004 10



Introduction

Kerckhoffs’ Law

The system must not be required to be secret, and it must be able to
fall into the hands of the enemy without inconvenience.

In other words, the security of the system must rest entirely on the secrecy of
the key.

Steven M. Bellovin — August 30, 2004 11



Introduction

Vernam/Mauborgne Cipher

• Exclusive-OR a key stream tape with the plaintext

• Online encryption of teletype traffic, combined with transmission

• For a one-time pad — which is provably secure — use true-random keying
tapes and never reuse the keying material.

• If keying material is reusable, it’s called a stream cipher

+ Snake oil alert! If the key stream is algorithmically generated, it’s not a
one-time pad!

Steven M. Bellovin — August 30, 2004 12



Introduction

Mathematicization and Mechanization

• Mechanical encryptors (Vernam, Enigma, Hagelin, Scherbius)

• Mathematical cryptanalysis (Friedman, Rejewski et al, Bletchley Park)

• Machine-aided cryptanalysis (Friedman, Turing et al.)

Steven M. Bellovin — August 30, 2004 13



Introduction

Standardized Ciphers

• Until the 1970s, most strong ciphers were government secrets

• The spread of computers created a new threat

• Reportedly, the Soviets eavesdropped on U.S. grain negotiators’
conversations

• NBS (now called NIST) issued a public call for a cipher; eventually, IBM
responded

• The eventual result — via a secret process — was DES

Steven M. Bellovin — August 30, 2004 14



Introduction

Public Key Cryptography

• Merkle invents a public key distribution scheme

• Diffie and Hellman invent public key encryption and digital signatures, but
do not devise a suitable algorithm with all of the desired properties.
Rivest, Shamir, and Adelman invent their algorithm soon thereafter

• In fact, the British GCHQ had invented “non-secret encryption” a few years
earlier.

• There have been claims, but no evidence, that the American NSA invented
it even earlier

Steven M. Bellovin — August 30, 2004 15



Introduction

What We Have Today

• Encryption is completely computerized, and operates on bits

• The basic primitives of encryption are combined to produce very powerful
results

• Encryption is by far the strongest weapon in the computer security arsenal;
host and operating system software is by far the weakest link

• Bad software trumps good crypto

Steven M. Bellovin — August 30, 2004 16



Primitives

Cryptographic Primitives

Steven M. Bellovin — August 30, 2004 17



Primitives

Block Ciphers

• Operate on a fixed-length set of bits

• Output blocksize generally the same as input blocksize

• Well-known examples: DES (56-bit keys; 64-bit blocksize); AES (128-,
192-, and 256-bit keys; 128-bit blocksize)

Steven M. Bellovin — August 30, 2004 18



Primitives

Basic Structure of (Most) Block Ciphers

• Optional key scheduling — convert supplied key to internal form

• Multiple rounds of combining the plaintext with the key.

• DES has 16 rounds; AES has 9-13 rounds, depending on key length

Steven M. Bellovin — August 30, 2004 19



Primitives

DES Round Structure

Li Ri Xi

F Ki

Li+1 Ri+1 Xi+1

Steven M. Bellovin — August 30, 2004 20



Primitives

DES ”f” Funciton

Steven M. Bellovin — August 30, 2004 21



Primitives

How DES Works

For each round:

1. Divide the input block in half. The right half of each round becomes the left
half of the next round’s input.

2. Take the right half, pass it through a non-linear function of data and key,
and exclusive-OR the result with the current input’s left half.

3. The output of that function becomes the right half of the next round’s input.

Steven M. Bellovin — August 30, 2004 22



Primitives

What’s Wrong with DES?

• The key size is too short — a machine to crack DES was built in 1998.

• (Charges that NSA could crack DES were leveled in 1979. But the claim
that NSA designed in a back door are false.)

• The blocksize is too short.

• It depends on bit-manipulation, and is too slow in software

Steven M. Bellovin — August 30, 2004 23



Primitives

Selecting the Advanced Encryption Standard

• NIST issued an open call for submissions

• 15 ciphers were submitted, from all over the world

• Several open conferences were held (and the NSA did its own private
evaluations)

• 5 ciphers were eliminated as not secure enough

• 5 more were dropped for inefficiency or low security margin

• Of the 5 finalists, Rijndael — a Belgian submission — was chosen because
of good security and very high efficiency across a wide range of platforms

Steven M. Bellovin — August 30, 2004 24



Primitives

How Does Rijndael Work?

• Input block viewed as a byte array; key viewed as a two-dimensional matrix

• Each round consists of a series of simple, byte-oriented operations:
ByteSubstitution, ShiftRow, MixColumn, AddRoundKey.

• The key is mixed with the entire block in each round

• The basic operations are individually reasonably tractable mathematically,
but are combined in a hard-to-invert fashion.

Steven M. Bellovin — August 30, 2004 25



Primitives

Modes of Operation

• Direct use of a block cipher is inadvisable

• Enemy can build up “code book” of plaintext/ciphertext equivalents

• Beyond that, direct use only works on messages that are a multiple of the
cipher block size in length

• Solution: five standard Modes of Operation: Electronic Code Book (ECB),
Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback
(OFB), and Counter (CTR).

Steven M. Bellovin — August 30, 2004 26



Primitives

Electronic Code Book

• Direct use of the block cipher

• Used primarily to transmit encrypted keys

• Very weak if used for general-purpose encryption; never use it for a file or a
message.

