
Secure Computation in Heterogeneous
Environments: How to Bring Multiparty

Computation Closer to Practice?

Mariana Raykova

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012

c�2012

Mariana Raykova

All Rights Reserved

ABSTRACT

Secure Computation in Heterogeneous
Environments: How to Bring Multiparty

Computation Closer to Practice?

Mariana Raykova

Many services that people use daily require computation that depends on the private data

of multiple parties. While the utility of the final result of such interactions outweighs the

privacy concerns related to output release, the inputs for such computations are much more

sensitive and need to be protected. Secure multiparty computation (MPC) considers the

question of constructing computation protocols that reveal nothing more about their inputs

than what is inherently leaked by the output. There have been strong theoretical results that

demonstrate that every functionality can be computed securely. However, these protocols

remain unused in practical solutions since they introduce e�ciency overhead prohibitive for

most applications.

Generic multiparty computation techniques address homogeneous setups with respect

to the resources available to the participants and the adversarial model. On the other hand,

realistic scenarios present a wide diversity of heterogeneous environments where di↵erent

participants have di↵erent available resources and di↵erent incentives to misbehave and

collude. In this thesis we introduce techniques for multiparty computation that focus on

heterogeneous settings. We present solutions tailored to address di↵erent types of asym-

metric constraints and improve the e�ciency of existing approaches in these scenarios. We

tackle the question from three main directions:

• New Computational Models for MPC – We explore di↵erent computational models

that enable us to overcome inherent ine�ciencies of generic MPC solutions using

circuit representation for the evaluated functionality. First, we show how we can use

random access machines to construct MPC protocols that add only polylogarithmic

overhead to the running time of the insecure version of the underlying functionality.

This allows to achieve MPC constructions with computational complexity sublinear

in the size for their inputs, which is very important for computations that use large

databases.

We also consider multivariate polynomials which yield more succinct representations

for the functionalities they implement than circuits, and at the same time a large

collection of problems are naturally and e�ciently expressed as multivariate polyno-

mials. We construct an MPC protocol for multivariate polynomials, which improves

the communication complexity of corresponding circuit solutions, and provides cur-

rently the most e�cient solution for mutiparty set intersection in the fully malicious

case.

• Outsourcing Computation – The goal in this setting is to utilize the resources of a

single powerful service provider for the work that computationally weak clients need

to perform on their data. We present a new paradigm for constructing verifiable com-

putation (VC) schemes, which enables a computationally limited client to verify e�-

ciently the result of a large computation. Our construction is based on attribute-based

encryption and avoids expensive primitives such as fully homomorphic encryption and

probabilistically checkable proofs underlying existing VC schemes. Additionally our

solution enjoys two new useful properties: public delegation and verification.

We further introduce the model of server-aided computation where we utilize the

computational power of an outsourcing party to assist the execution and improve the

e�ciency of MPC protocols. For this purpose we define a new adversarial model of

non-collusion, which provides room for more e�cient constructions that rely almost

completely only on symmetric key operations, and at the same time captures realistic

settings for adversarial behavior. In this model we propose protocols for generic secure

computation that o✏oad the work of most of the parties to the computation server.

We also construct a specialized server-aided two party set intersection protocol that

achieves better e�ciencies for the two participants than existing solutions.

Outsourcing in many cases concerns only data storage and while outsourcing the data

of a single party is useful, providing a way for data sharing among di↵erent clients

of the service is the more interesting and useful setup. However, this scenario brings

new challenges for access control since the access control rules and data accesses

become private data for the clients with respect to the service provide. We propose

an approach that o↵ers trade-o↵s between the privacy provided for the clients and the

communication overhead incurred for each data access.

• E�cient Private Search in Practice – We consider the question of private search

from a di↵erent perspective compared to traditional settings for MPC. We start with

strict e�ciency requirements motivated by speeds of available hardware and what is

considered acceptable overhead from practical point of view. Then we adopt relaxed

definitions of privacy, which still provide meaningful security guarantees while allowing

us to meet the e�ciency requirements. In this setting we design a security architecture

and implement a system for data sharing based on encrypted search, which achieves

only 30% overhead compared to non-secure solutions on realistic workloads.

Table of Contents

1 Introduction 1

1.1 Contributions . 6

1.1.1 New Models for Secure Computation 6

1.1.2 Outsourcing Computation . 8

1.1.3 E�cient Private Search in Practice 10

2 Related Work 12

2.0.4 Secure Multiparty Computation . 12

2.0.5 Delegation of Computation . 15

2.0.6 Secure Search . 16

2.0.7 Oblivious Random Access Memory (ORAM) 18

I New Computational Models 20

3 Secure Computation with Sublinear Amortized Work 21

3.1 Motivation and Contributions . 21

3.2 Solution Overview . 22

3.3 Preliminaries . 24

3.3.1 Random Access Machines . 24

3.3.2 Oblivious RAM . 25

3.3.3 Secure Computation . 27

3.4 Generic Construction . 29

3.4.1 Proof of Security . 32

i

3.5 An Optimized Protocol . 34

3.5.1 Technical Overview . 35

3.5.2 Building Blocks . 37

3.5.3 Our Construction . 46

3.5.4 Discussion: Bucket Size . 50

3.6 Security Proof . 51

3.7 Performance . 60

4 Secure Multiparty Computation for Multivariate Polynomials 61

4.1 Motivation and Contributions . 61

4.1.1 Our Contributions . 62

4.2 Solution Overview . 66

4.3 Definitions and Techniques . 68

4.3.1 Definitions . 68

4.3.2 Techniques . 69

4.4 Building Block Protocols . 71

4.4.1 Multiparty Homomorphic Encryption Proof of Knowledge and Plain-

text Verification (HEPKPV) . 72

4.4.2 Multiparty Coin Tossing . 73

4.4.3 Input Preprocessing and Verification 75

4.5 Main Protocol . 77

4.5.1 Security analysis . 79

4.6 Communication and Computation Complexity 88

4.7 Multiparty Set Intersection and Other Applications 89

4.7.1 Optimizations . 89

4.7.2 Multiparty Set Intersection as Polynomial Evaluation 90

II Outsourced Computation 92

5 How to Delegate and Verify in Public: Verifiable Computation from

Attribute-based Encryption 93

ii

5.1 Motivation and Contributions . 93

5.1.1 Our Contributions . 96

5.2 Definitions . 99

5.2.1 Public Verifiable Computation . 99

5.2.2 Key-Policy Attribute-Based Encryption 103

5.2.3 Multi-Function Verifiable Computation 105

5.3 Verifiable Computation from Attribute-Based Encryption 108

5.3.1 Main Construction . 109

5.3.2 Instantiations . 113

5.4 Multi-Function Verifiable Computation from KP-ABE With Outsourcing . 116

6 Outsourcing Multi-Party Computation with Non-Colluding Adversaries 120

6.1 Motivation and Contributions . 120

6.1.1 Our Contributions . 121

6.2 Overview of Protocols . 124

6.3 Preliminaries and Standard Definitions . 127

6.4 Non-Collusion in Multi-Party Computation 129

6.4.1 Formalizing Non-Collusion With Respect to Semi-Honest Adversaries 131

6.4.2 Formalizing Non-Collusion With Respect to Deviating Adversaries . 134

6.5 An E�cient Protocol for Non-Colluding Semi-Honest Parties 139

6.6 Protecting Against Deviating Circuit Garblers 145

6.6.1 What goes wrong in the server-aided setting? 147

6.6.2 Extending to Multiple Parties . 157

6.7 Server-Aided Computation From Delegated Computation 158

6.8 Server-Aided Private Set Intersection . 163

6.9 E�ciency in the Server-Aided Setting . 168

6.9.1 Evaluating the E�ciency Gain . 168

6.9.2 Comparison with Secure Delegated Computation 170

6.9.3 Why Non-Collusion Helps . 171

iii

7 Privacy Enhanced Access Control for Outsourced Data Sharing 172

7.1 Motivation and Contributions . 172

7.1.1 Contributions . 175

7.2 Two-level Access Control Model – Solution Overview 176

7.3 Access Control Model . 178

7.4 Read Access Control . 180

7.4.1 Techniques . 181

7.4.2 Read Access Control . 184

7.5 Write Access Control . 187

7.5.1 Techniques . 188

7.5.2 Integrated Read and Write Access Control 189

7.6 Analysis . 192

7.6.1 Security Guarantees . 192

7.6.2 Performance Analysis . 194

7.6.3 Discussion . 196

III Secure Data Sharing through Secure Search 198

8 Practical Secure Search 199

8.1 Motivation and Contributions . 199

8.1.1 Our Contributions. 200

8.2 Security Architecture and Definitions . 201

8.2.1 DET-CCA Deterministic Private Key Encryption Scheme. 205

8.2.2 Re-Routable Encryption. 211

8.2.3 Bloom Filters. 214

8.3 Secure Anonymous Database Search Protocol 218

8.4 Document Retrieval . 220

8.5 Security Proof of the Protocol . 225

8.5.1 Security Against Adversarial Client 225

8.5.2 Security Against Adversarial Server 226

iv

8.5.3 Security Against Honest-but-Curious Index Server and Query Router 227

8.6 Performance Evaluation . 228

8.6.1 Memory Consumption . 229

8.6.2 Implementation Optimizations . 230

8.6.3 Search Performance . 232

8.6.4 Document Retrieval . 234

8.6.5 Overall Performance . 236

8.6.6 Case Study: Sharing of Health Records 237

9 Conclusions 239

IV Appendices 245

A Secure Computation with Sublinear Amortized Work 246

A.1 Supporting Subprotocols . 246

B Secure Multiparty Computation for Multivariate Polynomials 252

B.1 Proof of HEPKPV Protocol . 252

B.2 Proof of Multiparty Coin Tossing . 253

B.3 Proofs of Input Preprocessing and Verification 254

C How to Delegate and Verify in Public: Verifiable Computation from

Attribute-based Encryption 258

C.1 Note on Terminology: Attribute-based Encryption versus Predicate Encryption258

C.2 Attribute-based Encryption from Verifiable Computation 259

D Outsourcing Multi-Party Computation with Non-Colluding Adversaries 265

D.1 Garbled Circuits . 265

D.2 Secure Delegated Computation . 266

D.3 Proof for Set Intersection Protocols . 268

E Privacy Enhanced Access Control for Outsourced Data Sharing 273

E.1 Predicate Encryption and Extensions . 273

v

E.2 Optimizations . 275

F Practical Secure Search 278

F.1 Key Generation for Our SADS Protocol . 278

V Bibliography 280

Bibliography 281

vi

List of Figures

3.1 Secure initialization protocol ⇡Init. 29

3.2 Secure evaluation of a RAM program. 30

3.3 Subroutine for executing one RAM instruction. 31

3.4 A construction of a Shared Oblivious PRF 39

3.5 A protocol for converting exponentiation-based shares to multiplicative shares 44

3.6 The shu✏e protocol in the hybrid world. 53

3.7 The read and write protocol in the hybrid world. 55

4.1 Encrypted Interpolation . 71

4.2 Interpolation Randomness . 72

4.3 HEPKPV . 74

4.4 Choosing Joint Randomness . 75

4.5 Input Preprocessing . 77

4.6 Preprocessing Verification . 78

4.7 Polynomial Evaluation . 80

4.8 Polynomial Evaluation Continued . 81

4.9 Polynomial Evaluation Continued . 82

6.1 The (modified) FKN protocol. 140

6.2 A server-aided two-party protocol robust against a deviating P
1

. 152

6.3 Figure 6.2 Continued . 153

6.4 A server-aided two-party protocol from any delegated computation scheme . 159

6.5 Security against malicious server . 165

vii

6.6 Security against any one malicious party. 167

7.1 Two-leveled access control model. 179

7.2 Algorithms for key distribution and management for fine-grained AC. . . . 183

7.3 Algorithms for enforcing coarse-grained AC at the access block level. . . . 185

7.4 Tree graphs of encryption policy for fine-grained AC on read access. 186

7.5 Distribution of read access tokens EncSK(ri) for coarse-grained AC. 187

7.6 Tree graphs of encryption policy for read and write access at the fine-grained

level within each access block. 191

7.7 Distribution of write access tokens Encpk
wa

(ri) for each resource ri in coarse-

grained access control. 192

8.1 General Setup: The data owner makes its data available for search providing IS with

search index structures, the client submits queries anonymously to IS via QR, IS

sends back the search result though QR . 203

8.2 Bloom filters: w
1

and w
2

are real entries of the BF and w
3

is a false positive . . . 215

8.3 System Architecture and Data Flow. 218

8.4 Secure Anonymous Database Search Scheme 221

8.5 SADS with Document Retrieval. 222

8.6 Protocol for Document Retrieval . 224

8.7 Multiple Bloom Filters Memory Storage . 231

8.8 Average query time under di↵erent SADS configurations using the Enron

dataset. 232

8.9 Average OR-query time under di↵erent SADS configurations using the Enron

dataset. Each cluster is for a di↵erent dataset size and each bar is for a

di↵erent term count (from 2 to 5). 233

8.10 Average time for retrieving documents anonymously, compared to retrieving

them non-anonymously using ssh file transfer. Average size of files being

transferred was 27.8 Mb . 234

8.11 Comparison between the extended SADS and MySQL. 236

viii

A.1 A functionality that enables the players to obliviously check whether a data

item matches the target. 247

A.2 A functionality that determines whether a real or a dummy look-up should

be performed . 248

A.3 A functionality for determining whether a value should be written to a given

position in the top level. 249

A.4 A functionality for the distributed computation of a universal hash function. 250

A.5 A Functionality that enables the players to obliviously compare and swap

two elements. This is used repeatedly for an oblivious sort. 250

A.6 A functionality for counting m items in each bucket and removing excess

empty items. 251

ix

List of Tables

x

Acknowledgments

Undoubtedly my biggest THANK YOU goes to my family for their endless love and un-

wavering support for any decision I take and any choice I make, even if that meant going

across half of the world. My parents instilled in me the belief that if you work hard you

can reach anywhere, and any di�culty on the way is just another challenge to overcome.

Their love and care made the person I am, and their hard work gave me the opportunity to

follow my dreams. And my sister is one of the dearest people to me who counterbalances

me in many good ways. Having her has made everything much more fun. Without all of

this I would not be writing these lines today.

My advisors, Tal Malkin and Steve Bellovin, were the people who guided me in my

journey during my graduate studies. While I was determined to look for the path that

bridges between the tools that theoretical cryptography provides and the real needs of

practical applications, I knew this was a way full of pitfalls. I am grateful to my advisors

for helping me avoid these pitfalls, for showing me their two perspectives on the problems

I was trying to tackle, and for demanding that I do not lose sight of the requirements of

both provable and practical security while finding my own way in research. I would also

like to thank them for being great people who have shown a lot of understanding on every

level, both academic and personal. It has always been fun to laugh together with Tal. And

it has always been fascinating to learn about trains, the history of of cryptography and all

the other interesting hobbies that Steve has.

Another person who, even though he was not my o�cial advisor, has spent many hours

collaborating with me, talking about research and advising me at various important steps

in my PhD, is Moti Yung. He has taught be that many times the odds may not be on your

side, but if you keep on working hard, things eventually turn around. Moti is an inspiring

example for me being a well-established and respected cryptographer, who also spends his

xi

time working at companies collaborating with people who face and need to resolve practical

security issues.

Although I have not had a lot of collaboration with Sal Stolfo, I have had many con-

versation with him that have made me think more about the big picture of security and

the contribution I would like to make with my research. He has always been one of the

people who want to know how I am doing, and who has always been ready to help with any

concern that I have.

I was fortunate to have many mentors and collaborators outside Columbia as well.

Certainly, my mentors during my internships at MSR, Seny Kamara and Bryan Parno, have

taught me a lot about doing research — about asking interesting questions and looking for

innovative ideas, and also about writing and presenting these ideas. My internships at

MSR have been a lot fun and have started collaborations that I hope will continue for in

the long term. Payman Mohassel and Vinod Vaikuntanathan are other great collaborators

that I have met through my work at MSR. I also had the chance to start working on a

research project with Craig Gentry and Rosario Gennaro from the crypto group at IBM,

and my collaboration with the amazing researchers and wonderful people from that group

will continue during my postdoc at IBM.

Of course, this journey would not have been the same and certainly not as much fun

without all my friends (and in many cases also collaborators). I would start with Sasha who

”found” me on our first day at Columbia and since then she has been a great friend, who

has listened to anything that moved me in happy moments and anything that bothered me

in hard times. We have had great times with Natalia first in Astoria and NYC, and then

in London, Frankfurt, Copenhagen, and probably many other places in the world in the

future. Lida and Gabriela have started as my NY friends and have moved to my California

friends who always have their homes and their hearts open for me.

And all ”the Greeks” at Columbia have made a wonderful group of people with whom I

had lots of great times both at school and outside school. It has always been good to have

Angelika around to be the woman and friend that I can talk to. Having a great o�cemate

makes going to work much better and this was definitely true for me thanks to my o�cemate

Vasilis. With Maritza and Hang we shared an advisor and we walked together the path of

xii

the PhD. Dov certainly goes in both of the lists of my friends and my collaborators. He is

still one of the people that I enjoy most working with but also a friend that is always fun

to hang out with.

And there are many other friends that I have met during my numerous internships and

my semester at Berkeley (I was lucky to have Carla as my o�cemate at Berkeley and my

friend even since, I hope our paths cross more times in the future). All of them, even for

the short time we have spent together, have left lots of memories of good times.

This is the beginning of the list of people that I was fortunate to meet and interact with

at di↵erent points of my PhD life. Since I will most likely forget someone if I try to mention

everyone on this list, I will not try to, but my thank you goes to all of them.

xiii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

We engage daily in numerous electronic interactions that have become an integral part of al-

most every aspect of our life; whether it is shopping online, managing finances, maintaining

social connections, checking medical test results, we conduct many of our activities using

the Internet. Often these interactions involve private sensitive information the unwanted

exposure of which may have various negative consequences such as putting at material dis-

advantage, stigmatizing with social prejudice or causing other subjective personal damage.

That is why providing security guarantees for such information is an important require-

ment for the corresponding applications. However, the question of security is often much

more complicated than keeping private information isolated and protected from everyone

else. Most often the value of the services that people use comes from the fact that they

combine and process private data from di↵erent resources. Some scenarios that exemplify

the importance of bringing together such information are the following: conducting experi-

ments for the e↵ectiveness of newly developed medicine that involves analysis of the results

on many patients, finding places of interest near your current location, realizing business

transactions such as an auction sale, receiving recommendations based on the preferences

and the relevant activities of your friends in a social networking site. In these settings the

security goal is to protect information privacy optimally while achieving the desired utility

for the service.

