
Computer Insecurity

Steven M. Bellovin
smb@research.att.com

http://www.research.att.com/~smb

The Internet Worm--
10 Years After

•Worm launched on 10/2/1988.
•First time most people ever heard of the

Internet.
•First time most people ever heard of computer

hackers…
•Have we learned anything?

How the Worm Spread

•Back door in sendmail.
•Password-guessing.
•Transitive trust.
•Buffer overflow in fingerd.
 Those problems are still with us -- and now

we have mobile code, too.

Back Doors

•Programmers still install extra features (but
today we call them “Easter Eggs”).

•Administering an organization of computers
requires tools to distribute updates. Are
these secure?

•Many programs auto-update. Is this
mechanism secure?

Passwords

•Users still pick bad passwords.
•System designers still use passwords, despite

guessing and “sniffing”.
•One-time password schemes are rare.
•Hardware tokens are even rarer.

Transitive Trust

•If A trusts B and B trusts C, A trusts C.
–Often, A doesn’t know this.

•Such relationships are often bidirectional.
•The security of a trust graph is thus equal to

the security of the weakest link.
•Today, we have a new name for transitive

trust: “single sign-on”.

Buffer Overflow

•The single biggest cause of new security holes.
•9 out of 12 CERT advisories this year describe

buffer overflows.
•Many more such holes are reported on various

mailing lists.

Why Does This Happen?

•C makes it hard to handle strings well.
–C++ makes it much easier, but too many people

write in C, albeit with a C++ compiler.
•Ordinary prudent code isn’t safe against

attack; MAXPATHLEN is an OS limitation,
and is not binding on hackers.

•Time pressure.

Time to Market Wins

•Every study shows that life-cycle costs are
reduced by good development and testing
practices.

•But products no longer have traditional life
cycles; instead, each new release has so
many more features that it’s a new program.

•Users do the testing; reliability and security
don’t build market share.

Mobile Code

•Many forms: Java, Javascript, Word, email.
•The OS no longer helps; protection is up to the

application.
–We have WebOS, WordOS, MailOS, etc.

•But the applications in question are too big,
too complex, and too poorly written to do
the job.

Why Use Mobile Code?

•Most Web uses are frivolous.
–Some, such as input validation or logins, are

down-right wrong.
•But what about shared documents?
•Many things not considered to be mobile code

are complex enough to be treated as such:
html, mail-handling scripts, etc.

What Can we Do?

•We need better underlying operating systems.
–On a PC, the user owns the machine, and

traditional OS vs. user boundaries don’t apply.
•Until we get better OS’s (and the tools to

manage them), structure applications as
operating systems.
–Why doesn’t the Java VM have system calls?

Date: Thu, 15 Oct 1998 07:36:05 -0400 (EDT)
From: security@research.att.com
To: smb@research.att.com
Subject: tcpsuck port 80

TCP message from host universe.campus.luth.se (130.240.193.207): port
3294

Read timeout
32 bytes received
 0: 47455420 2f636769 2d62696e 2f706866 GET /cgi-bin/phf
 16: 0a000000 000000e0 b89b0740 50930408 @P...

Vulnerable Clients

•Traditionally, attacks have been against
servers.

•Servers are better administered, and less
vulnerable.

•But “always-on” PCs are very soft targets
indeed.

•Using @Home, I see a hostile probe every
couple of days...

Where’s the Firewall?

•Employee machines are increasingly outside
the firewall.
–Even if they dial in directly, people surf the Web

on their own time.
•There are many more extranet connections to

customers, vendors, joint venture partners,
outsourced service suppliers, etc.

•We’re losing the guard at the front door.

Cryptography

•Cryptography solves many security problems
-- eavesdropping, spoofing, etc.

•But it is used too rarely, and even more rarely
used well.

•Nor does cryptography solve the buggy code
problem.
–2 of the 12 CERT advisories this year were about

cryptographic problems.

Why Isn’t Crypto Used?

•It adds complexity, and users -- paying
customers -- haven’t demanded it.

•The export rules make it hard.
•If an operating system is insecure, can it even

protect a cryptographic key?

Cryptography is Hard

•Proper use of cryptography requires fairly
deep knowledge.

•Even the experts often can’t get cryptographic
protocols right.

•There’s a lot of snake oil out there.

Going Around Security

•Computer systems don’t exist in a vacuum:
–Attack the surrounding systems.
–“Dumpster diving”.
–Social engineering.

•System must be usable by real people -- how
do you recover from lost keys, forgotten
passwords, etc.

•Must bound or relocate insecurity -- it can’t be
eliminated.

Bounding Insecurity

•What is the likelihood of a security flaw?
•What might the flaw cost you?
•What will it cost you to close the hole? What

will it cost you to close the hole later, after
the system is deployed?

 Being honest about flaws is easy. Being
humble about architectures and code is hard.
Remember that complexity is the enemy.

Moving Insecurity

•Use layered security -- protect a weak point
with some other mechanism.

•Example: cryptography protects a link, but
relies on the security of keys. These are
(usually) easier to safeguard.

•Example: firewalls can be attacked, too, but
they’re (often) running simpler, cleaner
code.

The Systems Perspective

•No one mechanism will buy us security.
•Security has to be built in from the beginning.
•There is no “security pixie dust” that we can

sprinkle over existing designs.

Building Secure Systems

•Keep it simple!
•Never rely on obscurity.
•Validate all input.
•Use appropriate defenses, including

cryptography, at all points. Any component
can be attacked.

•Cater to the real world.
•Keep it simple!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