• We write {P}k → C to denote “encryption of plaintext P with key k to
produce ciphertext C”

Steven M. Bellovin — August 30, 2004 27



Primitives

Cipher Block Chaining
P1

Encrypt

C1

P2

Encrypt

C2

P3

Encrypt

C3

IV

{Pi ⊕ Ci−1}k → Ci

{Ci}k−1 ⊕ Ci−1 → Pi

Steven M. Bellovin — August 30, 2004 28



Primitives

Properties of CBC

• The ciphertext of each encrypted block depends on the plaintext of all
preceeding blocks.

• There is a dummy initial ciphertext block C0 known as the Initialization
Vector (IV); the receiver must know this value.

• Consider a 4-block message:

C1 = {P1 ⊕ IV }k

C2 = {P2 ⊕ C1}k

C3 = {P3 ⊕ C2}k

C4 = {P4 ⊕ C3}k

If C2 is damaged during transmission, what happens to the plaintext?
Steven M. Bellovin — August 30, 2004 29



Primitives

Error Propagation in CBC Mode
• Look at the decryption process, where C ′ is a garbled version of C:

P1 = {C1}k−1 ⊕ IV

P2 = {C ′
2}k−1 ⊕ C1

P3 = {C3}k−1 ⊕ C ′
2

P4 = {C4}k−1 ⊕ C3

• P1 depends only on C1 and IV , and is unaffected

• P2 depends on C2 and C1, and hence is garbled

• P3 depends on C3 and C2, and is also garbled. The enemy can control the
change to P3.

• P4 depends on C4 and C3, and not C2; it thus isn’t affected.

• Conclusion: Two blocks change, one of them predicatably
Steven M. Bellovin — August 30, 2004 30



Primitives

Cutting and Pasting CBC Messages

• Consider the encrypted message

IV, C1, C2, C3, C4, C5

• The shortened message IV, C1, C2, C3, C4 appears valid

• The truncated message C2, C3, C4, C5 is valid: C2 acts as the IV.

• Even C2, C3, C4 is valid, and will decrypt properly.

• Any subset of a CBC message will decrypt cleanly.

• If we snip out blocks, leaving IV, C1, C4, C5, we only garble one block of
plaintext.

• Conclusion: if you want message integrity, you have to do it yourself.
Steven M. Bellovin — August 30, 2004 31



Primitives

n-bit Cipher Feedback

n-bit shift

Encrypt

n bits

C1

P1

n-bit shift

Encrypt

n bits

C2

P2

IV

Pi ⊕ {Ci−1}k → Ci

{Ci−1}k ⊕ Ci → Pi

Steven M. Bellovin — August 30, 2004 32



Primitives

Properties of Cipher Feedback Mode

• Underlying block cipher used only in encryption mode

• Feedback path actually incorporates a shift register; some of the previous
cycle’s ciphertext can be retained.

• 8-bit CFB is good for asynchronous terminal traffic.

• Errors propagate while bad data is in the shift register — 17 bytes for CFB8

when using AES.

• Copes gracefully with deletion of n-bit unit

Steven M. Bellovin — August 30, 2004 33



Primitives

n-bit Output Feedback

Encrypt

C1

P1

Encrypt

C2

P2

Encrypt

C3

P3

IV

Steven M. Bellovin — August 30, 2004 34



Primitives

Properties of Output Feedback Mode

• No error propagation

• Active attacker can make controlled changes to plaintext

• OFB is a form of stream cipher

Steven M. Bellovin — August 30, 2004 35



Primitives

Counter Mode

T

Encrypt

C1

P1

T + 1

Encrypt

C2

P2

T + 2

Encrypt

C3

P3

Steven M. Bellovin — August 30, 2004 36



Primitives

Properties of Counter Mode

• Another form of stream cipher

• Active attacker can make controlled changes to plaintext

• Highly parallelizable; no linkage between stages

• Vital that counter never repeat for any given key

Steven M. Bellovin — August 30, 2004 37



Primitives

Which Mode for What Task?

• General file or packet encryption: CBC.
+Input must be padded to multiple of cipher block size

• Risk of byte or bit deletion: CFB8 or CFB1

• Bit stream; noisy line and error propagation is undesirable: OFB

• Very high-speed data: CTR

• In most situations, an integrity check is needed

Steven M. Bellovin — August 30, 2004 38



Primitives

Stream Ciphers
• Key stream generator produces a sequence S of pseudo-random bytes;

key stream bytes are combined (generally via XOR) with plaintext bytes

• Pi ⊕ Si → Ci

• Stream ciphers are very good for asynchronous traffic

• Best-known stream cipher is RC4; commonly used with SSL

• Key stream S must never be reused for different plaintexts:

C = A ⊕ K

C ′ = B ⊕ K

C ⊕ C ′ = A ⊕ K ⊕ B ⊕ K

= A ⊕ B

• Guess at A and see if B makes sense; repeat for subsequent bytes
Steven M. Bellovin — August 30, 2004 39



Primitives

RC4

• Extremely efficient

• After key setup, it just produces a key stream

• No way to resynchronize except by rekeying and starting over

• Internal state is a 256-byte array plus two integers

• Note: weaknesses if used in ways other than as a stream cipher.

