
The Cybersecurity
Challenge

Steven M. Bellovin

smb@cs.columbia.edu
http://www.cs.columbia.edu/~smb

This work by Steven M. Bellovin is licensed under a
Creative Commons Attribution-Noncommercial 3.0 United States License.

The Problem

  “Our first observation is that we are hard pressed to say
that cyberspace is more secure than it was 35 years
ago”

  “The second observation is that, absent some fresh
approach, we are equally hard pressed to say that the
situation will materially improve anytime soon”

(Anita Jones and Wm. Wulf)

6/28/10

2

smb@cs.columbia.edu

It’s Not Going to Get Better

  Most security problems are due to buggy code

  Our code is better today than 35 years ago – but the
systems we’re building are far more complex, and the
rate of complexity – and hence bugginess – has
increased faster than the code quality

  Even massive efforts, such as the security work
Microsoft has put into Windows Vista and Windows 7,
hasn’t solved the problem

6/28/10

3

smb@cs.columbia.edu

We’re Out of Ideas

  There haven’t been any fundamentally new defensive
ideas in a long time

  Our basic mechanism is the wall – a barrier between
good and bad programs, individuals, systems, etc.

  Walls are the easy part – but even they’re far from
perfect

  The hard part is not the walls, but the gates – the way
we permit things to pass through the wall in a
controlled fashion

6/28/10

4

smb@cs.columbia.edu

Seers and Craftspeople

  Many sciences alternate periods of radical change with
periods of engineering and minor advances

  In security now, we’re in the second phase – but the
attackers are stronger than our defenses

  We need radical new ideas

6/28/10 smb@cs.columbia.edu

5

“Something there is that
does not love a wall”

(Mending Wall, Robert Frost)

6/28/10

6

smb@cs.columbia.edu

Firewalls

  We allow many complex things through the firewall
  Javascript
  PDF
  Javascript in PDF
  More…

  There is not enough sanitization

  Most decent-size companies have many authorized holes
– and many more unauthorized ones

  Too many machines – laptops, smartphones, etc. – live
both inside and outside the firewall

6/28/10 smb@cs.columbia.edu

7

Operating Systems

  There are too many privileged programs

  Generally, they grant partial privilege to users: they
enable some operations that normally would not be
permitted, but are acceptable in certain circumstances
  In other words, they’re a form of gate

  The boundary between trusted and untrusted
components has been blurred

6/28/10 smb@cs.columbia.edu

8

Applications

  There are many applications (mailers, browsers, PDF
viewers, word processors) that are really like operating
systems
  Untrusted input
  Programmability
  Resource management

  They’re not part of the traditional OS, but failures of
their protection schemes can result in user account
penetration

  They have their own walls and gates

6/28/10 smb@cs.columbia.edu

9

A Definition

Insanity (n):
1.  Extreme foolishness or irrationality (Mac OS)
2.  Doing the same thing over and over again and hoping for a

different result (folk wisdom…)

6/28/10

10

smb@cs.columbia.edu

The Humble Approach

  Our walls will fail, and will fail in unpredictable ways

  Our intrusion detection systems are imperfect

  The increased amount of connectivity, through and
around firewalls, have rendered them essentially
useless

We need a new approach

6/28/10

11

smb@cs.columbia.edu

The Threat Model

6/28/10

12

smb@cs.columbia.edu

Threats Have Changed

  The traditional defensive model was implicitly based on
the assumption that the good guys had more resources
than the bad guys

  That’s no longer true – it’s often the converse

  There is now much more motivation for attackers

6/28/10

13

smb@cs.columbia.edu

“Follow the Money”

  Most hacking today is profit-driven

  (Have you noticed how long it’s been since a worm shut
down the Internet?)

  The market has worked its magic – the attackers now
have lots of resources to devote to attacks

  Many of our vulnerable applications were developed on
a very tight budget and schedule

  The defenders have to protect everywhere; the
attackers get to pick their targets

6/28/10

14

smb@cs.columbia.edu

Nations

  Most countries have cyberwarfare efforts

  Often, they’re the attackers – but the targets are
civilian sites running commercial software

  Even governments depend on such software

6/28/10

15

smb@cs.columbia.edu

New Devices

  We are introducing new devices – and hence new
vulnerabilites – without adequate security

  5 years ago, there was no Facebook

  5 years ago, there were no iPhones

  5 years ago, there was no Twitter

What are the security implications of these devices?