Let us pause for a moment and consider the following questions, which illustrate the

di↵erence between the utility and the privacy aspects of data in various scenarios. Can we

CHAPTER 1. INTRODUCTION 2

find out whether the same person has been treated in two di↵erent hospitals and share test

results from the two places without revealing the identities of other patients? Can we study

the e↵ect of a newly developed medicine on patients without revealing their individual test

results? Can we analyze data from social networks in order to target better ads and provide

more relevant recommendations without revealing the contacts and the online activities of

the users? Can we find out whether a suspected terrorist has boarded an airplane without

learning the identities of the people on the flight? Can we provide location based services

without learning the exact location of the person? Can we conduct an auction without

exposing the individual bid prices? Can we ask the cloud to do computation on our behalf

without letting him learn our private data and getting assurance of the correctness of the

returned result?

The capabilities that the above questions ask for underly many of the services and the

applications that people use and expect to have available. They rely on the ability to

combine and process private data from multiple sources. On the other hand, the privacy

guarantees required concern input data that is necessary to obtain the final result, and yet,

is not inherently part of it. In many cases the unwanted exposure of such information (in

addition to the output) can be much more damaging than the final output itself. Thus the

major challenge that all of these questions pose can be summarized as follows:

Can we conduct computation on private data that reveals nothing more than the desired

output and what is inherently leaked by it? Can we do this in an e�cient way that will be

usable in practical applications?

Given the inherent tension between utilization and protection of sensitive data, the goal

formulated above defines the optimal privacy guarantees we can achieve while facilitating

the intended use of the private information.

Secure multiparty computation (MPC) is an area of cryptography which o↵ers a for-

mal approach to the above problem. It introduces cryptographic techniques that allow to

compute the desired output without revealing the inputs. Formally a secure multiparty

computation protocol for the evaluation of a function f on inputs x
1

, . . . , xn is a protocol

that outputs f(x
1

, . . . , xn), but does not reveal anything more about the inputs x
1

, . . . , xn

CHAPTER 1. INTRODUCTION 3

than what is inherently leaked by the result f(x
1

, . . . , xn). Early on work in cryptography

research has demonstrated that every functionality can be computed securely [Yao, 1982;

Yao, 1986; Goldreich et al., 1987; Chaum et al., 1988b; Ben-Or et al., 1988]. However, for a

long time MPC has been considered too impractical for any real application because of the

e�ciency overhead that it incurs. In the recent years this perception has gradually started

to change and there have been multiple e↵orts towards implementation of MPC techniques

[Malkhi et al., 2004; Ben-David et al., 2008; Pinkas et al., 2009; Henecka et al., 2010;

Huang et al., 2011; Huang et al., 2012]. While these results have demonstrated working

implementations of generic MPC protocols, which makes secure computation a much more

tangible option for practical solutions, the functionalities and the inputs that these imple-

mentations handle are still far from the complexity and scale of many real world systems

that need to deal with privacy preserving computation. Nevertheless, this line of work is a

sign that existing generic MPC techniques can be useful for the secure implementation of

moderate size building blocks in complex systems.

If we consider scenarios where we need systems that operate on the private data from

multiple sources and where multiparty computation solutions would provide the necessary

privacy guarantees, we observe that these scenarios present a wide diversity of heteroge-

neous environments. Here heterogeneity refers to the following aspects of the environment.

Di↵erent parties have di↵erent computation and storage resources. We can take as an ex-

ample the setting of a big company providing services to its clients. In this case the clients

have at their disposal a laptop or a smart phone, which are limited in both CPU power and

memory, while the service provider operates with a data center that can handle orders of

magnitude more information and computation. Further, large scale computational resources

often have distributed nature and can yield di↵erent e�ciency performance depending on

the type of computation and whether it can be easily parallelized.

Another point to consider is the fact that communication channels may not exist be-

tween all participants or might not be available at all times during the execution of the

protocol. Furthermore, available communication channels might have very di↵erent band-

widths. These concerns come up, for example, in the case of multiple clients of a service

provider, who do not know about each other and most often cannot communicate directly.

CHAPTER 1. INTRODUCTION 4

The visitors of a webpage can be expected to interact only once with the web server but

would not be available to repeatedly come back and communicate with the website just

in order to execute a secure computation protocol. Also the rate-limited data connection

of a client’s phone can accommodate much less information transfer than the high speed

connection between the data centers at the provider’s site.

While preserving the privacy of the data that is used in the computation is often an

important requirement, maintaining the correctness of the final output is really the first

property that we want to guarantee. Seemingly if we are not concerned with data privacy,

correctness should not be an issue since each participant should be able to verify the cor-

rectness of the final output given the inputs. However, this is not quite the case when we

are dealing with parties that have di↵erent computational resources such that some of the

participants cannot execute the whole computation on their own. In this case achieving ef-

ficient verification even without privacy guarantees is an important question. This is quite

relevant in setups of outsourced computation where a weak client delegates to a powerful

party some computation over his data, and he wants to be able to confirm that the returned

output is really the result of the intended evaluation.

A computation protocol prescribes the steps that each party has to follow in its execu-

tion. However, the participants may exhibit di↵erent adversarial behavior and deviate from

the protocol depending on their specific incentives. While some parties may be willing to

cheat in the execution if they can obtain any advantage, others may be legally bound to

follow honestly all steps but can still try to learn as much as possible from the exchanged

information during the execution. Some dishonest parties might choose to collude and share

private information in order to get advantage in the final outcome of the protocol. But for

others, who might have competing interests in the long run, the potential risks of revealing

private information might outweigh the possible gain in the particular computation. Thus,

they could still choose to deviate from the prescribed protocol, and yet, would not collude

with other parties.

As we saw in the discussion above, once we start to examine carefully the exact settings

for which we would like to construct an MPC protocol, we encounter a wide range of diverse

computation, communication, and adversarial requirements. On the other hand, generic

CHAPTER 1. INTRODUCTION 5

multiparty computation techniques address much more homogeneous setups: they require

all participants in the protocol to have symmetric resources, both in terms of computation

and memory storage. They assume the existence of communication channels between every

pair of parties and have symmetric communication patterns. Generic MPC constructions

model corruptions among the parties as a monolithic adversary who controls all corrupted

participants, all their information and determines the same type of behavior (semi-honest

or malicious) for all of them in the protocol execution. Such protocols are not designed to

address optimally heterogeneous setups for MPC such as the ones that we discussed above,

which hurts the e�ciency of the resulting solutions or often makes such generic protocols

unusable in settings with highly asymmetric resource distribution.

In this thesis we introduce techniques for multiparty computation that focus on het-

erogeneous settings. We present solutions tailored to address di↵erent types of asymmetric

constraints and improve the e�ciency of existing approaches in these scenarios. We tackle

the question from three main directions. First, we consider the computation model for

the evaluated functionality that is used in MPC constructions. While existing protocols

use circuits (Boolean and arithmetic) as computational models, which introduces several

inherent points of ine�ciency in the resulting MPC solutions, we consider new computation

models and use them to construct MPC protocols that improve the e�ciency guarantees of

existing generic approaches. In particular we construct MPC solutions using random access

machines and multivariate polynomials to represent the evaluated functionality. Second, we

focus on the setting of outsourced computation, where we have one computationally power-

ful party and several weak clients. This is a setting of increasing importance in view of the

ever growing popularization of cloud computing and the concept of providing computation

resources as a service. We tackle the question of verification for the delegated computation

in this setup and introduce a new paradigm for constructing e�cient verifiable computa-

tion solutions. Further, we introduce a new adversarial model of non-colluding adversaries,

which is weaker than a fully malicious adversarial setting but still models accurately many

scenarios of computation outsourcing. We leverage this new security model to construct

protocols for outsourced computation that improve the e�ciency of the participants. We

also consider just the setting of outsourced storage and the ensuing challenges for access

CHAPTER 1. INTRODUCTION 6

control when sharing outsourced data. Finally, we adopt a di↵erent approach to MPC for

the setting of encrypted search. Starting with particular e�ciency requirements dictated

by what is considered usable from a practical point of view, we explore how we can relax in

a meaningful way strong security definitions to meet the e�ciency threshold. We architect

and implement a system which provides these security guarantees and at the same time

incurs acceptable e�ciency overhead.

1.1 Contributions

1.1.1 New Models for Secure Computation

Traditional approaches for secure computation use circuits (Boolean or arithmetic) as a

computation model for the evaluated function. Since circuits have size at least linear in the

length of their inputs, this implies that any protocol for secure evaluation that uses circuit

function representation will have complexity at least linear in the size of the input on which

it depends. Further, the requirement for linearity of the running time for secure protocols

appears inherent in the fact that if a computation does not ”touch” every part from its

input, this already leaks information that the untouched parts of the input were not used in

the computation. This seems to rule out secure computation as a viable practical solution

for many interesting functionalities that take as input huge databases and for which there

are sublinear algorithms in the insecure setting. Such an example is private database search

where binary search gives a solution for the insecure setting that has logarithmic complexity

in the database size.

Secure Computation for Random Access Machines. We explore the question of

filling in the e�ciency gap between protocols in the insecure and the secure setting and

propose a two party protocol that achieves sublinear amortized computation in the size

of its input. We develop a generic method to compile any two party functionality that

can be computed in sublinear amortized time in the size of its input on a random access

machine (RAM) into a secure protocol for the same function that runs in sublinear time

[Gordon et al., 2011; Gordon et al., 2012]. The resulting secure protocol has the following

CHAPTER 1. INTRODUCTION 7

space requirements for the two parties: O(log s) and O(s · polylog(s)) where s is the size

of the database. This general compiler makes use of any oblivious RAM protocol, which

provides access pattern privacy for memory access, and any protocol for secure two-party

computation, which is used for the evaluation of a small number of simple operations.

We extend the general construction into an optimized protocol that looks at particular

instantiations of the main building block protocols (Yao two party computation and the

ORAM construction of Goldreich-Ostrovsky). In this construction we improve the e�ciency

beyond the asymptotic bounds looking at the exact constants. We minimized the part of the

computation that would be implemented with the more expensive generic techniques and

develop new primitives such as a shared oblivious pseudorandom function that contribute

to the e�ciency of the protocol.

Secure Computation for Multivariate Polynomials. A large collection of problems

are naturally and e�ciently expressed as multivariate polynomials over a field or a ring:

for example, problems from linear algebra, statistics, logic and set operations, which makes

them of practical interest. At the same time multivariate polynomials yield more succinct

functionality representation than circuits. We show how to take advantage of this repre-

sentation and construct a protocol that allows multiple parties to evaluate a multivariate

polynomial that depends on their private inputs more e�ciently than the corresponding

generic MPC approaches [Dachman-Soled et al., 2011]. It also achieves better communica-

tion complexity than the solution of [Franklin and Mohassel, 2010], the only previous work

that focuses on multivariate polynomial evaluation, as well as it answers an open question

in [Franklin and Mohassel, 2010] for constructing protocols for polynomials of degree higher

than 3 that improve generic MPC techniques. As a special case of our general protocol

we propose the first solution for the problem of multi-party set intersection in the fully

malicious adversarial model that does not use generic zero knowledge techniques. This

work extends the first solution that provides security against malicious adversaries for the

problem of two-party set intersection, which we introduced in [Dachman-Soled et al., 2009].

CHAPTER 1. INTRODUCTION 8

1.1.2 Outsourcing Computation

The recent advent of cloud computing has popularized the paradigm of providing com-

putation resources as a service. The goal in this setting is to utilize the resources of a

single powerful service provider for the work that computationally weak clients need to

perform on their data with the following caveats. Computation outsourcing can be useful

only if the returned results can be trusted, and hence we need to enable the clients to ef-

ficiently verify the correctness of the returned output. On the other hand, if the clients’

input data is sensitive, we need mechanisms that allow the server to process the data while

maintaining its privacy. While there are solutions for both of these questions based on

fully homomorphic encryption (FHE) [Gentry, 2009; Brakerski and Vaikuntanathan, 2011;

Brakerski et al., 2012], this is a primitive that is still too expensive for most practical

applications. Thus we focus on looking for trade-o↵s that would allow constructions for

outsourced computation with better e�ciency not using FHE.

Publicly Verifiable Computation. The goal of verifiable computation (VC) is to pro-

vide means for a weak client to e�ciently verify the correctness of the results returned for

outsourced computation jobs (i.e. doing less work than the job itself). We extend this

definition with the following two properties: public delegation and public verifiability, which

are useful for many practical scenarios. Public delegation allows to decouple the party who

provides the function to be evaluated and the party who has the input for the computa-

tion. Public verifiability enables anyone to verify the correctness of the returned results.

To illustrate the importance of these two properties, we can consider the scenario where we

outsource the evaluation of an analysis function for the lab tests of hospital patients. In this

case public delegation enables the doctor to specify the function that will be evaluated and

the lab assistant to provide the input for the computation. The public verifiability prop-

erty makes it possible that both the doctor and the patients can verify the output of the

analysis function on the test results. We show how to construct a verifiable computation

scheme, which satisfies both of these properties, from attribute-based encryption [Parno

et al., 2012]. Our solution does not use expensive primitives such as fully homomorphic

encryption or probabilistically checkable proofs (PCPs), which underly existing VC solu-

CHAPTER 1. INTRODUCTION 9

tions [Gennaro et al., 2010; Chung et al., 2010; Chung et al., 2011; Bitansky et al., 2011;

Goldwasser et al., 2011].

Server-Aided Multiparty Computation with Non-Colluding Adversaries. Exist-

ing adversarial models used in the proofs for MPC protocols assume a monolithic adversary

who controls all corrupted parties among the participants and sees their private inputs.

However, there are many instances in practice where collusion between participants is un-

likely to happen while each corrupted party may still misbehave on his own. Collusion may

be infeasible because it is too costly, it is prevented by physical means, by the Law or due

to conflict of interests. An important example for such a heterogeneous environment is the

cloud where the users might be in completely di↵erent parts of the world and even not know

about each other; or the same parties might be interacting in several di↵erent contexts and

while a possible collusion may give them a short-term advantage, it will be harmful in the

long term if they are competitors on the market. Motivated by this application scenario

we formally define the heterogeneous adversarial model where some of the adversaries are

not willing to collude. We present new server-aided MPC protocols providing security in

this model with e�ciency improvements [Kamara et al., 2011], where all but one of the

parties have to do work only proportional to the size of their input. In the constructions

of these protocols we introduce a new technique for oblivious cut-and-choose that allows to

outsource the major part of the verification work for correctness of the construction of Yao

garbled circuits to the server facilitating the computation. In addition we show a general

transformation from any delegated computation scheme into a two-party server-aided pro-

tocol. Finally we constructe a specialized protocol for the problem of set intersection in the

server-aided setting that achieves better e�ciency than existing solutions.

Privacy Enhanced Access Control for Outsourced Data Sharing. One of the most

popular cloud services is data storage. The next logical step extending this capability is

to facilitate data sharing among di↵erent clients. Constructing an access control scheme

for this setting faces the following challenge: the storage server, which is the first point

of access control enforcement, is not the data owner and thus the access rules as well as

the access patterns of the users are private information that needs to be protected from

CHAPTER 1. INTRODUCTION 10

him. With these privacy requirements in mind we design a new scheme for access control

built for sharing of outsourced data [Raykova et al., 2012]. It divides the outsourced data

into access blocks and combines di↵erent approaches for coarse-grained (at block level) and

fine-grained (within each block) access control to o↵er a flexible level of trade-o↵s between

e�ciency and privacy guarantees.

1.1.3 E�cient Private Search in Practice

There are many scenarios where parties possess data of mutual interest, which they are

willing to share but without revealing any other information about the rest of their data

sets. Examples for such scenarios include police investigating embezzlement who needs to

check banks’ databases for information relevant to the case, a physician who wants to find

other patients with a rare disease that he is trying to treat and methods that have worked

before, institutions who want to detect attacks on their networks using the information from

their logs to correlate across di↵erent domains. In these settings the parties need methods

to find out whether they have data worth sharing and means to exchange such data. One

approach for a solution to this problem is to provide search capabilities over the data of

one party (data owner) to other parties (queriers). However, providing such capabilities

needs to be accompanied by the appropriate privacy guarantees for both parties. For the

data owner these are guarantees that the queriers will be able to retrieve only data relevant

to their queries and further that only authorized parties will be allowed to submit queries.

On the other hand, for the queriers this means keeping their queries private from the data

owner and even anonymous (within the set of authorized parties) since in certain scenarios

even the intent to query might already be revealing some sensitive information.

Secure Data Sharing with Encrypted Search. We explore solutions for secure search

from a di↵erent perspective compared to traditional settings for MPC. We start with strict

e�ciency requirements motivated by speeds of available hardware and what is considered

acceptable overhead from practical point of view, and we adopt relaxed definitions of privacy,

which still provide meaningful security guarantees while allowing us to meet the e�ciency

requirements. We design a security architecture and implement a system for data sharing

CHAPTER 1. INTRODUCTION 11

based on encrypted search [Raykova et al., 2009; Pappas et al., 2011]. Our protocol combines

ideas of Bloom filters, a construction for a new private key deterministic encryption scheme

and a new primitive called re-routable encryption. We evaluate the performance of our

system and its practical usability with tests over tens of gigabytes of data, in which our

implementation achieves only 30% overhead compared to the running time for SQL queries

on the same database. The latencies for the document retrieval in our system are of the

order of the time required for file transfer over SSH. Further, we propose a modification of

the protocols that trades o↵ a relaxation of the privacy guarantees for the opportunity of

another implementation optimization (bitslicing) that brings several orders of improvement

in the search time.

CHAPTER 2. RELATED WORK 12

Chapter 2

Related Work

2.0.4 Secure Multiparty Computation

Secure multi-party computation (MPC) addresses the following problem: how a set of n

parties, each with a private input, can securely and jointly evaluate an n-party functionality

f over their inputs. An MPC protocol guarantees that (1) the parties will not learn any

information from the interaction other than their output and what is inherently leaked

from it; and (2) that the functionality was computed correctly. A major factor determining

the complexity of an MPC protocol is the adversarial model in which it is proven secure.

This includes the adversarial behavior that is admissible for the participants: whether

they follow the prescribed steps or deviate from the protocol arbitrarily, whether they try

to derive additional information from the messages they receive during the execution on

their own or collude with other parties. It also depends on the computational power that

each participant is assumed to have: whether we would want perfect information theoretic

security that provides against adversaries with unbounded computational power, or we

are willing to assume limited computational power that allows the use of computational

hardness assumptions. While the former provides theoretically stronger security guarantees,

it limits the extent of collusion among parties that protocols can handle, allowing at most

a half passive corruptions or at most a third active corruptions among the pasties [Ben-Or

et al., 1988; Chaum et al., 1988b], and resulting in more computational and communication

overhead for the protocol. At the same time for practical purposes computational security

CHAPTER 2. RELATED WORK 13

su�ces and such setting allows protocols that can be proven secure even in the case of when

the majority of the parties behave maliciously and collude.