Steven M. Bellovin — August 30, 2004 40



Primitives

The Guts of RC4

for(counter = 0; counter < buffer_len; counter ++)

{

x = (x + 1) % 256;

y = (state[x] + y) % 256;

swap_byte(&state[x], &state[y]);

xorIndex = (state[x] + state[y]) % 256;

buffer_ptr[counter] ˆ= state[xorIndex];

}

Steven M. Bellovin — August 30, 2004 41



Primitives

Cipher Strengths

• A cipher is no stronger than its key length: if there are too few keys, an
attacker can enumerate all possible keys

• DES has 56 bits — arguably too few in 1976; far too few today.

• Strength of cipher depends on how long it needs to resist attack.

• No good reason to use less than 128 bits

• NSA rates 128-bit AES as good enough for SECRET traffic; 256-bit AES is
good enough for TOP-SECRET traffic.

• But a cipher can be considerably weaker! (A monoalphabetic cipher over all
bytes has a 1684-bit key, but is trivially solvable.)

Steven M. Bellovin — August 30, 2004 42



Primitives

Public Key Cryptography

• Separate keys for encryption and decryption

• Not possible to derive decryption key from encryption key

• Permissible to publish encryption key, so that anyone can send you secret
messages

• All known public key systems are very expensive to use, in CPU time and
bandwidth.

• Most public systems are based on mathematical problems.

Steven M. Bellovin — August 30, 2004 43



Primitives

RSA

• The best-known public key system is RSA.

• Generate two large (at least 512 bit) primes p and q; let n = pq

• Pick two integers e and d such that ed ≡ 1 mod (p − 1)(q − 1). Often,
e = 3, since that simplifies encryption calculations.

• The public key is 〈e, n〉; the private key is 〈d, n〉.
• To encrypt m, calculate c = me mod n; to decrypt c, calculate

m = cd mod n.

• The security of the system relies on the difficulty of factoring n.

• Finding such primes is relatively easy; factoring n is believed to be
extremely hard.

Steven M. Bellovin — August 30, 2004 44



Primitives

Classical Public Key Usage

• Alice publishes her public key in the phone book.

• Bob prepares a message and encrypts it with that key by doing a large
exponentiation.

• Alice uses her private key to do a different large exponentiation.

• It’s not that simple. . .

Steven M. Bellovin — August 30, 2004 45



Primitives

Complexities

• RSA calculations are very expensive; neither Bob nor Alice can afford to do
many.

• RSA is too amenable to mathematical attacks; encrypting the wrong
numbers is a bad idea.

• Example: “yes”3 is only 69 bits, and won’t be reduced by the modulus
operation; finding 3

√
503565527901556194283 is easy.

• We need a better solution

Steven M. Bellovin — August 30, 2004 46



Primitives

A More Realistic Scenario

• Bob generates a random key k for a conventional cipher.

• Bob encrypts the message: c = {m}k.

• Bob pads k with a known amount of padding, to make it at least 512 bits
long; call this k′.

• k′ is encrypted with Alice’s public key 〈e, n〉.

• Bob transmits {c, (k′)e mod n} to Alice.

• Alice uses 〈d, n〉 to recover k′, removes the padding, and uses k to decrypt
ciphertext c.

• In reality, it’s even more complex than that. . .

Steven M. Bellovin — August 30, 2004 47



Primitives

Perfect Forward Secrecyy

• If an endpoint is compromised (i.e., captured or hacked), can an enemy
read old conversations?

• Example: if an attacker has recorded {c, (k′)e mod n} and then recovers
Alice’s private key, he can read c.

• Solution: use schemes that provide perfect forward secrecy, such as
Diffie-Hellman key exchange.

Steven M. Bellovin — August 30, 2004 48



Primitives

Diffie-Hellman Key Exchange

• Agree on a large (at least 1024-bit) prime p, usually of the form 2q + 1

where q is also prime.

• Find a generator g of the group “integers modulo p”. (This is easy to do if p

is prime.)

• Alice picks a large random number x and sends Bob gx mod p. Bob picks
a large random number y and sends Alice gy mod p.

• Alice calculates k = (gy)x ≡ gxy mod p; Bob does a similar calculation.

• If x and y are really random, they can’t be recovered if Alice or Bob’s
machine is hacked.

• Eavesdroppers can’t calculate x from gx mod p, and hence can’t get the
shared key. This is called the discrete logarithm problem.

Steven M. Bellovin — August 30, 2004 49



Primitives

Random Numbers

• Random numbers are very important in cryptography.

• They need to be as random as possible — an attacker who can guess
these numbers can break the cryptosystem. (This is a a common attack!)
To the extent possible, use true-random numbers, not pseudo-random
numbers.

• Where do true-random numbers come from?

• Physical processes are best — radioactive decay, thermal noise in
amplifiers, oscillator jitter, etc.

• Often, a true-random number is used to seed a cipher — modern
cryptographic functions are very good pseudo-random numbers.

Steven M. Bellovin — August 30, 2004 50



Primitives

Digital Signatures

• RSA can be used backwards: you can encrypt with the private key, and
decrypt with the public key.

• This is a digital signature: only Alice can sign her messages, but anyone
can verify that the message came from Alice.

• Again, it’s too expensive to sign the whole message. Instead, Alice
calculates a cryptographic hash of the message and signs the hash value.