6/28/10

16

smb@cs.columbia.edu

What’s Valuable?

  Asymptotically, computers are free

  So are bandwidth and disk space

But…

  People are expensive

  The physical world is valuable

  Data is valuable

  Data is much more valuable in the aggregrate; most
individual data items aren’t that important

6/28/10

17

smb@cs.columbia.edu

A Research Agenda

6/28/10

18

smb@cs.columbia.edu

Caveats

  This is a personal vision

  I don’t know how to do these things – if I did, it
wouldn’t be research

  These ideas may ultimately prove just as futile

  But – we haven’t mined them out for 35 years

6/28/10

19

smb@cs.columbia.edu

Themes

  Resilience

  Usability

  Large-scale Systems

  Modes of Thought

6/28/10

20

smb@cs.columbia.edu

Resilience

6/28/10

21

smb@cs.columbia.edu

Resilience

  Today’s systems are “brittle” – they can shatter
suddenly

  Today, any given subsystem can fall because of a single
bug

  “Defense in depth” doesn’t work as well as we’d like,
because each defensive layer can fail, too

  The security of a system is merely linear in the number
of layers – and the constant factor may be arbitrarily
small, if the attacker is good enough or lucky enough

6/28/10

22

smb@cs.columbia.edu

Resilient Systems

  A resilient system protects most of its data most of the
time

  The rate of data protection failure is low; more
precisely, it’s low enough

6/28/10

23

smb@cs.columbia.edu

An E-Commerce
Site

  Very restricted language
from web server to
database
  Simpler language limits bug

rate

  Authentication is from the
end user to the database
  Only active users’ accounts

are at risk

  Perhaps even encrypt the
database, with the key
derived from the users’
authenticators

WWW DB Net

Firewall

6/28/10

24

smb@cs.columbia.edu

Web Site Design

  Rate of data compromise limited to rate of user activity

  Most users are not active most of the time

  Firewall protects the valuable item – the database –
from the outside; the web server is exposed, because it
has to be

6/28/10

25

smb@cs.columbia.edu

Data-Driven Design

  Orders are created by the
user database, not the web
server

  The order database updates
the inventory database

  All write operations by the
web server are
authenticated by the end-
user

6/28/10

26

smb@cs.columbia.edu

Resilience

  We have restricted the failure modes – no data can be
read or (usefully) modified without the authenticator

  Only one small module needs to be correct

  If the IDS works quickly enough, most of the database
will remain intact

  We have protected most of the data, most of the time

  (But this design isn’t perfect – what are the weak
points?)

6/28/10

27

smb@cs.columbia.edu

Internet-Connected Thermostats

  I recently reviewed the design of an Internet-connected
home thermostat
  Permits remote control of a house’s temperature

  The design was not nearly secure enough – an attacker
could turn off my heat in the winter, overheat the house
in the summer, etc.

  Even if the device had enough crypto and proper
authentication, the code might still be buggy (and it
probably is…)

6/28/10

28

smb@cs.columbia.edu

A Better Design

  Have hard-wired limit circuits – never let the
temperature in the house get below 5° or above 45°

  Prevent pipes from freezing; prevent plants from dying

  Or – if the limit circuits ever activate, switch control to
other hard-wired circuits that keep the house
temperature between 10° and 35°, since most people
don’t want their houses outside that range

6/28/10

29

smb@cs.columbia.edu

Defining Resilience

  It isn’t easy!

  What is a “resilient” car engine computer?
  (The first cards with microprocessor engine controls had a

manual override switch under the hood.)

  What is the analog to temperature limit circuits for an
electrical generator, since phase and voltage must be
tightly matched to the rest of the grid’s?

