Telephone versus Internet Wiretaps
A Technical and Legal Perspective

Steven M. Bellovin
AT&T Labs – Research
http://www.research.att.com/~smb
Legal Basis for Wiretaps

- Smith v. Maryland, 442 U.S. 735 (1979)
- 18 USC 2510 et seq. (“Title III”, as amended by the ECPA)
 - Complex procedure, many restrictions; a lot of justification is needed.
- 18 USC 3121 et seq. (pen registers and trap-and-trace devices)
 - Orders are easy to obtain; simple, unchecked assertion of relevance is all that’s needed.
- 50 USC 1800 (FISA)
Legal Principles

• Wiretaps are “searches” within the meaning of the 4th Amendment (Katz).
 – Telephone users have a legitimate expectation of privacy.
• But dialed digits are not protected (Smith).
 – They are voluntarily “given” to the phone company.
 – People know that the phone company can and does record them, i.e., for billing.
• FISA: generally restricted to non-“U.S. persons”.
Telephony in 1967

- No enhanced services.
 - Touchtone phones barely existed!
- Anything dialed was a phone number.
- Most calls had exactly two parties.
 - Enhanced calls required manual assistance.
- No ambiguity about who was involved in the call.
 - Easy to tell where to serve warrants, as well.
- Mostly analog transmission technology, with in-band signaling, and (often) on dedicated wires.
Circuit-Switching

- Data path allocated at call setup time.
- Dedicated facilities (wire pairs, time slice interval, etc.) used only for that call.
- Any point along the path receives both directions of the entire call.
- But – no signaling information in the datapath after call setup.
Consequences

• Little ambiguity about who was being tapped.
 – Shared phones, party lines, pay phones, and Centrex did exist.
• All dialed digits intended for CO.
• Trap-and-trace was slow, painful, manual, and unreliable.
Telephones Today

• Digital transmission, many shared facilities, out-of-band signaling.
• Many services rely on post-dial signaling: prepaid phone cards, voice mail, conference services, information services, voice menus, etc.
• Some enhanced services don’t involve third-party gear (i.e., home answering machines).
Consequences

• Varied formats and signaling schemes led to CALEA.
 – Much debate about feasibility and meaning of some “punch list” requirements.

• Ambiguity about meaning of post-dial signals – on whom should warrants be served?
 – What type of court order is needed to listen to an answering machine’s PIN?
Tapping the Internet

• Packet-based.
• International.
 – No strong notion of real-world geography.
• Strongly layered architecture.
 – Fields at different layers may be intended for different parties.
 – One layer’s content is another layer’s signaling.
• Strictly in-band signaling.
• Ubiquitous shared facilities.
• Intelligence at the edges, not the middle.
Packet-Switching

• Messages broken up into individual packets.
• Each packet has source and destination address.
 – Source address may be forged with little effort.
• Packets are routed individually via shared media.
 – Different packets can take different paths, though they usually don’t over reasonably short time scales.
 – Return packets *often* take a different path through the backbone.
Consequences

• Easy to miss a few packets.
 – If address assignment packets are missed, subsequent collection is jeopardized.
 – Meaning of some packets is context-dependent.
 – Eavesdropper may have different view than communicants do.

• Unclear what packets are intended for whom, and hence what (legitimate) expectations of privacy there are.

• International nature makes matters murkier.
Who Receives What?

• Network-layer Path:
 – No expectation of privacy
 – May or may not be end-to-end for the underlying communication.

• To: and From: information:
 – Appears twice – in mail “envelope” protocol and mail header (the two can and do differ).
 – May or may not be end-to-end.
 – If not end-to-end, what if one ISP is in another country, with stronger privacy guarantees?
Web Scenarios

ISP
Proxy

Browser

Web Server
Who Receives What?

• User sees connection as end-to-end.
 – Probably expects privacy.

• Browser may be configured to use ISP’s proxy server.
 – Most users know nothing of this.
 – Never any per-URL billing.
 – Users probably see this as equivalent to end-to-end case.

• ISPs sometimes use “transparent proxies”
 – Violates knowledgeable users’ expectations.
Intelligence at the Edges

• In the telephone world, most intelligence is in the network.
 – But that’s slowly changing, with things like remote-control answering machines, etc.
• In the Internet, virtually all intelligence is on the end systems.
 – Any user can create a new service, without help from (or knowledge of) the ISPs.
• Hard to tap if you don’t know what it is, or what rational privacy expectations are.
What Do You Learn from Taps?

• Much interesting information is not end-to-end.
 – End-user IP addresses are generally transient.
• Higher-level information from log files can be more useful.
• This may change if and when peer-to-peer protocols become common.
 – But the bad guys will then have to solve the rendezvous problem, which provides another monitoring point.
• What kind of court orders are needed?
• Is the end-user a “U.S. person”? How do you know?
Conclusions

• The telephony wiretap model does not fit the Internet very well.
 – It’s fitting the telephone world less and less well, too.
• Much of the difficulty stems from the (possible) end-to-end nature of the Internet.
• Low-burden court orders for pen register analogs may not be constitutional.
• But full-content wiretap orders are overkill.
• I suggest that the standard for non-content Internet taps be similar to that for search warrants.