• If you sign the plaintext and encrypt the signature, the signer’s identity is
concealed; if you sign the ciphertext, a gateway can verify the signature
without having to decrypt the message.

Steven M. Bellovin — August 30, 2004 51



Primitives

Cryptographic Hash Functions

• Produce relatively-short, fixed-length output string from arbitrarily long
input.

• Computationally infeasible to find two different input strings that hash to the
same value

• Computationally infeasible to find any input string that hashes to a given
value

• Strength roughly equal to half the output length

• Best-known cryptographic hash functions: MD5 (128 bits), SHA-1 (160
bits), SHA-256 (256 bits)

• 128 bits and shorter are not very secure for general usage
Steven M. Bellovin — August 30, 2004 52



Late-Breaking News

• At CRYPTO ’04, several hash functions were cracked.

• More precisely, collisions were found: H(M) = H(M ′), M 6= M ′

• Cracked functions include MD4, MD5, HAVAL-128, RIPEMD, and SHA-0.

• But SHA-0 was known to be flawed; NSA replaced it with SHA-1 in 1994

+ No significant weaknesses were found in SHA-1.

• MD5 is still commonly used, though weaknesses have long been
suspected.



Primitives

Abusing a Weak Hash Function

• Alice prepares two contracts, m and m′, such that H(m) = H(m′)

• Contract m is favorable to Bob; contract m′ is favorable to Alice

+ The exact terms aren’t important; Alice can prepare many different
contracts while searching for two suitable ones.

• Alice sends m to Bob; he signs it, producing {H(m)}
KB

−1.

• Alice shows m′ and {H(m)}
KB

−1 to the judge and asks that m′ be
enforced

• Note that the signature matches. . .

Steven M. Bellovin — August 30, 2004 53



Primitives

Elliptic Curve Cryptography

• Public key and D-H algorithms, but based on more complex math

• Considerably more security per key bit; allows for shorter keys

• More importantly, allows for much more efficient computation

• Many patents in this space

Steven M. Bellovin — August 30, 2004 54



Primitives

Rough Table of Key Length Equivalences

Symmetric Key
Size (bits)

RSA or DH
Modulus Size (bits)

70 947
80 1228
90 1553

100 1926
150 4575
200 8719
250 14596

(Numbers by Orman and Hoffman)

Steven M. Bellovin — August 30, 2004 55



Protocols

Cryptographic Combinations and
Protocols

Steven M. Bellovin — August 30, 2004 56



Protocols

Building Blocks

• Conventional (symmetric) ciphers, plus modes of operation

• Cryptographic hash functions

• Public key (asymmetric) ciphers

• Using them properly is complex (and not for amateurs)

Steven M. Bellovin — August 30, 2004 57



Protocols

Problems and Threats

• Confidentiality

• Message integrity

• Watch out for replayed messages

• Attacker can cut-and-paste message pieces

• Make sure message goes to right party

Steven M. Bellovin — August 30, 2004 58



Protocols

What are the Attacker’s Powers?

• Eavesdropping

• Message insertion

• Message deletion

• Message modification

• Suitably paranoid attitude: you give your packets to the enemy to deliver

Steven M. Bellovin — August 30, 2004 59



Protocols

Message Integrity

• We can use a key and a cryptographic hash to generate a Message
Authentication Code (MAC).

• Best-known construct is HMAC — provably secure under minimal
assumptions

• HMAC(m, k) = H(k, H(k, m)) where H is a cryptographic hash function

• Can also do a CBC encryption and retain only the last ciphertext block

• Note: authentication key, for either scheme, must be distinct from the
confidentiality key

Steven M. Bellovin — August 30, 2004 60



Protocols

What are Certificates

• How does Alice get Bob’s public key?

• What if the enemy tampers with the phone book? Sends the phone
company a false change-of-key notice? Interferes with Alice’s query to the
phone book server?

• A certificate is a digitally-signed message containing an identity and a
public key — prevents tampering.

Steven M. Bellovin — August 30, 2004 61



Protocols

Why Trust a Certificate?

• Who signed it? Why do you trust them?

• How do you know the public key of the Certificate Authority (CA)?

• Some public key (known as the trust anchor ) must be provided out-of-band
— trust has to start somewhere.

Steven M. Bellovin — August 30, 2004 62



Protocols

Certificate Authorities

• Who picks CAs? No one and every one.

• Your browser has some CAs built-in — because the CA paid the browser
vendor enough money. Is that grounds for trust?

• Matt Blaze: “A commercial certificate authority can be trusted to protect
you from anyone from whom they won’t take money.”

Steven M. Bellovin — August 30, 2004 63



Protocols

Who Gets Certificates?

• How do you prove your identity to a CA?

• How good a job do they do verifying it?

• What warranties does the CA give if someone is fooled? (Most disclaim all
liability. . . )

Steven M. Bellovin — August 30, 2004 64



Protocols

Another Trust Model

• Get certificates from parties whom you know.

• Issue certificates to your own users: authorization certificates

• Don’t rely on commercial identity-based CAs.

Steven M. Bellovin — August 30, 2004 65



Protocols

Certificate Hierarchy versus Web of Trust

• Most CAs are tree-structured

• Top-level CAs can use bridge CAs to cross-certify each other

• PGP uses a different style: a web of trust.