Early feasibility results in the area [Yao, 1982; Yao, 1986; Goldreich et al., 1987;

Ben-Or et al., 1988; Chaum et al., 1988b] demonstrated that any functionality can be

computed securely in both the two party and the multiparty setting. There are multiple

sources of ine�ciency in these early works: their communication and computation com-

plexities depends on the number of wires and gates in the Boolean circuit computing the

functionality, and they use generic zero-knowledge proofs or require many rounds of compu-

tation. Following works introduce multiple directions of improvement of these initial proto-

cols: constant round [Beaver et al., 1990], black-box use of crypto pseudorandom generators

[Damgard and Ishai, 2005; Ishai et al., 2008] , adaptive adversary [Damgard and Ishai, 2006;

Ishai et al., 2008], and dishonest majority [Ishai et al., 2008], cut-and-choose techniques that

eliminate the need of generic zero-knowledge proofs [Lindell and Pinkas, 2007]. Certain

classes of functionalities admit more e�cient representation as arithmetic circuits rather

than Boolean circuits. There have been corresponding constructions for MPC protocols us-

ing arithmetic circuits [Cramer et al., 1999; Ishai et al., 2009; Damgard and Orlandi, 2010;

Cramer et al., 2000].

While generic MPC techniques using Boolean or arithmetic circuits can be used for the

secure evaluation of any function, such protocols do incur computational and communi-

cation overhead proportional to the size of the function circuit. An alternative approach

for optimizing the e�ciency of MPC protocols is to consider limited classes of function-

alities that admit more e�cient representation than circuits, which can be used in MPC

constructions. Franklin et el. [Franklin and Mohassel, 2010] consider secure computation

of a class of functionalities representable as multivariate polynomials. This work focuses

on multivariate polynomials of degree 3 but points out that the proposed protocols can be

generalized to higher degree polynomials, however, with communication complexity that is

no longer optimal and leaves as an open question improvements of this complexity. Two

functionalities that can be expressed as multivariate polynomials are oblivious polynomial

evaluation and set intersection. Oblivious polynomials evaluation [Naor and Pinkas, 2006]

gives a secure solution for class of two party computation functionalities where the inputs

CHAPTER 2. RELATED WORK 14

one of the parties are coe�cients of a polynomial and the inputs of the other party are the

evaluation points. The problem of set intersection asks how several parties with private in-

put sets can compute the intersection of these sets. It has been considered in several works

providing secure computation solutions specifically for this problem. The two-party variant

of the set intersection problem has been addressed in a series of works [Freedman et al., 2004;

Hazay and Lindell, 2008; Kissner and Song, 2005; Jarecki and Liu, 2009; Dachman-Soled et

al., 2009] providing solutions in various di↵erent adversarial models. The only work that

has considered specifically the problem of multiparty set intersection in the malicious adver-

sarial model is [Dawn and Song, 2005] giving a semi-honest protocol and suggesting to use

generic zero knowledge techniques to address the malicious case, which incurs substantial

complexity overhead.

Random access machines present a di↵erent computational model, where the computa-

tion can be expressed as a series of small computations and reads/write instructions into

memory, which stores the inputs and intermediate state for the protocol execution. The

works of [Damgard et al., 2010] and [Ostrovsky and Shoup, 1997] observe that this model

can be also used for secure computation. Specifically, these works consider the following

scenarios: two parties share the entire (super-linear) memory state for the protocol in

[Damgard et al., 2010], and a (stateless) client storing data on two servers that are assumed

not to collude [Ostrovsky and Shoup, 1997].

Collusion. The problem of collusion in MPC was first explicitly considered in the work

Lepinski, Micali and Shelat [Lepinksi et al., 2005], where they defined and gave constructions

of collusion-free protocols. Roughly speaking, an MPC protocol is collusion-free if it meets

all the standard security properties and, in addition, it cannot be used as a covert channel.

While the protocol of [Lepinksi et al., 2005] relies on physical assumption (e.g., ballot boxes

and secure envelopes), recent work by Alwen, Shelat and Visconti [Alwen et al., 2008] and

Alwen, Katz, Lindell, Persiano, Shelat and Visconti [Alwen et al., 2009] shows how to

construct collusion-free protocols that rely only on a trusted mediator.

CHAPTER 2. RELATED WORK 15

2.0.5 Delegation of Computation

The goal of a verifiable computation (VC) scheme is to provide a way to e�ciently verify

the correctness results of outsourced computation. Solutions for this problem have been

proposed in various settings. These include interactive proofs [Lund et al., 1992; Shamir,

1992; Fortnow and Lund, 1991; Goldwasser et al., 2008] and interactive arguments [Kilian,

1992; Brassard et al., 1988; Micali, 1994]. However, in the context of delegated computation,

a non-interactive approach for verifiability is much more desirable. CS proofs [Micali, 1994]

realize a non-interactive argument in the random oracle model where the verification work

is logarithmic in the complexity of the computation performed by the worker. Goldwasser,

Kalai and Rothblum [Goldwasser et al., 2008] construct a two message (non-interactive)

protocol for functions in NC, where the verifier’s running time depends on the depth of the

circuit for the evaluated function.

The first solutions that provide single round verifiable computation schemes secure in the

standard model for any polynomial-time computable function are the works of Gennaro,

Gentry, and Parno [Gennaro et al., 2010] and Chung, Kalai, and Vadhan [Chung et al.,

2010]. Both constructions employ fully homomorphic encryption for the evaluation of the

delegated function, and neither can safely provide oracle access to the verification algorithm.

This problem is resolved by Chung et al. [Chung et al., 2011], who consider the setting

of memory delegation, where all inputs are preprocessed and given to the worker who

will later execute multiple computations on them. Similar to the non-interactive solution

of Goldwasser et al. [Goldwasser et al., 2008], the e↵ort required to verify results from

memory delegation is proportional to the depth of the computation’s circuit, which for

certain functions may be proportional to the circuit size (e.g., exponentiation). The recent

works of Bitansky et al. [Bitansky et al., 2011] and Goldwasser et al. [Goldwasser et al., 2011]

also achieve reusable soundness, though they rely on non-falsifiable “knowledge of exponent”

type assumptions to do this. Specifically, Bitansky et al. [Bitansky et al., 2011] present a

construction for succinct non-interactive arguments based on a combination of PCP and

PIR techniques, while Goldwasser et al. [Goldwasser et al., 2011] give a construction for

designated verifier CS proofs for polynomial functions, which also employs leveled fully

homomorphic encryption.

CHAPTER 2. RELATED WORK 16

Barbosa and Farshim [Barbosa and Farshim, 2011] construct a verifiable computation

protocol for arbitrary functions (without the rejection problem) from fully homomorphic

encryption and functional encryption. Similar to the proposal of Applebaum, Ishai, and

Kushilevitz [Applebaum et al., 2010], their protocol calculates a verifiable MAC over the

computation’s result, allowing e�cient verification. However, this approach relies on power-

ful functional encryption functionality (e.g., the ability to compute MACs) that are currently

not known to be achievable.

The solutions of Benabbas, Gennaro, and Vahlis [Benabbas et al., 2011] and Papaman-

thou, Tamassia, and Triandopoulos [Papamanthou et al., 2011] provide verifiable computa-

tion schemes for smaller classes of functions, polynomials and set operations respectively,

but using more e�cient tools than FHE or PCPs. Although VC schemes with reusable

soundness protect against cheating even when the worker learns the output of the ver-

ification algorithm, they do not provide public verifiability where anyone can check the

correctness of the result. The only exception is the work of Papamanthou et al. [Papaman-

thou et al., 2011] which allows anyone who receives the result of the set operation to verify

its correctness.

2.0.6 Secure Search

Secure search considers the following question: there are two parties, one of which holds a

database and the other has a query, and we want to enable the querier to submit his query

and learn the relevant results from the database without leaking any private information

about either participant where private information is defined as follows.The query is always

private information that should be protected from the data owner. As far as the database

is concerned there are two main types of scenarios that have di↵erent requirements: in data

outsourcing the stored database is owned by the querier and in data sharing the querier

and the data owner are di↵erent parties. The latter case requires that any non-matching

information should be kept private from the querier. A generalization of the problem allows

multiple querying parties, which introduces issues of access control and revocation of search

capabilities as well as anonymity of the querier among all authorized parties for search. The

problem of secure anonymous database search can be solved with general secure multiparty

CHAPTER 2. RELATED WORK 17

techniques, which, however, will not be optimal in terms of e�ciency and would not be

suitable for practical purposes. Since the problem is relevant to many real scenarios there

are numerous protocols that o↵er solutions specifically for this setting.

Protocols for Private Information Retrieval (PIR) [Chor et al., 1998] and Symmetric

Private Information Retrieval (SPIR) [Gertner et al., 2000] provide a limited type of privacy

preserving search. The scenario that PIR addresses is between two parties: server and client,

where the server has a database of n items and the client wants to obtain the item at position

i without the server learning the value of i. In the case of SPIR, it is additionally required

that the user does not learn any other item except the one that was requested. These

protocols have sub-linear communication and polynomial computational complexity, already

improving on generic multiparty computation protocols, but still remain ine�cient for many

practical uses. Additionally, these protocols typically support only simple selection, rather

than general query capability (a notable exception being [Chor et al., 1997]).

Many papers address the scenario of database outsourcing [Song et al., 2000; Boneh et

al., 2004; Boneh and Waters, 2007; Boneh et al., 2007; Williams and Sion, 2008; Williams et

al., 2008; Curtmola et al., 2006; cheng Chang and Mitzenmacher, 2005; Aviv et al., 2007].

In this setting one party possesses data but does not have enough resources to store it.

He keeps the data on an untrusted storage server, but maintains the ability to search the

data without leaking any information to the server. The approaches of [Song et al., 2000;

Boneh et al., 2004; Boneh and Waters, 2007; Boneh et al., 2007] use encryption systems

that allow matching of ciphertexts of the same encrypted word and enable search over the

encrypted content of documents. Thus the running time of the search in these approaches

is linear in the number of all searchable tokens. Bellare et al. [M. Bellare and O’Neill,

2007] show that in order to achieve better than linear complexity of search the mechanism

for computing the searchable tags needs to be deterministic, which a↵ects the security

guarantees that can be proven for the protocol. This pinpoints the issue for tradeo↵ between

e�ciency and strong privacy guarantees. Curtmola et al. [Curtmola et al., 2006] use the

idea of inverted indices for e�ciency gain and suggest the querier preprocess the data by

computing inverted indices on search words. An inherent leakage in this case is the search

pattern over multiple queries. The works of [Bellovin and Cheswick, 2007] and [Goh, 2004]

CHAPTER 2. RELATED WORK 18

use Bloom filters as a basis for their search structures, which allow e�ciency improvement

but weaker privacy definitions.

In data sharing an important question relevant to the leakage of information is how and

at what granularity the search capability is granted. The works of [Waters et al., 2004] and

[Shi et al., 2007] assume the existence of an authorization party that can provide search

tokens for words that the querier is allowed to decrypt. The approach of [Bellovin and

Cheswick, 2007] allows that search capabilities are granted for a collection of documents as

opposed to separate words, which will be more relevant in cases where data sharing should

be enabled for the whole content of a particular set of documents.

2.0.7 Oblivious Random Access Memory (ORAM)

Oblivious RAM was introduced by Goldreich and Ostrosky [Goldreich and Ostrovsky, 1996]

as a solution that allows storage and data access on an untrusted server while hiding the

access pattern and avoiding computational overhead linear in the database size. The main

idea behind the construction is that the entries in the database are associated with virtual

addresses, which serve as their searchable tags, and these virtual addresses change their

actual physical location in memory each time they are accessed (read or written). For this

purpose the database with n entries is preprocessed to be stored encrypted in a multilevel

structure with log n levels. Using this structure each operation (read or write) accesses all

elements in the first level (the cache) and a constant number of elements in each of the

rest of the levels of the ORAM. After a certain number of data operations some part of the

stored encrypted database needs to be reshu✏ed in order to maintain the hiding property

for the data access pattern.

Pinkas et al. [Pinkas and Reinman, 2010] suggested an optimization for the construc-

tion of [Goldreich and Ostrovsky, 1996] that uses Cuckoo hash tabled for data storage at

each level which results in smaller space and computation overhead. However, an attack

[Goodrich and Mitzenmacher, 2011; Kushilevitz et al., 2012; Gordon et al., 2011] on the

scheme of [Pinkas and Reinman, 2010] have demonstrated that additional care is required

when using Cuckoo hash. The idea of the attack is related to the fact that even if a Cuckoo

hash can hold all the elements assigned to a particular level, there still might be search

CHAPTER 2. RELATED WORK 19

sequences of elements that result in collisions that are incompatible with the structure of

the Cuckoo hash tables. The fix for the issue [Goodrich and Mitzenmacher, 2011] is a

new construction for a Cuckoo hash table in which all possible collisions are allocated into

a separate stash. Several following works have adopted with some modifications the ap-

proach relying on Cuckoo hashing [Goodrich and Mitzenmacher, 2011; Goodrich et al., 2011;

Kushilevitz et al., 2012]. The work of [Kushilevitz et al., 2012] improves the computational

complexity of accesses to O(log2 n/ log logN) . An alternative construction for oblivious

RAM, which does not use the hierarchical memory structure but rather a series of recursive

binary trees and avoids the need of oblivious shu✏es, is suggested by Shi et al. [Shi et al.,

2011]. The works of [Ajtai, 2010] and [Damgard et al., 2010] provide ORAM construction

that avoid the use of pseudorandom functions and achieve information theoretic security.

20

Part I

New Computational Models

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK21

Chapter 3

Secure Computation with

Sublinear Amortized Work

3.1 Motivation and Contributions

Consider the natural task of searching over a sorted database of n elements. Using binary

search, this can be done in time O(log n). Next consider a secure version of this problem

where a client holds an item and wants to learn whether this item is present in a database

held by a server, with neither party learning anything else. Applying standard protocols

for secure computation to this task, we would find that they begin by expressing the com-

putation as a (binary or arithmetic) circuit of size at least n, resulting in protocols of

complexity ⌦(n). Moreover, it is well known that this is inherent. Namely, in any secure

protocol for this problem the server must “touch” every bit of its database; otherwise, the

server learns some information about the client’s input from the portions of its database

that were never touched.

One may notice two opportunities for improvement:

• Any circuit computing a non-trivial function f on inputs of length n must have

size ⌦(n). On the other hand, many interesting functions can be computed in sub-

linear time on a random-access machine (RAM). Thus, it would be desirable to have

protocols for generic secure computation that use RAMs — rather than circuits — as

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK22

their starting point.

• The fact that linear work (or more) is inherent for secure computation of any non-

trivial function f only applies when f is computed once. However, it does not rule

out the possibility of doing better, in an amortized sense, when the parties compute

the function several times.

Inspired by the above, we explore scenarios where secure computation with sublinear

amortized work is possible. We focus on a setting where a client and server repeatedly

evaluate a function f , maintaining state across these executions, with the server’s (huge)

input D given at the outset and the client’s (small) input x chosen anew each time f is

evaluated. Our main result is:

Theorem 1 (Informal). Say f(x,D) can be computed in time t and space s in the RAM

model of computation. Then there is a secure two-party protocol computing f in which the

client and server run in amortized time O(t) · polylog(s), the client uses space O(log(s)),

and the server uses space O(s · polylog(s)).

We show a generic protocol achieving the above bounds based on any oblivious RAM (ORAM)

construction and any secure two-party computation protocol, following an idea of Ostro-

vsky and Shoup [Ostrovsky and Shoup, 1997]. The resulting protocol demonstrates the

feasibility of sublinear-complexity secure computation, and serves as a useful template for

our second, optimized construction. Here we use a specific ORAM construction, and design

the protocol so that generic secure computation is utilized only for a small number of simple

operations. The resulting protocol is much more e�cient.

3.2 Solution Overview

Our starting point is the ORAM primitive [Goldreich and Ostrovsky, 1996], which allows

a client (with small memory) to perform RAM computations using the (large) memory of

a remote untrusted server. At a high level, the client stores its encrypted memory cells on

the server and then emulates a RAM computation of some function f by replacing each

read/write access of the original RAM computation with a series of read/write accesses

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK23

of the remote data, such that the client’s actual access pattern remains hidden from the

server. Results of Goldreich and Ostrovsky [Goldreich and Ostrovsky, 1996], since improved

by others (see Section 2.0.7), show that if f can be computed on a RAM in t steps and

space s (see Section 3.3.1 for our formal model of RAM algorithms), then it can be computed

on an ORAM in t · polylog(s) steps while using s · polylog(s) space at the server.

In our setting, ORAM suggests a candidate protocol for computing f with sublinear

amortized overhead. Say the server starts with input D, and the client wants to compute

f(xi, D) for a sequence of inputs x
1

, x
2

, The client and server (interactively) pre-process

D as required for the ORAM construction. This pre-processing step will take (at least) time

linear in |D|, but will be amortized over several computations of f . In each computation,

the client and server run the ORAM protocol until the client learns the output. If f can be

evaluated in t steps on a RAM, then each such evaluation can be done in time t·polylog(|D|).
The above protocol provides “one-sided security,” in that it ensures privacy of the client’s

input against a semi-honest server. (Though, in fact, it was already shown by Goldreich

and Ostrovsky [Goldreich and Ostrovsky, 1996] how malicious behavior by the server can

be addressed.) However, it provides no security guarantees for the server! We can address

this by running each ORAM instruction inside a (standard) secure two-party computation

protocol, with intermediate states being shared between the client and server. This is the

basic idea behind our generic construction, as described in detail in Section 3.4. We note

that this idea can be traced to the work of Ostrovsky and Shoup [Ostrovsky and Shoup,

1997] from 1997 (see Section 2.0.4).

In our second construction, we optimize the e�ciency of the above by building on the

specific ORAM construction of Goldreich and Ostrovsky [Goldreich and Ostrovsky, 1996]

and aiming to minimize our reliance on generic secure computation. In particular, we make

sure that generic secure computation is applied only to very small circuits. To reduce our

reliance on generic secure computation, we design a protocol for obliviously evaluation of a

pseudorandom function (PRF) where both the key and the input/output are shared; this

may be of independent interest. With careful attention to detail, and several important

changes to the underlying ORAM protocol, we end up with a much more e�cient protocol.