  Defining the problem is just one of the hard parts

6/28/10

30

smb@cs.columbia.edu

Usability

6/28/10

31

smb@cs.columbia.edu

Usability

  Many of today’s security systems are too hard to use

  One reason that phishing happens is that alternatives to
reusable passwords are inconvenient

  Even skilled administrators find it almost impossible to
configure IPsec VPNs

  Access control policies are incomprehensible

6/28/10

32

smb@cs.columbia.edu

A VPN Topology

6/28/10

33

smb@cs.columbia.edu

Configuring it with Simple-IPsec

access "direct" # No triangle routing!
type "racoon" # IPsec implementation!
authgen # Generate certficates automatically!
vpn sample {!
 nodes "ubuntu" { # OS for these nodes!
 host 128.59.11.1, 128.59.12.1 # Some remote hosts!
 gw 128.59.13.1 { # Gateway to these nodes!
 subnet 128.59.13.0/24 # An entire protected net!
 }!
 }!
}!

The whole network is configured in one operation; the
package-specific files are auto-generated and auto-
installed. The graph shown is part of the output.

6/28/10

34

smb@cs.columbia.edu

Why Is This Better?

  The entire system is configured in one operation

  Much of the complexity of IPsec is hidden: there is no
way to specify assorted options that never should have
existed in the first place

  Other complexity, such as certificate generation, is
hidden

  There is exactly one policy decision and one option;
everything else is topology or platform+OS

6/28/10 smb@cs.columbia.edu

35

The Access Control Problem

  No one knows how to configure complex access
controls, especially in a distributed system

  There are too many interactions, and the effects of any
given setting are unclear
  Which desired operations are now impossible?
  Which undesired operations remain possible?

  There is no assurance that any given selection is correct

6/28/10 smb@cs.columbia.edu

36

Large-Scale Systems

6/28/10 smb@cs.columbia.edu

37

Large-Scale Systems

  Today’s systems aren’t one computer; they’re many
interconnected systems

  Each is a potential point of vulnerability

  Instead of defense in depth, we have weakness in depth

6/28/10 smb@cs.columbia.edu

38

Scaling

  We need ways to understand the properties of systems

  We need ways for real-world programmers to specify
the security properties of the system, just as we did in
Simple-IPsec

  We need ways to manage the security settings –
including configuration and patch level – of large-scale
systems, without very much expensive, buggy human
intervention

6/28/10 smb@cs.columbia.edu

39

Modes of Thought

6/28/10 smb@cs.columbia.edu

40

Modes of Thought

  We don’t know how to think about new threats or new
services

  More precisely, we approach the questions in an ad hoc
fashion, and try to reason by analogy

  Example: what are the consequences of making an
iPhone believe a false location?

6/28/10 smb@cs.columbia.edu

41

Location Threats

  Who is relying on the location?

  Who can spoof it?

  What if it’s a car navigation system? A car’s
speedometer? A geographic access control restriction?
An emergency phone call to the police? Location-based
advertising?

  The threat will change, depending on the application.
How could this be anticipated?

6/28/10 smb@cs.columbia.edu

42

Extremism

  The usual approach is extremist: either there are no
problems, or all new services are banned

  Generally speaking, both are incorrect – but what
should replace them?

  Is it possible to have a useful formalism that can
describe things that haven’t been invented yet?

6/28/10 smb@cs.columbia.edu

43

Conclusions

6/28/10 smb@cs.columbia.edu

44

Parting Thoughts

  It is improbable that anyone (including me) will want to
give up today’s advanced services, let alone all new
ones

  But – we are more and more dependent on an
increasingly-fragile infrastructure

  My proposed solutions may not be the best, or even the
only approaches

  But we have to try something new!

6/28/10 smb@cs.columbia.edu

45

References

  Steven M. Bellovin. Seers and craftspeople. IEEE
Security & Privacy, 5(5), September-October 2007.

  Steven M. Bellovin. On the brittleness of software and
the infeasibility of security metrics. IEEE Security &
Privacy, 4(4), July-August 2006.

  Steven M. Bellovin. Virtual machines, virtual security.
Communications of the ACM, 49(10), October 2006.

6/28/10 smb@cs.columbia.edu

46