• Certificate signings can form an arbitrarily-complex graph — users can
verify path to as many trust anchors as they wish.

Steven M. Bellovin — August 30, 2004 66



Protocols

Styles of Certification

• At least 3 major styles

• X.509/PKIX — traditional hierarchical CA (but can have “pki” instead of
“PKI”)

• SPKI/SDSI — authorization certificates

• PGP web of trust (primarily for email)

Steven M. Bellovin — August 30, 2004 67



Protocols

What Else is in a Certificate?

• Technical information, such as algorithm identifiers

• More identification information — company, location, etc.

• Expiration date

• Logos

• Certificate role

Steven M. Bellovin — August 30, 2004 68



Protocols

Not All Certificates are Alike

• An email certificate isn’t the same as an ecommerce certificate.

• A CA certificate is even more different — can I use my att.com email
certificate to issue more att.com certificates?

• What about a code-signing certificate for ActiveX?

• Usage-specific information, such as IP address range

Steven M. Bellovin — August 30, 2004 69



Protocols

Revoking Certificates

• Keys associated with certificates can be compromised

• One choice – certificate revocation list (CRL)

• Can get large, which is one reason why certificates expire

• For connected hosts, possible to do online certificate status checking

• Can the attacker block connectivity to the status server?

• CRLs are the weak link of public key cryptography.

Steven M. Bellovin — August 30, 2004 70



Protocols

Key Management for Symmetric Ciphers

• Simplest case: each pair of communicators has a shared key

• Doesn’t scale.

• Besides, cryptographically unwise — each key is used too much

• Need a Key Distribution Center (KDC)

Steven M. Bellovin — August 30, 2004 71



Protocols

Desired Properties

• Alice and Bob want to end up with a shared session key K, with the help of
a key server S.

• They each want proof of the other’s identity

• They want to be sure the key is fresh

Steven M. Bellovin — August 30, 2004 72



Protocols

Needham-Schroeder Protocol (1978)

A → S : A, B, NA (1)

S → A : {NA, B, KAB, {KAB, A}KBS
}KAS

(2)

A → B : {KAB, A}KBS
(3)

B → A : {NB}KAB
(4)

A → B : {NB − 1}KAB
(5)

Steven M. Bellovin — August 30, 2004 73



Protocols

Needham-Schroeder Protocol

S

A B

A, B, NA NA, B, KAB, KAB, A

KAB, A

NB

NB − 1

A − S

Keys: B − S

A − B

Steven M. Bellovin — August 30, 2004 74



Protocols

Explaining Needham-Schroeder

(1) Alice sends S her identity, plus a random nonce

(2) S’s response is encrypted in KAS, which guarantees its authenticity. It
includes a new random session key KAB, plus a sealed package for Bob

(3) Alice sends the sealed package to Bob. Bob knows it’s authentic, because
it’s encrypted with KBS

(4) Bob sends his own random nonce to Alice, encrypted with the session key

(5) Alice proves that she could read the nonce

Steven M. Bellovin — August 30, 2004 75



Protocols

Cryptographic Protocol Design is Hard

• Bob never proved his identity to Alice

• If KAB is ever compromised, the attacker can impersonate Alice forever

• Denning and Sacco proposed a fix for this problem in 1981.

• In 1994, Needham found a flaw in their fix.

• In 1995, a new flaw was found in the public key version of the original
Needham-Schroeder protocol — in modern notation, that protocol is only 3
messages.

• Cryptographic protocol design is hard. . .

Steven M. Bellovin — August 30, 2004 76



Protocols

Kerberos

• Originally developed at MIT; now an essential part of Windows
authentication infrastructure.

• Designed to authenticate users to servers

• Users must use their password as their initial key — and must not be forced
to retype it constantly

• Based on Needham-Schroeder, with timestamps to limit key lifetime

Steven M. Bellovin — August 30, 2004 77



Protocols

How Kerberos Works

• Users present tickets — cryptographically sealed messages with session
keys and identities — to obtain a service.

• Use Needham-Schroeder (with password as Alice’s key) to get a
Ticket-Granting Ticket (TGT); this ticket (and the associated key) are
retained for future use during its lifetime.

• Use the TGT (and TGT’s key) in a Needham-Schroeder dialog to obtain
keys for each actual service

• (Actual details are more complex, and are left as an exercise.)

Steven M. Bellovin — August 30, 2004 78



Protocols

Attacking DH Exponential Key Exchange

Suppose we have a man-in-the-middle between Alice and Bob. . .

A → M : gx mod p

M → B : gz mod p

B → M : gy mod p

M → A : gz′ mod p

Alice and M share a key gxz mod p; Bob and M share a key gyz′ mod p.

When Alice sends a message towards Bob, M decrypts it, reads it and perhaps
modifies it, re-encrypts it, and sends it to Bob.

Diffie-Hellman key exchange provides no authentication — and if Alice or Bob
sent a password, M would read that, too.

Steven M. Bellovin — August 30, 2004 79



Protocols

Authenticating Diffie-Hellman

• Alice and Bob — and perhaps M — engage in a Diffie-Hellman exchange.

• Bob digitally signs a hash of the exchanged exponentials, and transmits it;
Alice does the same.

• M can’t tamper with digitally-signed messages.

• If there’s an attacker, Alice and Bob realize that the signed key doesn’t
match their own key, so they know there’s something wrong.