We describe this in detail in Section 3.5.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK24

In the course of proving security of our protocol, we identified a security issue with

some previous ORAM constructions; our observations impact the security of the Pinkas-

Reinman protocol [Pinkas and Reinman, 2010] as well as the analysis (and the security for

some parameter settings) of the Goldreich-Ostrovsky protocol [Goldreich and Ostrovsky,

1996].1 See Section 3.5.4 for further discussion.

3.3 Preliminaries

3.3.1 Random Access Machines

In this work, we focus on RAM programs for computing a function f(x,D), where x is

a “small” input that can be read in its entirety and D is a larger array that is accessed

via a sequence of read and write instructions. Any such instruction I 2 ({read,write} ⇥
N ⇥ {0, 1}⇤) takes the form (write, v, d) (“write data element d in location/address v”) or

(read, v,?) (“read the data element stored at location v”). We also assume a designated

“stop” instruction of the form (stop, z) that indicates termination of the RAM protocol with

output z.

Formally, a RAM program is defined by a “next instruction” function ⇧ which, given

its current state and a value d (that will always be equal to the last-read element), outputs

the next instruction and an updated state. Thus if D is an array of n entries, each ` bits

long, we can view execution of a RAM program as follows:

• Set state
⇧

= (1logn, 1`, start, x) and d = 0`. Then until termination do:

1. Compute (I, state0
⇧

) = ⇧(state
⇧

, d). Set state
⇧

= state0
⇧

.

2. If I = (stop, z) then terminate with output z.

3. If I = (write, v, d0) then set D[v] = d0.

4. If I = (read, v,?) then set d = D[v].

(We stress that the contents of D change during the course of the execution.) To make

things non-trivial, we require that the size of state
⇧

, and the space required to compute ⇧,

1Independent of (but prior to) our work, similar flaws have been pointed out by others [Goodrich and

Mitzenmacher, 2011; Kushilevitz et al., 2011].

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK25

is polynomial in log n, `, and |x|. (Thus, if we view a client running⇧ and issuing instructions

to a server storing D, the space used by the client is small.)

We allow the possibility for D to grow beyond n entries, so the RAM program may

issue write (and then read) instructions for indices greater than n. The space complexity

of a RAM program on inputs x,D is the maximum number of entries used by D during

the course of the execution. The time complexity of a RAM program on the same inputs is

the number of instructions issued in the execution as described above. For our application,

we do not want the running time of a RAM program to reveal anything about the inputs.

Thus, we will assume that any RAM program has associated with it a polynomial t such

that the running time on x,D is exactly t(n, `, |x|).

3.3.2 Oblivious RAM

We view an oblivious-RAM (ORAM) construction as a mechanism that simulates read/write

access to an underlying (virtual) arrayD via accesses to some (real) array D̃; “obliviousness”

means that no information about the virtual accesses to D is leaked by observation of the

real accesses to D̃. An ORAM construction can be used to compile any RAM program into

an oblivious version of that program.

An ORAM construction consists of two algorithms ORAMInit and ORAMEval for ini-

tialization and execution, respectively. ORAMInit initializes some state stateoram that is

used (and updated by) ORAMEval. The second algorithm, ORAMEval, is used to compile

a single read/write instruction I (on the virtual array D) into a sequence of read/write

instructions Ĩ
1

, Ĩ
2

, . . . to be executed on (the real array) D̃. The compilation of an in-

struction I into Ĩ
1

, Ĩ
2

, . . . , can be adaptive; i.e., instruction Ĩj may depend on the values

read in some prior instructions. To capture this, we define an iterative procedure called

doInstruction that makes repeated use of ORAMEval. Given a read/write instruction I, we

define doInstruction(stateoram, I) as follows:

• Set d = 0`. Then until termination do:

1. Compute (Ĩ , state0oram) ORAMEval(stateoram, I, d), and set stateoram = state0oram.

2. If Ĩ = (done, z) then terminate with output z.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK26

3. If Ĩ = (write, v, d0) then set D̃[v] = d0.

4. If Ĩ = (read, v,?) then set d = D̃[v].

If I was a read instruction with I = (read, v,?), then the final output z should be the value

“written” at D[v]. (See below, when we define correctness.)

Correctness. We define correctness of an ORAM construction in the natural way. Let

I
1

, . . . , Ik be any sequence of instructions with Ik = (read, v,?), and Ij = (write, v, d) the

last instruction that writes to address v. If we start with D̃ initialized to empty and then

run stateoram ORAMInit(1) followed by doInstruction(I
1

), . . . , doInstruction(Ik), then the

final output will be equal to d with all but negligible probability.

Security. Intuitively, the security requirement is that for any two equal-length se-

quences of RAM instructions, the (real) access patterns generated by those instructions

will be indistinguishable. We will use the standard definition from the literature, which

assumes the two instruction sequences are chosen in advance.2 Formally, let ORAM =

hORAMInit,ORAMEvali be an ORAM construction and consider the following experiment:

Experiment ExpAPHORAM,Adv(, b):

1. The adversary Adv outputs two sequences of queries (I0, I1), where I0 = {I0
1

, . . . , I0k}
and I1 = {I1

1

, . . . , I1k} for arbitrary k.

2. Run stateoram ORAMInit(1); initialize D̃ to empty; and then execute doInstruction(stateoram, Ib
1

),

. . . , doInstruction(stateoram, Ibk) (note that stateoram is updated each time doInstruction

is run). The adversary is allowed to observe D̃ the entire time.

3. Finally, the adversary outputs a guess b0 2 {0, 1}. The experiment evaluates to 1

i↵ b0 = b.

2It appears that existing ORAM constructions are secure even if the adversary is allowed to adaptively

choose the next instruction after observing the access pattern on D̃ caused by the previous instruction. Since

this has not been claimed by any ORAM construction in the literature, we do not define it.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK27

Definition 1. An ORAM construction ORAM = hORAMInit,ORAMEvali is access-pattern
hiding against honest-but-curious adversaries if for every ppt adversary Adv the following

probability, taken over the randomness of the experiment and b 2R {0, 1}, is negligible:

����Pr
⇥
ExpAPHORAM,Adv(1

, b) = 1
⇤� 1

2

���� .

3.3.3 Secure Computation

We focus on the setting where a server holds a (large) database D and a client wants to

repeatedly compute f(x,D) for di↵erent inputs x; moreover, f may also change the contents

of D itself. We allow the client to keep (short) state between executions, and the server will

keep state that reflects the (updated) contents of D.

For simplicity, we focus only on the two-party (client/server) setting in the semi-honest

model but it is clear that our definitions can be extended to the multi-party case with

malicious adversaries.

Definition of security. We use a standard simulation-based definition of secure com-

putation [Goldreich, 2001], comparing a real execution to that of an ideal (reactive) func-

tionality F . In the ideal execution, the functionality maintains the updated state of D on

behalf of the server. We also allow F to take a description of f as input (which allows us

to consider a single ideal functionality).

The real-world execution proceeds as follows. An environment Z initially gives the server

a database D = D(1), and the client and server then run protocol ⇧f (with the client using

input init and the server using input D) that ends with the client and server each storing

some state that they will maintain (and update) throughout the subsequent execution. In

the ith iteration (i = 1, . . .), the environment gives xi to the client; the client and server then

run protocol ⇧f (with the client using its state and input xi, and the server using its state)

with the client receiving output outi. The client sends outi to Z, thus allowing adaptivity in

Z’s next input selection xi+1

. At some point, Z terminates execution by sending a special

end message to the players. At this time, an honest player simply terminates execution; a

corrupted player sends its entire view to Z.

For a given environment Z and some fixed value for the security parameter, we let

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK28

real
⇧

f

,Z() be the random variable denoting the output of Z following the specified exe-

cution in the real world.

In the ideal world, we let F be a trusted functionality that maintains state throughout

the execution. An environment Z initially gives the server a database D = D(1), which the

server in turn sends to F . In the ith iteration (i = 1, . . .), the environment gives xi to the

client who sends this value to F . The trusted functionality then computes

(outi, D
(i+1)) f(xi, D

(i)),

and sends outi to the client. (Note the server does not learn anything from the execution,

neither about outi nor about the updated contents of D.) The client ends outi to Z. At some

point, Z terminates execution by sending a special end message to the players. The honest

player simply terminates execution; the corrupted player may send an arbitrary function of

its entire view to Z.

For a given environment Z, some fixed value for the security parameter, and some

algorithm S being run by the corrupted party, we let idealF,S,Z() be the random variable

denoting the output of Z following the specified execution.

Definition 2. We say that protocol ⇧f securely computes f if there exists a probabilistic

polynomial-time ideal-world adversary S (run by the corrupted player) such that for all

non-uniform, polynomial-time environments Z there exists a negligible function negl such

that
��Pr

⇥
real

⇧

f

,Z() = 1
⇤� Pr [idealF,S,Z() = 1]

�� negl().

Remark: “adaptivity” in the choice of the {xi}. In the “standard” ideal-world

definition of reactive computation, a corrupted player (either client or server) would give its

entire view to the environment each time the functionality F is accessed. Here, however, we

allow the players to give its view to the environment only at the end of the entire execution.

This seems to be reasonable in the semi-honest setting we consider, where a subsequent

input xi+1

should have no dependence on the view of the ith protocol execution. (On the

other hand, we do allow xi+1

to depend on out
1

, . . . , outi, a dependence that is realistic.)

In fact, our protocols satisfy the stronger notion (where a corrupted server gives its view

to Z after each execution of the protocol in the real world, and gives an arbitrary function

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK29

Secure initialization protocol

Input: The server has input D of length n, and the client does not use its input in this

stage.

Protocol:

1. The participants run a secure computation of ORAMInit(1), which results in each

party receiving a secret share of the initial ORAM state. We denote this by [stateoram].

2. For i = 1, . . . , n do

(a) The server creates instruction I = (write, v,D[v])) and secret shares it with the

client. We denote the resulting sharing by [I].

(b) The parties execute ([state0oram], [?]) doInstruction([stateoram], [I]) (see Fig-

ure 3.3), and set [stateoram] [state0oram].

Figure 3.1: Secure initialization protocol ⇡Init.

of its view to Z after each iteration in the ideal world) as long as the underlying ORAM

construction they use satisfies the adaptive notion of security discussed in footnote 2. (To

the best of our knowledge, this property has not been considered in any prior work on

ORAM. Nevertheless, we conjecture that all known constructions are secure even under

adaptive choice of instructions.)

3.4 Generic Construction

In this section we present our generic solution to the amortized sublinear secure computation

problem. The construction is based in a black-box manner on any ORAM scheme and any

secure two-party computation protocol. While our second protocol, which we present in

Section 3.5, is substantially more e�cient than any specific instantiation of the protocol in

this section, this generic protocol is conceptually simple and clean, demonstrates theoretical

feasibility, and provides a good overview of our overall approach.

Our first observation is that the server can store his own data in his own ORAM

structure: the security definition of ORAM in Section 3.3 guarantees security against a

semi-honest server even when he knows the data content completely. This allows us to give

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK30

Secure evaluation protocol ⇡f

Inputs: The server has array D̃ and the client has input 1logn, 1`, and x. Also the server

and the client have secret shares of an ORAM state, denoted [stateoram].

Shared input: A RAM program defined by the “next-instruction function” ⇧.

Protocol:

1. The client sets state
⇧

= (1logn, 1`, start, x) and d = 0` and secret shares both values

with the server; we denote the shared values by [state
⇧

] and [d], respectively.

2. Do:

(a) The parties securely compute ([I], [state0
⇧

]) ⇧([state
⇧

], [d]), and set [state
⇧

] =

[state0
⇧

].

(b) The parties perform a secure computation to check whether state
⇧

= (stop, z).

If so, break.

(c) The parties execute ([state0oram], [d
0]) doInstruction([stateoram], [I]). They set

[stateoram] = [state0oram] and [d] = [d0].

3. The server sends its share of [state
⇧

] and [d] to the client, who recovers the output z.

Output: The client outputs z.

Figure 3.2: Secure evaluation of a RAM program.

the client access to the server’s data without violating client privacy, and without requiring

him to store a secret-sharing of the entire database. We now only need to ensure that the

client does not learn any information either. Our second observation is that this can be

achieved, at a cost independent of the size of D, by always secret-sharing the client’s state

with the server (this keeps the client oblivious), and by facilitating the ORAM operations

using standard secure computation techniques on their joint state. More specifically, we will

use MPC to compute each next-instruction function in RAM, and then further to compile

each RAM instruction into a sequence of ORAM instructions. ORAM instructions are then

reconstructed and executed by the server (they can safely be shown to the server), and the

result of the RAM instructions is secret-shared with the client to form part of the updated

client’s state. The players then use the updated state to continue with the evaluation of

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK31

the next RAM instruction.

In more technical detail, let f , encoded as a RAM next-instruction function ⇧, be the

computed function. Notation-wise, for value v, let [v] denote a bitwise secret-sharing of v

between the two parties. Our secure ORAM protocol proceeds as follows:

1. The parties run a secure computation of ORAMInit (Figure 3.1). This initializes the

ORAM structure, and securely populates it with Server’s data D.

2. The parties securely generate and evaluate the RAM program (Figure 3.2). That is,

the following is repeated until the RAM protocol terminates:

(a) The server and the client use MPC to evaluate ⇧ and obtain shares of the next

instruction I.

(b) I is then compiled, through repeated secure computations of ORAMEval, into a

The doInstruction subroutine

Inputs: The server has array D̃, and the server and the client have secret shares of an

ORAM state (denoted [stateoram]) and a RAM instruction (denoted [I]).

1. The server sets d = 0` and secret shares this value with the client; we denote the

shared value by [d].

2. Do:

(a) The parties securely compute ([Î], [state0oram]) ORAMEval([stateoram], [I], [d]),

and set [stateoram] = [state0oram].

(b) The parties perform a secure computation to check if [Î] = (done, z). If so, set

[d] = [z] and break.

(c) The client sends its share of [Î] to the server, who reconstructs [Î]. Then:

i. If Î = (write, v, d0) then the server sets D̃[v] = d0 and sets d = d0.

ii. If Î = (read, v,?) then the server sets d = D̃[v].

(d) The server secret shares d with the client.

Output: Each player outputs his share of stateoram and his share of [d].

Figure 3.3: Subroutine for executing one RAM instruction.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK32

sequence of sub-queries, Î
1

, . . . Î`, where ` = O(log n).

(c) After the server executes each of the sub-queries, instruction I is complete. (In

case of a read instruction, the resulting data item is secret shared between the

server and the client.)

Again, we stress that, although we do use generic MPC, it is independent of the size

of D, and depends only on the RAM representation of f (i.e., ⇧), and on the complexity

of the ORAMEval function. Of course, using generic MPC creates significant overhead. In

Section 3.5 we present several tailored MPC protocols for computing the ORAM steps,

which greatly improve the performance of our approach.

3.4.1 Proof of Security

We now prove that the construction presented in the previous section is a secure MPC

protocol according to Definition 2.

At the very high level, security against the client holds because he only manipulates the

data protected by secret sharing and MPC; the server additionally sees plaintext ORAM

instructions – but they do not reveal anything by the ORAM guarantee. (ORAM secu-

rity [Goldreich and Ostrovsky, 1996] is proven in the non-adaptive setting only. However,

as we will show, our security simulation goes through, since the adaptive input and function

selection by Z does not depend on protocol message view, and hence the simulators can

query the ORAM functions after Z had completed the adaptive selection.)

We start with the descriptions of the Client simulator Scl, who interacts with Z. In i-th

computation, Scl receives xi and yi = f(xi, D(i�1)), stores them, and postpones it simulation

until he receives the special end symbol from Z.

At this point, Scl outputs entire simulation, as follows:

Pre-processing. Scl simulates pre-processing by generating an appropriate number of ran-

dom ORAM state shares:

1. Scl runs the ORAMInit(1) functionality to obtain an initial state for the ORAM,

and generates a uniformly random share [stateoram]c for the client.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK33

2. Let I
1

, . . . , I|D(0)| be instructions of the form (write, v, 0̄) for 1 v |D(0)|. Scl

sequentially applies ORAMEval to I
1

, . . . , I|D(0)|, along with the current ORAM

state. After each instruction is submitted, the ORAMEval functionality returns an

updated state, and the simulator generates a uniformly random share [stateoram]0c

of the updated state for the client.

Computation. For each RAM f to be evaluated, Scl will simulate its execution evaluating

the same number of instructions of the form (read, 0,?) using ORAMEval. Denote by

|f | the execution length of RAM f . Then, for each functionality f :

1. Scl starts with a previously generated share [stateoram]c of the ORAM state that

was generated during the pre-processing, or during the last computation.

2. Let I
1

, . . . , I|f | be instructions of the form (read, 0,?). As in the pre-processing

phase, Scl sequentially runs ORAMEval on I
1

, . . . , I|f |, along with the current

ORAM state. After each instruction is evaluated, ORAMEval returns an updated

state, and Scl generates a new uniformly random state share [stateoram]0c.

3. The output reconstruction is simulated by opening to yi the secret sharing of the

output.

The server simulator Sserv proceeds similarly to Scl. The notable di↵erence is that the

generated view additionally contains the instructions issued by ORAMEval. Specifically, dur-

ing pre-processing, ORAMEval is used to evaluate instructions of the form Ij = (write, v, 0̄)

for 1 v |D(i�1)|. For each such instruction, ORAMEval generates a sequence of sub-

queries Îj , which are included in the generated view. Similarly, during the computation of

each functionality f , each instruction is converted by ORAMEval into a sequence of sub-

queries. These subqueries are included in the generated view (in addition to the state

shares).

It is not hard to see that these simulators produce views indistinguishable from real

execution. The reduction to the (non-adaptive) security of ORAM is straightforward, given

our prior observation that the simulators produce their output only after the entire sequence

of xi is specified by Z (and hence the adaptively chosen sequence of xi can be fed non-

adaptively into the ORAM security experiment).

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK34

This leads to the following.

Theorem 2. Let ORAM be access-pattern hiding, as defined by Definition 1, and let the

underlying employed MPC be secure according to standard definitions. Then, our generic

construction (⇡f) described above is a secure protocol (according to Definition 2) for comput-

ing f , in the presence of honest-but-curious adversaries. Furthermore, if f can be computed

in time t and space s by a RAM machine, then ⇡f runs in amortized time t · polylog(s), the
client uses space log(s), and the server uses space s · polylog(s).