• (Station-to-station protocol)

Steven M. Bellovin — August 30, 2004 80



Protocols

Coin Flips

• How do you flip a coin on the Internet, without a trusted third party?

• Alice picks a random number x, and sends H(x) to Bob.

• Bob guesses if x is even or odd, and sends his guess to Alice.

• If Bob’s guess is right, the result is heads; if he’s wrong, the result is tails.

• Alice discloses x. Both sides can verify the result. Alice can’t cheat,
because she can’t find an x′ such that H(x) = H(x′).

• Note: this protocol is crucially dependent on the lack of correlation between
the parity of x and the values of H(x), or Bob can cheat.

Steven M. Bellovin — August 30, 2004 81



Crypto and the Internet

Cryptography and the Internet

Steven M. Bellovin — August 30, 2004 82



Crypto and the Internet

Cryptographic Niches

• Cryptography used in may different places

• The most successful forms are the ones that take no user effort

• But — not as much crypto as there should be

Steven M. Bellovin — August 30, 2004 83



Crypto and the Internet

Where to Encrypt?

• Link layer? Only protects that hop, but guards against traffic analysis.
Example: WEP.

• Network layer? Protects all applications, and protects transport layer
headers, but requires kernel or hardware changes. Example: IPsec.

• Transport layer? Easy to install in applications, but requires changes to the
application. Example: SSL.

• Application layer? Can be intrusive, but can provide a close match to the
application’s semantics. Example: S/MIME.

Steven M. Bellovin — August 30, 2004 84



Crypto and the Internet

What to Encrypt?

• Conversations

– Can use KDC or public key

– Primary place where Diffie-Hellman is used

– In case of failure, negotiate a new key

• Objects

– Email, files, non-end-to-end messages

– Public key or external key input often used

– Key loss may be asynchronous — hard to recover

Steven M. Bellovin — August 30, 2004 85



Crypto and the Internet

Secure Socket Layer (SSL)

• Most common form of cryptography on the Internet

• (IETF-standardized version of SSL is called TLS — Transport Layer
Security.)

• Used by Web browsers for ecommerce.

• No setup required by users; some effort required by Web servers.

• In practice, not as secure as in theory, because users don’t validate the
results

Steven M. Bellovin — August 30, 2004 86



Crypto and the Internet

How Does SSL Work?

• Client and server do a Diffie-Hellman exchange to generate a session key.

• Server signs the session key, and sends the signature and its certificate to
the client.

• The client (usually) doesn’t have a certificate: the server doesn’t care who
the client is

• The client knows there’s no MITM attack. The client also verifies that the
name in the certificate matches the desired Web site’s name.

• Both sides cache the session key, and attempt to reuse it if possible.

Steven M. Bellovin — August 30, 2004 87



Crypto and the Internet

Is SSL Secure?

• No known flaws in the protocol — but usage is a different matter

• Very, very few users validate the certificate chain to some CA that they
trust. (Most don’t know what a certificate chain or a trust anchor are.)

• Are you connecting to the right site? Maybe the attacker changed the last
unencrypted HTTP message to point to an evil Web site instead. You have
a secure connection — to the wrong place.

• You don’t go through the crypto; you go around it.

Steven M. Bellovin — August 30, 2004 88



Crypto and the Internet

Status

• Implemented in all web browsers and servers

• Open source implementation available

• Installed in many email clients and servers

Steven M. Bellovin — August 30, 2004 89



Crypto and the Internet

Other Uses of SSL

• SSL is actually a general-purpose secure transport layer.

• Other protocols can be carried over SSL, including (especially) email
uploads and downloads.

• Easiest way to bolt crypto on top of any TCP application.

• The difficulty is application-specific: how do you negotiate the use of SSL?

Steven M. Bellovin — August 30, 2004 90



Crypto and the Internet

IPsec and IKE

• IPsec is network-layer encryption for the Internet

• IKE is the key management layer

• Conceptually simple, but the devil is in the details

Steven M. Bellovin — August 30, 2004 91



Crypto and the Internet

What is Network Layer Security?

• Adds an encryption layer just above IP

• Protects everything above it, including the TCP or UDP header

• Transparent to applications; can protect all of them without any changes

• Can provide replay protection, packet authentication only (AH, sometimes
ESP) or authentication and confidentiality (ESP)

• But — requires kernel or hardware changes

Steven M. Bellovin — August 30, 2004 92



Crypto and the Internet

Possible IPsec Packet Layouts

IP

ESP

TCP

user
data

IP

AH

TCP

user
data

IP

ESP

IP

TCP

user
data

Steven M. Bellovin — August 30, 2004 93



Crypto and the Internet

Encapsulating Security Protocol (ESP)

SPI

sequence

payload

payload padding

padding padlen proto

HMAC digest

HMAC digest

HMAC digest

Integrity

The shaded portion of the packet is encrypted. Null confidentiality algorithm
available; replay-checking and authentication optional.

Steven M. Bellovin — August 30, 2004 94



Crypto and the Internet

How ESP Works

• Security Parameter Index (SPI) identifies Security Association (SA) — what
packets should be encrypted, and with what key and algorithm

• Sequence number used to prevent replay attacks. Packets need not be
strictly ordered, but duplicate packets are dropped

• Payload contains more headers, plus user data

• Padding used to round up to CBC blocksize, plus foil traffic analysis.