3.5 An Optimized Protocol

In Section 3.4 we showed that any Oblivious RAM protocol can be combined with any secure

two-party computation scheme to obtain a secure computation scheme with sublinear amor-

tized complexity. This generic solution may be appropriate in many situations, however,

current instantiations of the ORAM primitive require us to evaluate complex functions,

such as pseudorandom function (PRF), using a secure two-party computation protocol. For

example, the ORAM construction of Goldreich and Ostrovsky [Goldreich and Ostrovsky,

1996] requires many encryptions, decryptions and executions of a PRF. In spite of the fact

that recent advances in the latter provide very e�cient solutions for secure joint evaluation

of PRFs [Freedman et al., 2005], such secure evaluation is orders of magnitude slower than

simply evaluating a PRF locally.

In this section we present a far more e�cient secure computation system with sub-

linear amortized input access. Specifically, we construct, and prove secure, a new secure

computation scheme that borrows ideas from ORAM protocols (specifically [Goldreich and

Ostrovsky, 1996]) and MPC protocols, in order to provide extreme e�ciency. Our resulting

protocol uses only a handful of garbled circuits that contain nothing more than a few multi-

plications, if statements, and XOR operations, and in particular does not require evaluation

of PRFs inside MPC. All other computation is done locally by the parties.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK35

3.5.1 Technical Overview

Our starting point is the construction of Goldreich and Ostrovsky [Goldreich and Ostrovsky,

1996], which we use to store the server data. We begin with an overview of their ORAM

protocol.

An overview of the Goldreich-Ostrovsky (GO) construction. In the GO construc-

tion, every pair (vi, di), where di is a data item stored at index vi in the original RAM

protocol, is encrypted under a private key held by the client. (Recall that their protocol –

and the ORAM model – does not o↵er privacy from the client.) Each of the N pairs are

stored together in a data structure that has the following properties:

• It consists of L = logN levels for data of size N , though it will grow to size log t if

there are t read and write operations. Level i contains 2i “buckets”, each of which can

hold up to m data elements, where m = max(i, log) and is the security parameter.

The extra allocation in each bucket will be filled with “dummy” items, which we will

explain below. All items stored in these buckets are encrypted with a key that is held

by the client.

• Each level i > 0 has a hash function associated with it, hi, which is chosen by the

client. If an element (v, d) is stored at level i, it will be stored in the bucket having

index hi(v).

The execution of a read operation and the execution of a write operation have identical

structure, in order to prevent the server from distinguishing one from the other. The client

begins by scanning the entire bucket at level i = 0, looking for the element of interest.

Specifically, he decrypts each item in the bucket, one at a time, comparing it to the target

value v. He then scans exactly one bucket at each level i > 0: if v was not yet found, the

client scans the bucket with index hi(v), and if v was already found, he simply scans a

random bucket. Finally after scanning a bucket at each level, (v, d) is written to the top

level (regardless of whether this is a read or a write operation).

As mentioned above, whenever an item is being read or written, it is placed in the top

level of the data structure. After m operations, this level will fill up. These items are then

moved down a level, and shu✏ed in with the items below. Similarly, after 2i read and write

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK36

operations, the items at level i are moved down and shu✏ed in with the items at level i+1.

It follows that after every 2i read and write operations, level i + 1 becomes half full, and

after another 2i operations, it becomes full and is immediately emptied. Every time level i

is moved down to level i+1, a fresh hash function is chosen for level i+1, and the items are

re-inserted in that level using the new function. This process of merging two levels is quite

complex, and we describe it in the course of describing our own protocol below. We refer

the interested reader to [Goldreich and Ostrovsky, 1996] for a proof that this is a secure

ORAM construction.

Extending the protocol to e�cient secure computation: In our setting, we are

further restricted in that the content of the RAM and the access pattern must remain

unseen by the client as well as the server (with the exception of the output that is revealed

at the very end of the computation). We have to overcome several challenges:

1) In the protocol of Goldreich and Ostrovsky [Goldreich and Ostrovsky, 1996], while the

client is reading or writing item (v, d), he has to compute hi(v) up to d times. In practice,

these hash functions would be implemented by a pseudo-random function (PRF), since we

require hi to be i-wise independent. In our setting, since the client should not learn the value

of v, the naive way of implementing their protocol is to compute the PRF inside a garbled

circuit. The resulting protocol would be extremely ine�cient. Instead, we introduce a new

primitive that we call a shared-oblivious-PRF (soPRF). This is a PRF in which the input

and secret key are each shared between two parties, and the (single) recipient of the pseudo-

random output can be designated at the start of the execution.3 Our construction builds

upon the oblivious PRF described by Freedman et al. [Freedman et al., 2005]. Dodis et

al. [Dodis et al., 2006] gave two constructions of the same primitive. Their first construction,

like ours, is based on the DDH assumption. However, the round complexity of their protocol

is linear in the input size, while ours is constant round. Their second protocol is constant

round, but relies on the stronger, q-decisional Di�e-Hellman inversion assumption.

2) While scanning each bucket to look for v, the client has to decrypt every ciphertext

to see whether he has found a match. He also has to re-encrypt the value after reading

3So far we have only hinted at why the input to the soPRF needs to be shared, and we have said nothing

about why the secret key would need to be shared. We explain this when we give the details of the protocol.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK37

it. We need to use an encryption scheme that can be e�ciently computed inside a secure

computation. We use Enc(m; r) = (FK(r) � m, r), and to ensure that encryption and de-

cryption can be e�ciently computed inside a garbled circuit, we have the client compute

FK(r) outside the secure computation. All that has to be done inside the garbled circuit

is boolean XOR. However, this requires care, since the value r may reveal something about

the access pattern to the client. For example, we perform several oblivious sorts on the

data during the shu✏e protocol. In doing this, we repeatedly decrypt two items, decide

whether to swap them, and then re-encrypt them. Suppose the result of one of these op-

erations is (Enc(m0; r0),Enc(m1; r1)) if they are not swapped, and (Enc(m1; r1),Enc(m0; r0))

if they are. Since we allow the client to choose the randomness used in re-encryption, he

can easily determine whether the values were swapped if (when) he sees these ciphertexts

again at a later time! The solution is to make certain that the position of the randomness

is independent of the outcome of the swap: we use (Enc(m0; r0),Enc(m1; r1)) if they are not

swapped, and (Enc(m1; r0),Enc(m0; r1)) if they are.

3) In the original protocol, the client randomly reassigns elements to buckets whenever two

levels are shu✏ed together (i.e., by choosing a new hash function, and re-hashing all the

values). This is a crucial step for providing privacy, but in our setting we cannot entrust

this task to the client, since we must protect their locations from him as well. Actually, this

issue is subtly tied to the fact that the client knows the encryption randomness. Because

he is given the randomness used for decryption during a lookup, he can easily determine

the bucket index of the lookup as well. This is not in itself a problem: recall that the server

also learns the bucket index during lookup, even in the original ORAM protocol. However,

it requires us to hide bucket assignments from the client during the shu✏ing. If we did not

reveal the bucket index during lookup, we might have hoped to reveal more to the client

during the shu✏e. Instead, we use a shared-oblivious-PRF during our shu✏e protocol in

order to hide the bucket assignments from both parties.

3.5.2 Building Blocks

We start with a description of some primitives that we will use as building blocks in our

construction.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK38

3.5.2.1 Shared-Oblivious PRF

As we mentioned above, our protocol makes use of a new primitive that we call a shared-

oblivious-PRF (soPRF). Our soPRF construction is based on the oblivious PRF of Freed-

man et al. [Freedman et al., 2005] (see Figure 3.4). Our particular construction is a function

soPRF : ZO(logN)

p ⇥ ZO(logN)

p ⇥ {0, 1}logN ⇥ {0, 1}logN ! G⇥G,

where G is a group of prime order p = O(2) for which the DDH assumption is expected

to hold. The output are secret shares ↵ and � such that ↵� is pseudorandom. Next we

provide the construction and the security proof for out soPRF.

Definition 3. Let F be some pseudorandom function (PRF) with key-space K and input

domain X. Let [k] denote a 2-out-of-2 secret of k 2 K, and let [x] be the same for input

x 2 X. We say that the function soPRF is a shared oblivious pseudorandom function

(soPRF) built on F if for any k 2 K, and any x 2 X, soPRF([x], [k]) outputs a secret

sharing of F (k;x).

We note that we can trivially build an soPRF from any PRF by using Yao’s protocol.

However, the goal is to give more e�cient construction. Our construction of an soPRF is

built on the Naor-Reingold PRF [Naor and Reingold, 2004]. We review this PRF here. Let

G be some prime order group for which the DDH assumption is expected to hold, and let

g be a generator for G. The Naor-Reingold PRF has input domain X = {0, 1}K , key-space

K = G, and output space G. The function is defined as F (k;x) = gr0⇧i

x
i

r
i , where ri 2 G

makeup the key, and xi 2 {0, 1} the input.

Theorem 3. Assuming DDH is hard in G, and secure OT exists, the protocol described in

Figure 3.4 computes an soPRF, and is secure against semi-honest, polynomial time adver-

saries.

Proof. Let I = {i
1

, . . . , i|I|} denote the set of indices such that vc[ij]� vs[ij] = 1. We prove

our theorem in the standard way, comparing a real execution of ⇡ (in the OT-hybrid world)

with an ideal function that outputs fr
c

,r
s

(vc, vs) = g(r
0

c

·r0
s

)·⇧
i2I

(ri
c

·ri
s

). We define our ideal

world functionality as the following randomized functionality:

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK39

Shared Oblivious PRF

Let g be a generator of a group G of prime order p for which the DDH assumption

holds. Let rs, rc be the shares of the PRF key.
Inputs: Server: vs 2 {0, 1}m, rs = (r0s , r

1

s , . . . , r
m
s), where each ris 2 Z⇤

p

Client: vc 2 {0, 1}m, rc = (r0c , r
1

c , . . . , r
m
c), where each ric 2 Z⇤

p

Protocol:

1. The server samples m values a
1

, . . . , am in Z⇤
p uniformly at random.

2. The client samples m values b
1

, . . . , bm in Z⇤
p uniformly at random.

3. For each 1 i m:

1. The client and the server run an oblivious transfer protocol, with the server

as sender and the client as receiver, using the following inputs:

• If vs[i] = 0, the server’s input is (ai, ai · ris). Otherwise the server’s

input is (ai · ris, ai).
• The client’s input is vc[i].

Let xi be the output value that the client receives from the OT execution.

2. The client and the server run an oblivious transfer protocol, with the client

as sender and the server as receiver, using the following inputs:

• If vc[i] = 0, the client’s input is (bi · xi, bi · xi · ric). Otherwise the

client’s input is (bi · xi · ric, bi · xi).
• The server’s input is vs[i].

Let yi be the output value that the server receives from the OT execution.

3. Let I ✓ [m] denote the set of indices such that vc[ij]� vs[ij] = 1.

The server computes

↵ = r0s

mY

i=1

yi
ai

!
= r0s

mY

i=1

bi

!
Y

i2I
ricr

i
s

!
.

The client computes � = g
r

0

cQ
m

i=1

b

i . These are secret shares of the pseudorandom

value

�↵ =

g

r

0

cQ
m

i=1

b

i

!r0
s

(
Q

m

i=1

b
i

)(
Q

i2I ri
c

ri
s

)

= gr
0

c

r0
s

Q
i2I ri

c

ri
s .

Outputs: The server outputs ↵, and the client outputs �.

Figure 3.4: A construction of a Shared Oblivious PRF

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK40

Ideal functionality F computing an soPRF:

Server input: (r0s , r
1

s , . . . , r
m
s , vs).

Client input: (r0c , r
1

c , . . . , r
m
c , vc)

The functionality F chooses b
1

, . . . , bm uniformly and independently at random from Z⇤
p.

Server output: ↵ = r0s(
Qm

i=1

bi)(
Q

i2I r
i
cr

i
s)

Client output: � = g
r

0

cQ
m

i=1

b

i and ⇧m
i=1

bi.

Note that in the ideal functionality, we include ⇧bi in the output of the server. Although

this is not obviously necessary, it turns out that it is important for the simulation; in the real

world protocol, the server chooses the bi values himself, so leaking this information is not

“harmful”. However, we note that this has some implications about the pseudo-randomness

of the output if a player is given both shares. We will return to discuss this further below.

We begin our security proof by assuming that an adversary A controls the client in the

protocol. We construct a simulator S which interacts with the adversary and simulates the

execution of the protocol in the semi-honest setting.

Lemma 1. Let F denote an ideal execution of the soPRF as described above, and let ⇡OT

denote an execution of the protocol in Figure 3.4 in the OT-hybrid world. For any semi-

honest, polynomial time adversary A with auxiliary input z 2 {0, 1}⇤ that corrupts the

server in the OT-hybrid world, there exists a semi-honest, polynomial time adversary S
with auxiliary input z 2 {0, 1}⇤ corrupting the server in the ideal world such that

ideal
(i)
F,S(z)(, (r

0

s , r
1

s , . . . , r
m
s , vs))

c
= real

(i)
⇡OT,A(z)

(, (r0s , r
1

s , . . . , r
m
s , vs)).

Proof. The simulator S acts as follows:

1. S submits the server’s input to the ideal functionality and receives output ↵.

2. S receives A’s input for the m ideal executions of OT in Step 1. From these inputs,

he computes and stores the value ⇧m
i=1

ai.

3. For i 2 {1, . . . ,m � 1}, S simulates the output of the ith execution of the ideal OT

in Step 2 by choosing ci 2 Z⇤
p uniformly at random, and sending it to the server. He

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK41

then simulates the mth ideal OT in Step 2 by computing and sending

cm =
↵ ·⇧m

i=1

ai
r0s ·⇧m�1

i=1

ci

The only messages the server receives in the OT-hybrid world are the outputs of the m

OTs in Step 2. Therefore, the view of A in the hybrid world is {(y
1

, . . . , ym),↵}, where yi

is the output received in the ith execution of OT. In the ideal world, these messages are

replaced by (c
1

, . . . , cm), so the view of the adversary is instead {(c
1

, . . . , cm),↵}. We must

argue that these distributions are indistinguishable, when taken jointly with the output of

the honest client:

{(y
1

, . . . , ym),↵,�,⇧m
i=1

bi} c

= {(c
1

, . . . , cm),↵,�,⇧m
i=1

bi}

where the first distribution is over the random coins of the two parties in the hybrid world,

and the second distribution is over the coins of the ideal party and of S in the ideal world.

The distributions on ↵,� and ⇧m
i=1

bi are clearly identical in both worlds, so we are really

concerned only with the distributions on (y
1

, . . . , ym) and on (c
1

, . . . , cm) given ↵,� and

⇧m
i=1

bi. Consider first the distributions on (y
1

, . . . , ym�1

) and (c
1

, . . . , cm�1

). Since the

value of ⇧m
i=1

bi does not restrict the value of any m � 1 size subset of the bi values, and,

by extension, neither does the value of ↵ or �, it follows that both (y
1

, . . . , ym�1

) and

(c
1

, . . . , cm�1

) are uniformly distributed over {Z⇤
p}m�1 given ↵,� and ⇧m

i=1

bi. In the hybrid

world, recall that ↵ is computed by the server as:

↵ =
r0s ·⇧m

i=1

yi
⇧m

i=1

ai
.

Therefore, given (y
1

, . . . , ym�1

) and ↵, the value of ym is fully determined by

ym =
↵ ·⇧m

i=1

ai
r0s ·⇧m�1

i=1

yi
.

Since the simulator chooses cm in precisely this manner, we conclude that the distributions

are identical.

2

Lemma 2. Let F denote an ideal execution of the soPRF as described above, and let ⇡OT

denote an execution of the protocol in Figure 3.4 in the OT-hybrid world. For any semi-

honest, polynomial time adversary A with auxiliary input z 2 {0, 1}⇤ that corrupts the

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK42

client in the OT-hybrid world, there exists a semi-honest, polynomial time adversary S with

auxiliary input z 2 {0, 1}⇤ corrupting the client in the ideal world such that

ideal
(i)
F,S(z)(, (r

0

c , r
1

c , . . . , r
m
c , vc))

c
= real

(i)
⇡OT,A(z)

(, (r0c , r
1

c , . . . , r
m
c , vc)).

Proof. The only messages received by the client are the outputs from the first m executions

of OT in Step 1, (x
1

, . . . , xm). The simulator simulates these m outputs with random,

independently chosen group elements from Z⇤
p: (d1, . . . , dm). As before, we need to prove

that the distributions

{(y
1

, . . . , ym),↵,�,⇧m
i=1

bi} c

= {(d
1

, . . . , dm),↵,�,⇧m
i=1

bi}

Here the proof is immediate, since the values of ai are never known to the distinguisher.

It follows that the xi are each independent, random values in Z⇤
p, even when the output

of each party is given. Therefore the simulated distribution, (d
1

, . . . , dm), and the hybrid

world distribution are identically distributed.

2

We now argue that our construction has an additional property: given the output

� = fr
c

,r
s

(vc, vs), and the server’s share of the secret key, rs = (r0s , r
1

s , . . . , r
m
c), we can

generate shares ↵ and � from the appropriate (random) distribution such that �↵ = �. The

implication is that the client can safely send � to the server, who holds ↵, while still ensur-

ing that �↵ looks random. We note that this property does not have to hold, because our

definition of an soPRF allows ↵ and � to contain information about the shares of the secret

key. To make this issue more explicit, consider an soPRF that includes player i’s share of

the secret key (entirely) within i’s output share. The output could still be pseudorandom

given one of the two shares, but it is certainly not pseudorandom when one player holds

both shares. We remark that we did not require this property in our definition because an

soPRF may be useful even without it. For example, in our shu✏e protocol, neither player

ever obtains both output shares. Instead, the shares are used directly as input to a secure

computation, which yields encrypted output.

We argue that our protocol remains secure if � = gr
0

c

/
Q

m

i=1

b
i is sent to the player holding

↵ = r0s(
Qm

i=1

bi)(
Q

i2I r
i
cr

i
s), but we note that this is not true if the share ↵ is sent to the

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK43

player holding (�,⇧m
i=1

bi). To see that it is secure when � is sent to the player holding

↵, note that given a pseudo-random value � and the secret key (r0s , . . . , r
i
s), we can easily

simulate shares ↵ and � such that �↵ = �, even without knowing r0c , . . . , r
m
c . The simulator

simply chooses a random ↵, and then computes � = ��↵. Since ⇧bi is not yet fixed,

the simulated shares are always consistent with the correct values of ric for some choice of

⇧bi. However, note that this simulation fails when ⇧bi is already known and fixed. More

specifically, without knowing r0s , . . . , r
m
s , given (�,⇧bi, r0c , . . . r

m
c), � is already well defined,

and finding ↵ that is consistent with � and � requires solving an instance of the discrete log

problem. Due to this discussion, in our protocol we will always assign � to the client, since

he will occasionally send his share of the soPRF output to the server. We leave it as an

open problem to find an e�cient soPRF that allows either party to send their secret share

to the other.

3.5.2.2 A Secret Re-Sharing Scheme

For our purposes, this is insu�cient, because subsequent use of these shares in a Yao garbled

circuit will be quite impractical; even a single exponentiation is more costly than computing

AES. We therefore provide a second, e�cient protocol that takes shares of this form, and

outputs new multiplicative shares: ↵0 · �0 = ↵� . This appears in Figure 3.5. When we use

the soPRF in our protocol, we leave the re-sharing protocol implicit. In our scheme, the

input to the soPRF are secret shares of a virtual address, and the output are shares of a

pseudorandom value, which is used for determining the location of the virtual address.

We describe a secret re-sharing protocol between two parties C and S. The protocol

implements (under the DDH assumption) an ideal functionality which, given group elements

↵,� that are the inputs of S,C respectively, outputs uniformly distributed group elements

uS , uC such that ucus = ↵� .

Recall that we use this protocol to reshare an soPRF value that was shared through

exponentiation, obtaining multiplicative shares instead. However, we note that the protocol

works for any ↵,�, and does not rely on the pseudorandomness of ↵� .

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK44

The protocol. The protocol starts with S choosing random ↵
1

,↵
2

such that their product

is ↵, and C choosing random �
1

,�
2

such that their sum is �. S sends ↵
1

to C, who

can now compute his output, ↵�
1

1

. The rest of the protocol is designed to allow S to

compute his output, ↵�
2

↵�
2

1

, without revealing any extra information. This is done by using

blinding (raising to a random power, or multiplying by a random number), and by El-Gamal

encryption (and its multiplicative homomorphic properties). The details are described in

Figure 3.5.

Multiplicative Re-Sharing

Let G be a group of prime order p for which the DDH assumption holds.

Inputs: Server (S): ↵; Client (C): �.

Outputs: Server: us; Client: uc; where us, uc are uniformly distributed subject to ucus =

↵� .

Protocol:

1. The server chooses random ↵
1

,↵
2

 G such that ↵
1

·↵
2

= ↵. The server also chooses

random r Zp. The server sends ↵
1

,↵r
2

to the client.

2. The client chooses random �
1

,�
2

, x Zp such that �
1

+ �
2

= �. The client also

chooses random g G and sets h = gx. We let [[W]] denote an El Gamal encryption

of W with respect to the public key (g, h). The client sends g, h, [[↵r�
2

]], and [[↵�
2

1

]] to

the server.

3. The server chooses random r
2

 Zp. Using the homomorphic properties of El Gamal

encryption, the server computes [[↵�
2

↵�
2

1

gr2]] and sends it to the client.

4. The client decrypts the ciphertext sent in the last round, and sends the result ↵�
2

↵�
2

1

gr2

back to the server. The client outputs uc = ↵�
1

1

.

5. The server divides by gr2 and outputs us = ↵�
2

↵�
2

1

.

Figure 3.5: A protocol for converting exponentiation-based shares to multiplicative shares

Analysis. Correctness follows straightforwardly: ucus = ↵�
1

1

↵�
2

↵�
2

1

= ↵�
1

+�2
1

↵�
2

= ↵�
1

↵�
2

=

↵� .

Security for one side is information theoretic, and for the other side is based on DDH

assumption. A simulator that gets only the input and output of one of the parties, can

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK45

simulate the entire view by using random values for the incoming messages, subject to

the correct output being computed. Specifically, a simulator getting only the input � and

output uc of the client can simulate the entire view by choosing a random �
1

,�
2

that sum

up to �, then choosing ↵
1

= u
��1

1

c when simulating the first message. All the other values on

incoming messages are chosen randomly (and all values sent out are computed honestly). It

is easy to see that this simulated view is statistically close to the real view (as all messages

sent to the client in the protocol are blinded by a random number, and since the output uc

is random). A simulator getting only the input ↵ and output us of the server can simulate

the entire view by using random values for the incoming message in step 2 (while computing

step 1 and 3 honestly), and then sending usgr2 in step 4 (for the corresponding values g, r
2

from steps 2, 3). Using the semantic security of the El Gamal encryption (based on the

DDH assumption), it is easy to see that this view is indistinguishable from the view in the

real protocol.

2

3.5.2.3 Encryption Scheme with Small Encryption and Decryption Circuits

In the protocol that follows, all elements, (v, d), are encrypted using semantically secure,

symmetric key encryption; the key K for a (standard) PRF is stored by the client and

never changes. We will frequently perform secure computations that involve decrypting a

ciphertext, performing an operation, and the re-encrypting the resulting value. As described

above, before performing any such computation, the server first sends the random values

r and r0 to the client, where r is the randomness currently being used in the relevant

ciphertext, and r0 is chosen randomly for the re-encryption. The client computes FK(r)

and FK(r0) locally, and uses both values as input to the secure computation. Then, inside

the garbled circuit, both decryption and re-encryption can be achieved with simple XOR

operations. The server stores r0, and sends it again to the client the next time the same

value is needed in a secure computation. (This saves the client from having to store the

randomness.) Below, when we describe the protocol, we leave this step implicit.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK46

3.5.3 Our Construction

Our construction follows along the lines of the general protocol we described in Section 3.4.

The two di�culties are to build an e�cient implementation of the doInstruction function,

and to make the shu✏e protocol from [Goldreich and Ostrovsky, 1996] secure against the

client while maintaining it’s e�ciency. We focus on those two tasks here, and do not repeat

the remainder of the protocol. We find the prose that follows easier to read than would

be precise pseudo-code. Although we reference the functionalities that will be implemented

using Yao, and we give precise pseudo-code for each of those functionalities in Appendix A.1,

we expect the reader will find those descriptions helpful mainly to verify the simplicity of

the garbled circuits that we rely upon. We note that in the proof of security (Section 3.6),

the interested reader will find a more precise listing of the messages sent to and from each

party.

Preprocessing: The players insert the server’s data into the ORAM using a sequence of

write instructions. We describe the process for a write instruction next.

Read/Write: We assume the players each hold a secret share of the instruction being

performed, which includes the virtual address, v 2 [N], being sought.

1. The players scan the top layer looking for data item d stored at address v.

They do this by repeatedly performing a secure computation in which they decrypt

an element, compare its virtual address to v, and then re-encrypt it before storing it

back. However, the computation should not reveal to either player whether or not v

was found, nor what the value of d is. Therefore, the output of the secure computation

includes a secret sharing of a state variable that indicates whether v was found, along

with shares of d in case v is found. Both players remain unaware of the values of these

variables. They scan the entire level, even if v is found mid-way through the scan.

The secure computation for this step is found in Figure A.1.

2. The players scan exactly one bucket at each level. The index of the bucket

scanned at level i is chosen as follows:

(a) First, the players engage in a secure computation in which the output is:

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK47

• a secret sharing of v if v was not yet found, and

• a secret sharing of the string “dummy � t” if v was already found.

Here t is a counter stored by the server, and incremented after every read or

write operation. The secure computation for this step is described in Figure A.2.

(b) They then compute the soPRF on their shares of v (or on their shares of the

dummy address). The key for the soPRF will have been created and shared

when elements were last inserted into this level. This is described in the shu✏e

protocol below. The client sends his share of the soPRF output to the server.

(c) The server maps the output to the integers using the universal hash function hi

associated with level i. He then fetches the corresponding bucket from memory.

The players scan this bucket searching for (v, d), precisely the way they scanned

the top layer. They do this even if v was already found. If (v, d) is found in this

bucket, they store the value in their state (again, unaware that they have done

so), and instead of re-encrypting (v, d) and storing it back in the same location,

they replace it with an encryption of an empty item. We use the same secure

computation as above, described in Figure A.1.

3. The players write the element back to the top layer. They do this by scanning

the layer as before, using a sequence of secure computations to decrypt, compare, and

re-encrypt. If they come across the previous version of (v, d), they overwrite it with

the (possibly) newer value. (This will happen when (v, d) was first found in the top

layer.) If they come across an empty spot in the layer, they simply store the newly

encrypted value there. Either way, they continue the scan until they have re-encrypted

the entire level. The secure computation for this step is described in Figure A.3.

Shu✏ing. As in the work of Goldreich and Ostrovsky [Goldreich and Ostrovsky, 1996], we

must occasionally merge a level with the one below, shu✏e together the items, and reinsert

them into the data structure. As in their protocol, we merge level i with level i+1 after 2i

read or write instructions. We let n = 2i denote the maximum number of elements in level

i. Recall that there are also n buckets at level i, each of size m. We note that there are

at most n elements in level i+ 1 at the time of the shu✏e; the capacity is 2n, but as soon

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK48

as it fills, they are all moved down to level i + 2. Although there are at most 2n items in

these two levels, there is enough space allocated for 3nm words. The remaining spaces are

filled with encryptions of empty elements, of the form (“empty, empty”), which help hide

how many real elements are currently contained in the level. The goal in the shu✏e is to

exactly fill every bucket, while ensuring that neither player learns anything about how the

real items are distributed.

1. The players choose new keys and setup a bu↵er. They each choose a shared

key for the soPRF. Each player will store their share of the key until the next time

these two levels are merged; the same key will be used while reading and writing

elements (as described above). The server also chooses and stores a universal hash

function hi+1, which will be used to map the output of the soPRF to a bucket index in

{1, . . . , 2n}. He stores this along with his share of the soPRF key. Finally, the server

creates a bu↵er big enough to hold 3nm data elements. He places all nm elements

from level i and all 2nm elements from level i+ 1 in this bu↵er.

2. The players assign the real items to buckets. There are 2n (or fewer) items

to be put in the 2n empty buckets of level i + 1, and each bucket is of size m. (The

remaining 2nm � 2n empty spaces of the will later be filled with (encrypted) empty

items.)

(a) They begin this process by (obliviously) sorting the elements, giving priority

to real items. This is done by jointly implementing an oblivious sort over the

virtual addresses. For each comparison of the sort, the players compute a secure

computation that recovers the value of the addresses, compares them, chooses

whether to swap them, and finally re-encrypts both the address and the data

element. The secure computation to be performed is described in Figure A.5.

(b) The players then do the following for each of the first 2n elements in the bu↵er:

• They perform a secure computation of the functionality GetHashInput (Fig-

ure A.2), which outputs a secret sharing of v. For empty items (if there are

any), the secure computation simply outputs a random string r 2 {0, 1}.
• They compute the soPRF on this value.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK49

• They perform another secure computation in which both players use the

shares they received from the soPRF as input, and the server uses as addi-

tional input the description of the universal hash function hi+1. Inside the

secure computation, the output shares of the soPRF are reconstructed and

then mapped to a bucket index using the hash function hi+1. The bucket

index is encrypted and output to the server, who stores it with the element

(still kept in the bu↵er). In Figure A.4 we describe the hash function of

Mansour et al. [Mansour et al., 1993], which is very simple to compute

inside a Yao circuit.

3. The players assign the empty items to buckets.

(a) They scan the last 2nm elements in the bu↵er, which are all guaranteed to be

empty (since 2n < mn). The client encrypts a bucket index for each one: the

first m items are mapped to bucket 1, the next m to bucket 2, and so on until

exactly m of these empty elements have been assigned to each of the 2n buckets.

(b) They perform another oblivious sort (again using a sorting network), this time

sorting by bucket index, with priority given to real items. They then scan the

items, using a secure computation to decrypt, increase the count for the cur-

rent bucket and re-encrypt. If the counter has exceeded m elements for the

current bucket, then the element’s index is replaced with the symbol ? before

re-encryption. The count is kept private (again by use of encryption). We note

that the probability of removing a real element here is negligible, since the proba-

bility that more than m real items fall into one bucket is negligible. (See Lemma

5.) In case this does occur, we let the output of this secure computation be a

special abort symbol, and the players abort the protocol. The necessary secure

computation is described by the functionality in Figure A.6.

(c) Finally, they perform one more oblivious sort on the bucket index, treating ? as

the largest index. In the end, the bu↵er contains m items per bucket, ordered

by bucket index. The server simply copies these directly back into level i+ 1 in

their current order, ignoring the leftover items labeled with ?. They again use

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK50

a secure computation for the functionality described in Figure A.5.

3.5.4 Discussion: Bucket Size

As we will see below, the size of each bucket will play an important role in the proof of

security. In particular, we claimed above in Step 3b that if we map n items to n buckets, the

probability of overflowing a bucket of size m is negligible in the security parameter. Suppose

this were not the case: that we instead use a smaller bucket size, and that we simply sample

a new hash function if our elements overflow a bucket during insertion. This admits the

following attack: consider a server that is trying to distinguish between two di↵erent search

sequences by the client, X = (x
1

, . . . , xn) and Y = (y
1

, . . . , yn). Assume further that he

knows all elements in search pattern X are found in level i, while all elements in Y are

found at (say) level i+ 1. We note that security must hold even in such a situation. With

non-negligible probability, while the client is searching for the elements of Y , he will query

the same bucket at level i at least m+1 times. On the other hand, if his search was for items

in list X, this could not happen, because, by our assumption, the hash function assigned

to level i was chosen to map no more than m items to any one bucket. Put another way,

we can ensure that the hash function for level i never overflows when mapping elements in

level i, but we cannot ensure that it doesn’t overflow when mapping elements that are not

in level i. Therefore, we choose bucket sizes that are large enough to guarantee a negligible

probability of overflow for any 2i elements.

This issue a↵ects security of previous ORAM constructions as well, including [Pinkas and

Reinman, 2010], and [Goldreich and Ostrovsky, 1996] when the buckets are small ([Goldreich

and Ostrovsky, 1996] say that any bucket size will do). Indeed, [Pinkas and Reinman, 2010]

su↵ers from this issue (and a related one that stems from its use of cuckoo hashing) in a way

that we were not able to repair (unless we increase their log2 overhead to log3).4 However,

for the [Goldreich and Ostrovsky, 1996] protocol, security is maintained for the parameters

they suggest as most practical (logarithmic bucket size).

4As mentioned in Section 2.0.7, these insecurities were independently discovered by others, and potential

fixes as well as alternative schemes have since been suggested.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK51

3.6 Security Proof

The security of the protocol that we presented in the previous section is captured by the

following theorem (the performance is analyzed in detail in Section 3.7).

Theorem 4. Assuming that the Decisional Di�e-Hellman (DDH) assumption holds, the

protocol described in Section 3.5.3 (⇧F) is a secure protocol for computing F in the presence

of honest-but-curious adversaries. Furthermore, if F can be computed in time t and space

s by a RAM machine, then ⇧F runs in amortized time t · polylog(s), the client uses space

log(s), and the server uses space s · polylog(s).

Proof. To prove security of the protocol against honest-but-curious players, we analyze our

protocol in the hybrid model, in which we replace all secure computations used during the

read and write operations with ideal executions of their corresponding functionalities. It

follows from a well known result of Canetti [Canetti, 2000a] that if the resulting protocol is

secure in this hybrid world, then the protocol remains secure in the real world as well.

We start with the following lemma which will be an important part of our proof.

Lemma 3. In an honest-but-curious execution of protocol ⇧F (as described in Section 3.5),

for all soPRF keys k and for all inputs v, the probability that the players compute soPRF(k, v)

in Step 2b more than one time is less than negl(), where negl is some negligible function.

Proof. We consider two types of inputs: v 2 [N], and dummy inputs of the form dummy � t.
For inputs of the latter form, note that this particular input can only be used in the tth

operation, since t is incremented with every operation. The only way soPRF(k, dummy � t)
can be computed more than once, therefore, is if the same key k is assigned to two di↵erent

levels at the same time. Since the number of levels is bound by some polynomial (in),

and there are an exponential number of keys, this is negligibly likely to occur. Consider a

pair (k, v) where v is of the first form. In this case, the proof follows from three properties

of the protocol: a) elements are moved to the top layer once they are found. b) Whenever

we have found an element at some level i, we query dummy � t at all levels j > i, where

t is uniquely chosen in each operation. c) Whenever an item is moved down to a lower

level, a new soPRF key is assigned to the lower level. If we assume that keys are chosen

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK52

without replacement (i.e. that we never choose the same key more than once), then the

lemma clearly follows from these three properties. Since the total number of keys chosen is

bounded by some polynomial in , the probability that the same key is chosen more than

once is negligible.

Lemma 4. For every non-uniform, polynomial time adversary A corrupting the server in

a hybrid-world execution of the secure computation described in Section 3.5.3, there exists a

non-uniform, polynomial time adversary S corrupting the server in the ideal world execution

F , and a negligible function neg(·), such that for all 2 N:

|Pr[Real(1,⇧,A) = 1]� Pr[Ideal(1, F,S) = 1]| neg()

Proof. We begin by describing the simulation of the shu✏e protocol. We will then describe

the simulation of a single read/write operation. In the end we will put these together to

argue that sequences of read/write operations and shu✏es remain secure.

In simulating the shu✏e protocol, recall that S is simulating the hybrid world in which

the players have access to ideal executions of the functionalities described in Figures A.5,

A.2, 3.4, 3.5, A.4, and A.6. We outline the hybrid world protocol in Figure 3.6.

We note that in this hybrid world, almost the entire shu✏e protocol proceeds through a

sequence of ideal function calls; the players rarely interact outside of these ideal executions.

With a few exceptions (described below), the simulator only needs to simulate the output of

each of these ideal functionalities. Furthermore, the output from these ideal functionalities

is always either a ciphertext, or a random secret sharing. The simulation is therefore quite

straightforward: the output of each functionality is simulated with a random string. When

the output is supposed to be a ciphertext, the indistinguishability of the simulation follows

from the security of the PRF used in the encryption scheme. When the output is supposed to

be a secret share, the simulation is distributed identically to the output of the hybrid world.

As we will see, the messages that are sent from the client (i.e. that are not communicated

through an ideal function call) are always either the random string used in some ciphertext,

or a complete ciphertext. Both can again be simulated with random strings.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK53

!"

#$%&'()*+,-%"
./01-2$"34"

5(" 56"

(789/"
./01-2$":4"

;(" ;6"

<+0=$2('>&'()"
./01-2$"?@4"

A"

.2?B"2CB"2DB"2E4"F".2G?B"2GCB"2GDB"2GE4""

HI>0=07-("JK',"
./01-2$"??4"

HI>0=07-("J72%"

L$6"F"M+6"

2:"F""2G:"L$6"F"M+6"

C'"

CI"
6?B"NB"6C+O""M+6"

HI>0=07-("J72%P"DI"

Q" 9$O7=$"MO,R$("
./01-2$"?C4"

HI>0=07-("J72%P"D6"

.2SB"23B"2TB"2U4"F".2GSB"2G3B"2GTB"2GU4""L$6"F"M+6"

D"

J%$,"+-OI$2("V27O"%)$",27%767>"
W$(620,R7+"0+"J$6R7+"EX?"