• “Proto” is the protocol number of the payload

• The HMAC digest is the (truncated) authentication code

Steven M. Bellovin — August 30, 2004 95



Crypto and the Internet

Authentication Header (AH)

next proto length reserved

SPI

sequence

HMAC (variable length)

Steven M. Bellovin — August 30, 2004 96



Crypto and the Internet

How AH Works

• SPI the same as for ESP

• Optional sequence number checking

• The HMAC digest covers portions of the preceeding IP header, as well as
whatever follows the AH header

Steven M. Bellovin — August 30, 2004 97



Crypto and the Internet

IPsec Topologies

E1 A1

GW-A

E2 A2

B1 GW-B B2

E3

WAN

E4

C

E5 GW-F

F1

F2

Steven M. Bellovin — August 30, 2004 98



Crypto and the Internet

Using IPsec

• IPsec can be host-to-host, host-to-gateway, or gateway-to-gateway

• Traffic from A1 to C is protected by IPsec encryptors E1 and E4.
(Encryptors can be in the stack, in the NIC, or a “bump in the wire”.)

• This is transport mode IPsec; the header following th IPsec header is the
TCP or UDP header.

• Traffic from C to anywhere on Network B is protected by E4 and E3.

• Traffic from anywhere on Net F to anywhere on Net B is protected by E5

and E3.

• The latter two cases use tunnel mode, and have an IP header following the
IPsec header. This is the Virtual Private Network (VPN) usage.

Steven M. Bellovin — August 30, 2004 99



Crypto and the Internet

Internet Key Exchange (IKE)

• Key exchange and management layer for IPsec

• Very complex — many different options, variants, etc.

• Basic cryptographic scheme is (more or less) the station-to-station
protocol, but with lots of extra features

• Also creates and destroys security associations: exactly what IP addresses
and port numbers are to be protected.

• (Note: IPsec receivers check incoming packets to be sure they were
protected with the proper algorithms and keys.)

Steven M. Bellovin — August 30, 2004 100



Crypto and the Internet

Status of IPsec

• All major platforms have IPsec either in the base system or as a
readily-available add-on

• Implementations interoperate less than they should — there are too many
options and variations, especially in IKE and in certificate semantics

• Primarily used for VPNs; host-to-use use is rare

Steven M. Bellovin — August 30, 2004 101



Crypto and the Internet

S/MIME — Secure Email

• Provides mechanism for secure attachments

• Attachments can be encrypted, digitally signed, or both

• Provision for multiple recipients, which implies multiple public
key-encrypted message keys

• Uses X.509 certificates

• Must also adapt to email oddities — actual over-the-wire format must be
immune to havoc wreaked by some email systems

Steven M. Bellovin — August 30, 2004 102



Crypto and the Internet

Status of S/MIME

• Many Mail User Agents (MUA) implement S/MIME, but it is little-used

• Many hard-core geeks prefer PGP

• The crucial difference between the two is the certificate trust model; the
(many) syntactic incompatibilities are minor by comparison

Steven M. Bellovin — August 30, 2004 103



Crypto and the Internet

WEP — Using a Flawed Cipher in a
Bad Way for the Wrong Application

• WEP — Wireline Equivalent Privacy for 802.11 netorks

• Many different mistakes

• Case study in bad crypto design

Steven M. Bellovin — August 30, 2004 104



Crypto and the Internet

Datagrams and Stream Ciphers

• WEP uses RC4 because of its efficiency

• But 802.11 is datagram-oriented; there’s no inter-packet byte stream to use

+ Must rekey for every packet

• But you can’t reuse a stream cipher key on different packets. . .

Steven M. Bellovin — August 30, 2004 105



Crypto and the Internet

Key Setup for WEP

• Each WEP node keeps a 24-bit packet counter

• Actual cipher key is configured key concatenated with counter

• Two different flaws. . .

• 224 packets isn’t that many — you still get key reuse when the packet
counter overflows

• RC4 has a cryptanalytic flaw — the key values for different packets don’t
differ in many bit positions, and there’s a feasible related key attack

• But it’s worse than that

Steven M. Bellovin — August 30, 2004 106



Crypto and the Internet

The Biggest Flaw in WEP

• There’s no key management; all users at a site always share the same
WEP key.

+ You can’t rekey when the counter overflows

+ Everyone shares the same key; if it’s cryptanalzed or stolen or betrayed,
everyone is at risk

+ It’s all but impossible to rekey a site of any size, since everyone has to
change their keys simultaneously and you don’t have a secure way to
provide the new keys

Steven M. Bellovin — August 30, 2004 107



Crypto and the Internet

What WEP Should Have Been

• Use a block cipher in CBC mode

• Use a separate key per user, plus a key identifier like the SPI

• Provide dynamic key management

• WPA — WiFi Protected Access — is better than WEP; forthcoming wireless
security standards will use AES.

Steven M. Bellovin — August 30, 2004 108



Threats

Threats to Cryptographic Systems

Steven M. Bellovin — August 30, 2004 109



Threats

Cryptography Has its Limits

• Cryptanalysis

• Broken protocols

• Operational errors

• The endpoints!

Steven M. Bellovin — August 30, 2004 110



Threats

Endpoint Security

• On the Internet, most security problems are caused by buggy software or
misconfigured systems

• Cryptography doesn’t help here!