Figure 3.6: The shu✏e protocol in the hybrid world.

Simulating oblivious sort: Since oblivious sort is performed three di↵erent times, we describe

the simulation separately. We note that each oblivious sort in the hybrid world proceeds

through a sequence of calls to the ideal instance of the swap functionality (Figure A.5),

each preceded by the exchange of four encryption and decryption strings. (In Figure 3.6,

we have only depicted a single call in order to save space.) As described above, we simulate

(r0
1

, r0
2

, r0
3

, r0
4

), which are sent from the client before each ideal function call, with random

strings. We let ↵ denote the output of the Oblivious Swap functionality; ↵ is a group of four

ciphertexts, which are also simulated with random strings. The security of the PRF used

in the encryption scheme guarantees that the simulated ciphertexts are indistinguishable

from the actual output of the trusted swap functionality.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK54

Step 2a only contains an oblivious sort. In Step 2b, the players make three calls to ideal

functionalities (again, engaging in no other communication). To simulate �s, the output of

the ideal functionality of Figure A.2, and �s, the output of the ideal soPRF, the simulator

simply outputs a random string. In the hybrid world, �s and �s are random secret shares,

so the simulated output is identically distributed to the hybrid world output. (We note that

even if the input to the soPRF is identical in two sequential executions, the output is still a

fresh pair of secret shares. Therefore, the simulator does not need to do any “book keeping”

regarding previous inputs to the soPRF.) The random value r0
5

is used in constructing the

ciphertext �, and can be simulated with a random string. Finally, the last ideal call in

this step is to an ideal functionality that takes the output of the soPRF, along with the

description of a hash function, and outputs an encryption, � of the bucket index that results

from applying hi to the output of the PRF (Figure A.4). Since the output is a ciphertext,

the simulation simply proceeds as above, outputting a random string.

Step 3a proceeds without any ideal function calls. Here, the client sends exactly 2nm

ciphertexts to the server, each an encryption of a random bucket index, which is to be

assigned to an empty element. The simulator simply sends random strings, which are

again indistinguishable from the messages sent by the client in the hybrid world, due to

the security of the PRF used in encryption. In Step 3b, the simulator has to simulate the

output of the ideal function described in Figure A.6. In the hybrid world, when fewer than

m real items are mapped to each bucket, the output of this ideal function call is a pair of

ciphertexts, which can be simulated as usual. However, the simulator will not attempt to

simulate the bad event in which more than m real items are mapped to a particular bucket.

Instead, we rely on Lemma 5, which proves that this is negligibly likely to occur, and we

allow our simulation to fail with his negligible probability. The final step of the shu✏e

contains another oblivious sort, which is handled as described above.

Simulating read/write: We proceed now to describe the simulation of a single read or write

operation. With one important exception, the simulation of the server view during read

and write executions is very similar to the simulation used in the shu✏e protocol. The

only message sent directly from the client to the server is the client’s secret share of the

soPRF output, sent in Step 2b (message �c in Figure 3.7). The rest of the protocol proceeds

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK55

!"#

$%&'()*+,-.&#
/012.3%#45#

6)# 67#

)89:0#
/012.3%#;5#

<)# <7#

/3=>#3?5#@#/3A=>#3A?5##

B*%7CD(&(
/012.3%#;5#

D%7#@#E,7#

3F#

<7#

D%7#

=#

?#

!7#

G"# B*%7CD(&(
/012.3%#;5#

G7#

H"#

/3I>#3;5#@#/3AI>#3A;5##

D(&(J31&%##
/012.3%#K5#

D%7#@#E,7#

F#

H7#

Figure 3.7: The read and write protocol in the hybrid world.

through the execution of ideal function calls, and, as before, simulating the output of these

functions is straightforward. This is because the outputs of these computations are all

either random secret shares, or ciphertexts, both of which can be simulated with random

strings. The output from CheckData (messages ↵S and �S) contain two secret shares which

are uniformly distributed, and one ciphertext. �S is a secret sharing, and ⇣S contains one

secret sharing and one ciphertext.

The most di�cult part of the security proof is to simulate the secret share of the soPRF

that is sent from the client to the server (�c) in Step 2b. In the shu✏e protocol, the

players keep their output from the soPRF private, using them as input to another secure

computation. This simplified the simulation, since it allowed us to simulate just one share

of the pseudorandom value, which is distributed uniformly. Here, since the client sends his

share in the clear, we have to simulate the reconstructed output of the PRF, and not just

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK56

a secret sharing of that output.5

To simulate the client’s share of the soPRF output, we simply send a random group

element. We stress that the simulator does not try to simulate a random function, because

he has no idea what the input to the soPRF is; in particular, if the same input were

used twice, he is very unlikely to output the same value both times. To claim that this

simulation is indistinguishable from the real execution, therefore, we rely on Lemma 3, where

we demonstrated that the players never reuse the same input to the soPRF in between two

shu✏es. (Recall that when a level is shu✏ed, the players refresh the key for the soPRF, so

at that point it is irrelevant if they reuse an input that was used prior to the shu✏e.) If

they did reuse the same input, the simulation of the soPRF would be easily distinguished

from the real execution.

As mentioned in the discussion of Section 3.5, another key lemma in the proof demon-

strates that the buckets are large enough that they are negligibly likely to overflow during

the shu✏e. If this were not the case, the simulation of the soPRF would be distinguishable

from the hybrid-world execution of the soPRF. Note that in the hybrid world protocol,

we abort if m + 1 inputs from the same level collide under the choice of soPRF key (See

Figure A.6). Therefore, the output of the soPRF in the real execution is pseudorandom,

conditioned on the fact that buckets do not overflow. In contrast, the simulated output of

the soPRF is truly random. Put more formally, for any N inputs, v
1

, . . . , vN , let goodk

denote the set of soPRF keys that map no more than m elements in v
1

, . . . , vN to the same

value. Then we require that the following two distributions are indistinguishable:

{soPRF(k, v
1

), . . . , soPRF(k, vN) | k R K} c

= {soPRF(k, v
1

), . . . , soPRF(k, vN) | k R goodk}

It follows that these distributions are indistinguishable if the probability of overflow is

negligible (i.e. if the set goodk contains most of the keyspace). We prove now that the

buckets are unlikely to overflow if the soPRF is replaced with a random function. It follows

5We note that we could change the protocol to match the shu✏ing protocol, having the players use their

output from the soPRF in a secure computation of the functionality depicted in Figure A.4. However, it is

much more e�cient to send the value in the clear. The reason we don’t do the same thing when shu✏ing

is that the protocol becomes insecure if the server sees the reconstructed output of the soPRF both during

shu✏ing and during lookup.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK57

from a hybrid argument that the simulation of message �c is indistinguishable from the

hybrid-world soPRF.

Lemma 5 ([Mitzenmacher and Upfal, 2005]). Let Y be a Poisson random variable with

parameter (and mean) µ. If y > µ then Pr[Y � y] e�µ

(eµ)y

yy .

Lemma 6 ([Mitzenmacher and Upfal, 2005]). Let X(m)

i , 1 i n, be a random variable

representing the number of balls in the ith bin when m balls are randomly thrown into n

bins. Let Y (m)

1

, . . . , Y (m)

n be Poisson random variables with mean m/n. Then, any event

that takes place with probability p in the Poisson case, takes place with probability at most

pe
p
m in the exact case.

Corollary 5. Suppose that n balls are thrown into n bins. Then, the probability that in

the end there is a bin that contains more than z = max(log(n), log()) balls is at most

n1/2

max

1

ln(2)

(n,)
zz .

Proof. Let z = max(log(n), log()). When n balls are thrown into n bins, the expected

number of balls in each bin is 1. Now consider Poisson variables Y
1

, . . . , Yn with parameter

µ = 1. From Lemmas 5 and 6 we obtain that for all 1 i n:

Pr[Yi � z] ez�1

zz
=) Pr[Xi � z] ezn1/2

zz

n1/2max
1

ln(2) (n,)

zz

We now put together the pieces and consider the full simulation of the server. Since

we are in a semi-honest setting, the simulator can begin by submitting the server’s input

to the trusted party. The output of the honest player is always correct, and is distributed

identically to the hybrid world execution. (We leave the correctness of the hybrid world

protocol for the reader to verify.) Since the server receives no output, it remains only

to argue that the complete view of the server in the ideal world is indistinguishable from

that in the hybrid world. We have already argued above that the simulation of a single

shu✏e, or a single read write execution, is indistinguishable from the hybrid-world execution

of the same protocol. We now need to argue that a sequence of such simulations remains

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK58

indistinguishable. Again, the only subtlety arises with the soPRF output; all other messages

are clearly independent of one another, even across multiple shu✏es, reads and writes. Given

Corollary 5 and Lemma 3, it follows that the output of the soPRF in the hybrid world is

indistinguishable from a random sequence of group elements, each chosen independently.

This is precisely how we have simulated the soPRF, so this concludes the proof of Lemma

4.

2

Lemma 7. For every non-uniform, polynomial time adversary A corrupting the client in a

hybrid-world execution of the secure computation described in Section 3.5.3, there exists a

non-uniform, polynomial time adversary S corrupting the client in the ideal world execution

F , and a negligible function neg(·), such that for all 2 N:

|Pr[Real(1,⇧,A) = 1]� Pr[Ideal(1, F,S) = 1]| neg()

Proof. Simulating encryption and decryption: In many of the ideal function calls, the server

provides input FK(r) � v, while the client provides FK(r) for decryption, and FK(r0) for

re-encryption (see the discussion in Section 3.5.3). In every such case, the server sends r, r0

to the client before they call the ideal function. We need to describe how to simulate these

random strings sent by the server. The simulator has to do some book-keeping to be sure

the appropriate random strings are sent. (Recall, the client saw the random string needed

for decryption at some prior time when it was used for encryption, so the randomness sent

by the simulator must remain consistent with those values.) Specifically, the simulator keeps

an array of size N to store random strings. He keeps track of the randomness currently

being used to encrypt each item at each location in the ORAM structure. We stress that

this book-keeping succeeds only because our functionalities all maintain the ordering of

the randomness provided by the client. For example, in Figure A.5, note that regardless

of whether the items are swapped, the ordering of the randomness provided by the client

remains fixed. If this were not the case, not only would the simulation fail (because it could

not know what order to place the random strings in), but the client would easily learn

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK59

something about the outcome of the oblivious sort by observing the final ordering of the

randomness he provided.

In the hybrid world protocol, the only messages the client receives from the server

are the random strings that we have just finished discussing (see Figure 3.6). Everything

else is done through the execution of ideal functionalities. In the shu✏e protocol, the

simulation of these functionalities is actually a bit simpler than it was in the case of the

server, because the client does not receive any output from the swap functionality used

in oblivious sort (Figure A.5), from the functionality that computes an encryption of the

bucket index (Figure A.4), or from the functionality that skims empty items from over-

full buckets (Figure A.6). The outputs that the client receives from the remaining ideal

functionalities are random secret shares of various values: �c from GetHashInput, and �c

from the soPRF. The simulator simply outputs random strings to simulate each of these

ideal function calls. In the read/write protocol, the same is true: the reader can verify that

client output from all functionalities are secert-shares of state variables (i.e. messages ↵c,

�c, �c, �c and ⇣c). All can be easily simulated with random secret shares.

To put these pieces together, when the simulator receives xi from the environment, he

immediately submits them to the trusted functionality and stores the output. He simulates

the view of the client through the appropriate number of read/write executions and shu✏es,

until the RAM protocol terminates.6 He then sends a second secret share of the output to

the client, allowing him to reconstruct the correct output value, sends the output value to

the environment, and waits for the next input to arrive from the environment. We note

that the server has no output, so we do not need to worry about the joint distribution over

the client’s view and the server’s output. When we consider the simulation of a sequence

of read and write executions, we have to describe how the simulator chooses which random

values to send to the client (i.e. which buckets should be read). We claim that choosing a

random bucket at each level su�ces. This follows from two facts: a) the client’s view during

the shu✏e protocol reveals no information about how items have been mapped to buckets,

and b) as proven in Lemma 3, with overwhelming probability, the same input is never used

6As mentioned in Section 3.3.1, we assume that the runtime of the RAM protocol is independent of the

inputs.

CHAPTER 3. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK60

twice in the soPRF.

This completes the proof of Theorem 4.

3.7 Performance

We evaluate the performance of our protocol and compare it with the state-of-the-art solu-

tions. First, recall our notation: N is the number of records in the database (each of length

m), k is the security parameter for underlying DDH groups (k ⇡ 256). While we use big-O

notation in our analysis, we stress that we do not hide any large constants; in fact we keep

the constants of the higher-order terms.

Each ORAM read/write has complexity O(4m log2N+ m logN+ 3 log3N). Addition-

ally, amortized per read/write shu✏ing has complexity O((log logN)3 + klog2 3 log logN).

The amortized shu✏ing terms are of low order and may be dropped in further analysis,

possibly except for the term klog2 3 log logN , (here klog2 3 ⇡ k1.6 is the size of boolean circuit

implementing Karatsuba multiplication [Karatsuba and Ofman, 1962]).

While each step of ORAM is relatively costly, our solution is orders of magnitude faster

than existing solutions (which are all linear in input size) for important functions such as

binary search on large DB (or its derivative, location-based service provision). To illus-

trate the costs relationship for today’s medium-size DB of 107 records, each of size 105,

our solution performs ⇡ 5 · 109 basic operations (comparable to Yao-gate evaluations), vs

standard solution’s cost of ⇡ 1012 of same operations. In general, our approach will likely

be advantageous when server’s input is large, and ORAM program length is short (it is

logarithmic for search).

Most importantly, as DB sizes grow with time, the performance advantage of our ap-

proach will increase (as much as exponentially, for binary search).

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 61

Chapter 4

Secure Multiparty Computation

for Multivariate Polynomials

4.1 Motivation and Contributions

As we already observed generic MPC approaches have inherent ine�ciency related to the

fact that they use circuits as their computation model and the circuit size representation of

a functionality may be very large. Thus, an important open problem in MPC is designing

highly e�cient protocols for smaller, yet large enough to be interesting, sets of functionali-

ties, taking advantage of the domain specific mathematical structure (election problems is a

narrow example, while linear algebraic problems is a more generic example). One such class

of functions are multivariate polynomials, which can be used to express many problems

from linear algebra, statistics, set operations.

We consider the problem of secure multiparty computation of the class of functions that

can be represented by polynomial-size multivariate polynomials. The multivariate polyno-

mial is defined over the inputs of the participating parties so that each party contributes its

inputs as values for some subset of the variables in the polynomial representation. There is a

designated party receiving output that learns only the output of the polynomial evaluation

while all other parties receive no output. 1 We assume a broadcast channel and that the

1We note that our protocol can be generalized to allow any subset of the parties to receive output.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 62

private keys for the threshold encryption scheme distributed in a preprocessing stage.

4.1.1 Our Contributions

General Protocol. We present a protocol that allows multiple parties to compute the

above functionalities, assuring security against a dishonest majority and robustness (de-

tection misbehavior). Our protocol is fully black-box assuming any threshold additive

homomorphic encryption with a natural property that we specify later, (instantiated by

Paillier scheme, say). The protocol utilizes a ”round table” structure where parties are

nodes in a ring network (which means that frequently a party only communicates with the

consecutive parties around the table). This structure (employed already in past protocols)

has two benefits: first, it allows each party to be o✏ine for the majority of the execution

of the protocol and to be involved only when it needs to contribute its inputs at its turn.

Second, it allows a division of the communication complexity into two types: ”round table”

communication complexity including messages exchanged between two neighboring parties,

and broadcast communication complexity including messages sent simultaneously to all

parties. We give simulation-based proofs of security in the Ideal/Real (standard) Model

as per definitions in [Goldreich, 2005]. To the best of our knowledge, the only paper that

has considered secure computation of multivariate polynomials is [Franklin and Mohassel,

2010]. This recent independent work has focused on multivariate polynomials of degree 3

but points out that the proposed protocols can be generalized to higher degree polynomi-

als, however, with communication complexity that is no longer optimal, leaving as an open

question improvements of this complexity. Their protocol is based on the compiler of [Ishai

et al., 2008], but with the di↵erence being that the outer and the inner protocols inhere are

instantiated with e�cient constructions tailored for multivariate polynomials. The com-

munication complexity of their protocol is (sub)-exponential in the number of variables t:

O(poly(k)dbt/2c) for polynomials of degree d and security parameter k. Our work, in turn,

improves their communication complexity to be fully polynomial (i.e., polynomial in all

parameters of the problem). Obviously one can take a poly-size multivariate polynomial

and translate it to a circuit with poly time secure computation solultion, but this will have

a huge polynomial factor expansion and will lose the structure enabling the special-purpose

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 63

speedups. We achieve ”round-table” complexity 10kDn(m � 1) and broadcast complexity

k(10D + 1)(
Pm

j=1

Pl
j

t=1

log↵j,t + 1) for m parties where party i has li inputs of degrees

↵i,1, . . . ,↵i,l
i

, D being the sum of the logarithms of the variable degrees for polynomials

consisting of n monomials. Next, recall that every polynomial can be easily converted into

an arithmetic circuit, our protocol can be viewed as a protocol for MPC of a subclass of

all arithmetic circuits. From this point of view, the work of [Ishai et al., 2009] addresses

a comparable problem to ours (constructing a MPC protocol for all poly-size arithmetic

circuits, using a black-box construction and assuming no honest majority). The work of

[Franklin and Mohassel, 2010] already improves in the worst case the complexity results of

[Ishai et al., 2009] (for proper set of multivariate polynomials), and as we noted above we

bring additional improvement (intuitively our amortized broadcast complexity is linear in

the size of the representation of the largest term of the polynomial, and does not depend on

the number of terms in the representation, which contributes to the size of the arithmetic

circuit). Further, the protocol of [Ishai et al., 2009] requires as many rounds (involving all

the parties) as the depth of the circuit and communication complexity depending on the

size of the circuit. In contrast, we achieve a number of rounds independent of depth of the

size of the arithmetic circuit of the polynomial (which is constant when either counting a

round-table round as one round or when considering only a constant number of parties).