• Attackers don’t have to go through the crypto, they go around it.

• Real world example: don’t crack SSL; hack into the merchant’s Web site
and steal lots of credit card numbers at once.

Steven M. Bellovin — August 30, 2004 111



Threats

Cryptanalysis

• Cryptanalysis is not a major threat today — there’s a lot of math behind
today’s algorithms. There are also academic cryptographers who look at
many new algorithms.

• The most common reason for rejecting a proposed cipher is a certificational
weakness — a minor hint that something isn’t quite as good as it should be.

• Of course, historically there were lots of people who believed —
erroneously — that their ciphers were secure. . .

• Still, most plausible cryptanalytic attacks on modern ciphers will require a
great deal of effort per key or message recovered.

• In other words, your enemy needs to have lots of resources — and frequent
key changes will make the attacker’s job harder.

Steven M. Bellovin — August 30, 2004 112



Threats

Recent Cryptanalytic Successes

• Related key attack against RC4

• Million-message attack against SSL — the format used to pad a key before
RSA encryption wasn’t good enough.

• Deep Crack — privately-funded brute force DES cracker

Steven M. Bellovin — August 30, 2004 113



Threats

Broken Protocols

• Cryptographic protocol design is hard

• Original version of IPsec had many different flaws

• Many deployed protocols have been erroneous

Steven M. Bellovin — August 30, 2004 114



Threats

A Flaw in Public Key Needham-Schroeder

CA is Alice’s certificate; CB is Bob’s certificate. Alice’s private key is Ka−1;
Bob’s public key is Kb. Ta is a timestamp.

A → S : A, B

S → A : CA, CB

A → B : CA, CB, {{Kab, Ta}Ka
−1}Kb

Where’s the flaw?

Steven M. Bellovin — August 30, 2004 115



Threats

Some Hints

• It’s a cut-and-paste attack

• It allows Bob to impersonate Alice

• The flaw went undetected from 1978 to 1995. . .

Steven M. Bellovin — August 30, 2004 116



Threats

A Cut-and-Paste Attack

Bob can transform this

A → B : CA, CB, {{Kab, Ta}Ka
−1}Kb

into this:

B → C : CB, CC, {{Kab, Tc}Ka
−1}Kb

and send the message to Carol.

Bob can read that segment (including the session key Kab) because it’s
encrypted with his public key. Carol does nothing to ensure that it’s fresh.

Simplest fix: Alice can sign the ciphertext of a message encrypted to Bob:

A → B : CA, CB, {{Kab, Ta}Kb
}
Ka

−1

Steven M. Bellovin — August 30, 2004 117



Threats

Operational Errors

• Operational errors can weaken even a strong cipher.

• If the Germans had used the ENIGMA properly, it’s doubtful that the Allies
could have cracked it.

• Using a password as a cryptographic key is a modern example — and in
fact is quite close to one of the common German errors.

• A major design goal for crypto gear is to minimize the chances of user
operational error.

Steven M. Bellovin — August 30, 2004 118



Threats

Common Operational Problems

• Bad random number generators or bad seeds

• Leaving keys or plaintext on compromised or seized machines

• Swap files often have copies of keys

• Uncleared buffers saved and transmitted by some applications (i.e.,
Microsoft Word)

• Applications that can silently disable crypto

Steven M. Bellovin — August 30, 2004 119



Threats

Weird Attacks

• Timing attacks — guess at secret key by how long calculations take.

+ Demonstrated on LANs

• Power attacks — guess at bit values by seeing the instantaneous power
consumption

• Serious threat to smart cards

• Spurious RF emissions — so-called TEMPEST issue

Steven M. Bellovin — August 30, 2004 120



References

References

Steven M. Bellovin — August 30, 2004 121



References

General Cryptography

• Handbook of Applied Cryptography, Alfred J. Menezes, Paul C. Van
Oorschot, Scott A. Vanstone, CRC Press, 1996.

• Applied Cryptography, Bruce Schneier, second edition, Wiley, 1995.

• The Codebreakers, David Kahn, second edition, Scribner, 1996.

• Seizing the Enigma: The Race to Break the German U-Boat Codes,
1939–1943, David Kahn, Houghton Mifflin, 1991.

Steven M. Bellovin — August 30, 2004 122



References

Classic Papers

• “Using Encryption for Authentication in Large Networks of Computers”, R.
M. Needham and M. Schroeder, Comm. ACM 21:12 (1978), pp. 993-999.

• “New Directions in Cryptography”, Whitfield Diffie and Martin E. Hellman,
IEEE Transactions on Information Theory IT-11 (1976), pp. 644-654.

• “A Method of Obtaining Digital Signatures and Public-Key Cryptosystems”,
Ronald L. Rivest, Adi Shamir, and Leonard Adleman, Comm. ACM 21:2
(1978), pp. 120–126.

Steven M. Bellovin — August 30, 2004 123



References

IETF Standards

IPsec RFC 2401–2409. (Note: these are being revised.)

SSL/TLS RFC 2246

SSL and TLS: Designing and Building Secure Systems, Eric
Rescorla, Addison-Wesley, 2000.

S/MIME RFC 3370, 3850–3852.

PKIX RFC 2510–2511, 2560, 2797, 3161, 3279–3280.

Steven M. Bellovin — August 30, 2004 124