Special Cases. The class of polynomial size multivariate polynomials contains a wide

range of e�ciently representable functionalities with special structure that enables further

optimizations. Most of the commonly used statistics functions can either be represented

as polynomials or approximated with polynomials using Taylor series approximation for

trigonometric functions, logarithms, exponents, square, etc. Examples include average,

standard deviation, variance, chi-square test, Pearson’s correlation coe�cients, and central

moment of statistical distributions. Matrix operations (i.e., linear algebra) can also be

translated to polynomial evaluations.

In particular, as a special case of the general protocol, we implement secure multiparty

set intersection against a malicious adversary controlling a majority of the parties; we

note that the set intersection question in the two party case has been addressed in many

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 64

works [Freedman et al., 2004; Hazay and Lindell, 2008; Kissner and Song, 2005; Jarecki

and Liu, 2009; Dachman-Soled et al., 2009; Cristofaro et al., 2010] while there are fewer

works that have considered the multiparty version. Two works adress the issue in the

computational protocol setting. First, Kissner et al. [Kissner and Song, 2005] present a

semi-honest protocol and suggests using generic zero knowledge techniques (ZK) to address

the malicious case which requires communication complexity O(m2d2) for m parties with

input sets of size d. The work of [Sang and Shen, 2009] improves this complexity by a factor

of O(m) for m party protocols, using more e�cient ZK based on pairings. In addition,

relatively ine�cient information theoretic solutions are presented in [Patra et al., 2009a;

Patra et al., 2009b]). Our protocol achieves communication complexity O(md+ 10d log2 d)

improving the existing works. We note that we achieve linear complexity in the number

of parties m due to the round table communication paradigm, whereas even the recent

unpublished work [Cheon et al., 2010] is quadratic in the number of parties. We note that

our scheme extends the classical approach of representing a set as the zeroes of a polynomial

as in [Freedman et al., 2004; Camenisch and Zaverucha, 2009; Agrawal et al., 2003; Dawn

and Song, 2005].

Finally, if we view the polynomial’s coe�cients as the input of the designated output

receiver, we obtain a multi-party oblivious multivariate polynomial evaluation, a generaliza-

tion of the problem of oblivious polynomials evaluation [Naor and Pinkas, 2006] to inputs

from multiple parties.

Techniques. Multivariate polynomials have a “nice structure” and in our protocol we

utilize a number of techniques exploiting the structure and various interactions of this

structure with structures of other algebraic and cryptographic primitives.

We crucially utilize the fact that multivariate polynomials can be viewed as linear opera-

tors when combined with additive homomorphic encryption and polynomial secret sharing.

We formalize this property by presenting a commutativity property between the evalu-

ation of multivariate polynomials and reconstruction of Shamir’s secret sharing [Shamir,

1979]. Intuitively, this allows us to evaluate a given polynomial on multiple (modified)

Shamir secret shares in parallel and obtain the final evaluation of the polynomial by re-

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 65

constructing the secret shares. This technique is useful since it allows us to apply generic

(black box) ”cut-and-choose” techniques to verify the correctness of the evaluation for ma-

licious parties, without revealing information about the shared inputs or outputs. We

note that analogous techniques were used in a di↵erent context by [Choi et al., 2008;

Dachman-Soled et al., 2009].

A second property of multivariate polynomials is that they can be viewed as a collec-

tion of monomials which can be computed under additive homomorphic encryption non-

interactively in a round-table type protocol where each participant incrementally contributes

his inputs to the encryption of the partial monomial evaluation done by the previous par-

ticipants (note that each participant’s contribution is a multiplication by a scalar).

We additionally use the polynomial structure of a variant of Shamir’s threshold shar-

ing in zero knowledge protocols proving that inputs were shared correctly and commit-

ted under homomorphic encryption. We utilize Lagrange interpolation combined with

what we call vector homomorphic encryption (where the homomorphic properties hold

for both the plaintexts and the encryption randomness; which is true for many of the

known homomorphic encryption schemes [Paillier, 1999; Fouque et al., 2001; ElGamal, 1985;

Goldwasser and Micali, 1982]) to verify that inputs were shared correctly by interpolating

over encrypted values. This verifies that inputs were shared and encrypted correctly, pro-

vided that the randomness for the encryptions was chosen in a specific way. This encrypted

interpolation technique combined with the large minimum distance of Reed-Solomon codes

allows us to guarantee the correctness of an entire computation on encrypted codewords

based on the verification that a small random subset of shares were computed correctly.

Finally, we use the linear operator properties of the sharing polynomials for share re-

randomization under additive homomorphic encryption.

We note that when we perform our protocol with homomorphic encryption over a ring,

then we use the technique initiated by Feldman ([Feldman, 1987]) and also used, e.g., in

Fouque et al. ([Fouque et al., 2001]) for Paillier sharing that transforms interpolation

over an RSA-composite ring and similar structures to an interpolation over (a range of)

the integers (where computing inverses, i.e., division, is avoided and finding uninvertible

elements is hard, assuming factoring is hard).

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 66

4.2 Solution Overview

Semi-honest structure. As described above, we view multivariate polynomials as a

collection of monomials that can be computed under homomorphic encryption in a round-

table type protocol. We employ this to construct the underlying semi-honest evaluation

protocol.

Robustness idea. To achieve security against malicious adversaries, in turn, we em-

ploy the commutativity between evaluation of multivariate polynomials and Shamir’s se-

cret sharing reconstruction described above. Consider the following very simplified exam-

ple that illustrates a few of the basic techniques we utilize. Let us say that we have m

parties that wish to evaluate the univariate polynomial Q(x) = x5 + 10x3 + 6x + 9, at

point x, where x is the input of Party 1. Letting Party 1 execute the whole computa-

tion will not handle the case the it is a malicious party. One approach will be to use

techniques based on threshold fully homomorphic encryption schemes [Myers et al., 2011;

Asharov et al., 2012], which will be more computationally expensive than approaches using

circuit representation for the function.

Instead, we take the following approach: Party 1 computes a Shamir secret-sharing

of its input x by choosing a polynomial Px of degree k uniformly at random conditioned

on Px(0) = x. Now, instead of committing to the value x, Party 1 commits to, say, 20k

input shares of Px : Px(1), . . . , Px(20k). Next, Party 1 commits to 20k output shares of

Q � Px(i) : Q(Px(1)), . . . ,Q(Px(20k)). Notice that Q � Px(i) is a polynomial of degree

5k and that Q � Px(0) = Q(Px(0)) = Q(x). Thus, by reconstructing Q � Px(0) we ob-

tain the output value Q(x). After Party 1 sends the input and output commitments,

the parties verify e�ciently that the input and output shares indeed lie on a polynomial

of degree k and 5k respectively using an interpolation algorithm we define below. Now,

the parties run a cut-and-choose step where a set I ⇢ [20k] of size k is chosen at ran-

dom. For each index i 2 I, Party 1 must open the commitments to reveal Px(i) and

Q�Px(i). The remaining parties now verify privately that for each index, Q�Px(i) was com-

puted correctly. Note that due to the secret-sharing properties of the commitment scheme,

the cut-and-choose step reveals no information about Px(0) = x or Q � Px(0) = Q(x).

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 67

Now, let’s assume that Party 1 acted maliciously. Since the set I was chosen at ran-

dom, we have that if Party 1 is able to open all the shares corresponding to I correctly,

then with very high probability Party 1 must have computed all of the output shares

correctly. We note that the above description leaves out important re-randomization

techniques (that are described in the full protocol) whose goal is to prevent parties from

learning during the incremental evaluation and robustness checking. When the polyno-

mial has inputs from more than one party, for example Q(x, y) = x3y2 + x where Party

1 contributes x and Party 2 contributes y the evaluation is broken down at the monomial

level M
1

(x, y) = x3y2 and M
2

(x, y) = x. Party 1 evaluates M1

1

(x) = x3 and M1

2

= x on its

shares and passes the encrypted values to Party 2 Enc(M1
1(Px(1))), . . . ,Enc(M1

1(Px(20))) and

Enc(M1
2(Px(1))), . . . ,Enc(M1

2(Px(20))). Party 2 evaluates M2

1

(y) = y2 and M2

2

(y) = 1 on its

shares and contributes then to the received encryption using the homomorphic properties of

the encryption (Enc(M1
i (Px(j)))M

2
i (Py(j)) = Enc(M1

i (Px(j))⇤M2
i (Py(j))) = Enc(Mi(Px(j),Py(j)))

for i = 1, 2 and 1 j 20. Now the verification proceeds as above where both Party 1 and

Party 2 will open the shares chosen in the cut-and-choose protocol.

E�cient Robustness. Although the technique described above is su�cient to ensure

that the parties behave honestly, it causes a huge blow-up in the number of required shares.

This is because in order to reconstruct the zero coe�cient of a polynomial of degree deg,

we must have at least deg + 1 secret shares. Thus, when evaluating a polynomial such as

Q = x2
n

, we would require an exponential number of shares. To prevent this blow-up, we

utilize an input preprocessing step (described in Section ??).

Secure output reconstruction. Finally, we use an additive homomorphic encryption

scheme with a threshold decryption algorithm to ensure that no subset of the parties can

decrypt any of the intermediate messages exchanged between the parties in the protocol.

The threshold decryption is needed in the case that more than one party contributes its

inputs to the polynomial (and is actually not necessary in our example above). Although any

additive homomorphic threshold encryption scheme (with one additional natural property,

which we describe later) would su�ce for the correctness of our protocol, the only such

schemes that we are aware of are the El Gamal threshold encryption scheme [Gennaro et

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 68

al., 2007] and the Paillier threshold encryption scheme [Fouque et al., 2001]. Additive El

Gamal does not allow e�cient decryption over a large domain (field), but it su�ces for our

Set Intersection applications. We use the Paillier threshold encryption scheme (over a ring)

to instantiate our general polynomial evaluation protocols. To obtain the final output, the

designated party receiving output decrypts reconstructs the encryption of the final output

value using Lagrange interpolation over encrypted values and decrypts with the help of the

other parties.

4.3 Definitions and Techniques

4.3.1 Definitions

We use a standard simulation-based definition of security see [Canetti, 2000b], and follow

the definitions of zero knowledge proofs of knowledge and commitment schemes presented

in [Goldreich, 2005]. We denote by ComB a perfectly binding commitment scheme and by

ComH a perfectly hiding commitment scheme.

Lagrange interpolation allows reconstruction of a polynomial of degree d given d + 1

evaluation points in the following way:

Definition 4. Let (x
0

, y
0

), . . . (xd, yd) be d+1 evaluation point of a polynomial of degree d.

We can reconstruct the evaluation L(x) of the polynomial at point x as Lx
0

,...,x
d

(y
0

, . . . , yd, x) =
Pd

j=0

yjlj(x)

using the Langrange basis polynomials lj(x0, . . . , xd, x) =
Qd

i=0,i 6=j
x�x

i

x
j

�x
i

for 0 j d.

In most cases where we will use Lagrange interpolation the points x
0

, . . . , xd will be

1, . . . , d and we will omit them and use the notation L(y
0

, . . . , yd, x) and lj(x).

We utilize the following notation for Shamir’s secret sharing scheme [Shamir, 1979],

which can also be viewed as a Reed-Solomon encoding of x:

Definition 5. Let R be a ring and let x 2 R. Let Px 2 R[x] be a random polynomial of

degree t (threshold decryption parameter) such that Px(0) = x, let z
1

, . . . , zk be points dif-

ferent from 0. Then we say that the values Px(z1), . . . , Px(zk), are shares of x. We say that

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 69

x is reconstructed from the k shares Px(z1), . . . , Px(zk) for k > t when the value x = Px(0)

is computed via Lagrange interpolation, which we denote by Lz
1

,...,z
k

(Px(z1), . . . , Px(zk), 0).

We require threshold additive homomorphic encryption scheme with the following addi-

tional property, capturing the fact that the homomorphism applies also to the randomness.

Property 1 (Vector Homomorphic Encryption). Let E = (Gen,Enc,Dec) be an encryption

scheme where the plaintexts come from a ring R
1

with operations (+, ·), the randomness

comes from a ring R
2

with operations (�,�), and the ciphertexts come from a ring R
3

with

operations (⌦,ˆ). We say that E is vector homomorphic if the following holds: Enc(m1; r1)⌦
Enc(m2; r2) = Enc(m1 +m2; r1 � r2) and Enc(m; r)c = Enc(c ·m; r � c).

Such a property is satisfied by most known homomorphic encryption schemes, such

as Paillier [Paillier, 1999] and threshold Paillier [Fouque et al., 2001], ElGamal [ElGamal,

1985], and Goldwasser-Micali [Goldwasser and Micali, 1982] encryption schemes. In the case

of Paillier encryption, which we will use in our protocols, we have the following operations:

addition (+); multiplication (·, �, ⌦); exponentiation (�, ˆ).

4.3.2 Techniques

In this section we describe the main techniques that we employ in our protocols.

4.3.2.1 Polynomial Code Commutativity.

Shamir secret sharing/Reed-Solomon codes are commutative with respect to polynomial

evaluations, which we formalize as follows:

Property 2 (Polynomial Code Commutativity). Let Q(x
1

, . . . , xm) be a multivariate poly-

nomial, t be the threshold for Shamir secret-sharing and L be the secret reconstruction

algorithm for Shamir secret-sharing. The evaluation of Q commutes with L in the sense

that we can compute the value Q(x
1

, . . . , xm) with either of the following algorithms starting

from shares of the inputs x
1

, . . . , xm:

(Q ⇤ L)(Px
1

(1), . . . Px
1

(t+ 1), . . . Px
m

(1), . . . Px
m

(t+ 1), 0) =

= Q((L(Px
1

(1), . . . Px
1

(t+ 1), 0), . . . , L(Px
m

(1), . . . Px
m

(t+ 1), 0))) = Q(x
1

, . . . xm),

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 70

where we first use L to retrieve the secrets and then evaluate Q on those secrets and

(L ⇤Q)(Px
1

(1), . . . Px
1

(t+ 1), . . . Px
m

(1), . . . Px
m

(t+ 1), 0) =

= L(Q(Px
1

(1), . . . , Px
m

(1)), . . . ,Q(Px
1

(t+ 1), . . . , Px
m

(t+ 1)), 0) =

= L(w
1

, . . . , wt+1

, 0) = Q(x
1

, . . . xm),

where we evaluate Q on each set of shares of x
1

, . . . , xm to obtain shares of Q(x
1

, . . . , xm)

and then use L to reconstruct the final secret.

The above property allows us to evaluate Q in parallel on shares of the inputs to yield

shares of the output.

4.3.2.2 Incremental Encrypted Polynomial Evaluation.

We will use homomorphic encryption to allow multiple parties to evaluate a multivariate

polynomial depending on their inputs by incrementally contributing their inputs to partial

encrypted evaluations of its monomials. This is facilitated by the following property:

Property 3 (Incremental Encrypted Polynomial Evaluation). Let m be the number of

parties evaluating a multivariate polynomial Q defined by

Q(x
1,1, . . . , x

1,l
1

, . . . , xm,1, . . . , xm,l
m

) =
nX

s=1

cs(
mY

j=1

hj,s(xj,1, . . . , xj,l
j

)),

where hj,s represents the inputs of party j to the s-th monomial of Q. Let E = (Gen,Enc,Dec)

be an additive homomorphic encryption. We define the partial evaluations bj,s (including

the contributions of parties 1,. . . , j) of the monomials s, 1 s n of Q as follows:

b
0,s = Enc(cj) for 1 j n, and bj,s = b

h
j,s

(x
j,1

,...,x
j,l

j

)

j�1,s for 1 j m

Polynomial Interpolation Over Encrypted Values In Figure 4.1 We present a

protocol that allows a verifier to verify (without help from the prover) that the prover’s

encrypted points lie on a polynomial of low degree, assuming the prover constructed the

encryptions in a predetermined manner. Recall that Lagrange interpolation allows us, given

d+1 points, to reconstruct the polynomial of degree d that interpolates the given points. In

the following, we use the fact that Lagrange interpolation can, in fact, be carried out over

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 71

encrypted points when the known encryption used possesses the vector homomorphic Prop-

erty 1. Since the encryption is over a ring we use Feldman’s technique for shift interpolation

by factorial [Feldman, 1987].

Lagrange Interpolation Protocol Over Encrypted Values (LIPEV)

Input: (1,Encpk(y1, r1)), . . . (A,Encpk(yA, rA)), d where d+ 1 < A,

Output: Verifier outputs Accept if there are polynomials P
1

2 R
1

[x], P
2

2 R
2

[x] of degree

at most d such that yj = P
1

(j) for 1 j A and rj = P
2

(j) (P
1

and P
2

are defined with

respect to the operations in the respective rings) for 1 j A.

Protocol:

1. Let � = A!.

2. Let lj(x) = � ·Qd+1

i=1,i 6=j
x�i
j�i for 1 j d+ 1.

3. Verifier checks whether Encpk(yi, ri)� =
Qd+1

j=1 (Encpk(yj, rj))
lj(i), and rejects otherwise.

Figure 4.1: Encrypted Interpolation

Using the LIPEV protocol, a prover can prove to a verifier that A encrypted points

lie on one polynomial of degree d, provided that the randomness for the encryptions was

chosen in a specific way; namely, the random values chosen must also lie on a polynomial of

degree d. For completeness, we describe in Figure 4.2 how to compute the random values

for the encryptions so that they lie on a polynomial P
2

2 R
2

[x] of degree d. We note that

even though the randomness for all A encrypted points are not chosen uniformly at random,

semantic security is still preserved since the randomness for d + 1 of the points is chosen

uniformly at random and the remaining A� d� 1 encryptions can be computed given only

the first d+ 1 encryptions due to Property 1.

4.4 Building Block Protocols

In this section we introduce several subprotocols that we will use in our main construction.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 72

Generation of Encryption Randomness for Shamir Shares

Input: (1, y
1

), . . . , (A, yA), r1, . . . , rd+1

for d+ 1 < A

Output: r�d+2

, . . . , r�A such that the Lagrange Interpolation Protocol Over Encrypted Values

outputs accept on the input: [i,Encpk(yi, ri)�]1iA, d.

Protocol:

• Compute lj(x) = �
Qd+1

i=0,i 6=j
x�i
j�i for 1 j d+ 1.

• Compute r�i =
Qd+1

j=0

(rj)lj(i) for d+ 2 i A.

Figure 4.2: Interpolation Randomness

4.4.1 Multiparty Homomorphic Encryption Proof of Knowledge and Plain-

text Verification (HEPKPV)

In several places in our main protocol we would need to enable a party to prove statements

to the other participants in the computation about plaintext values given the encryptions

of their shares. For this purpose we introduce a protocol multiparty homomorphic encryp-

tion proof of knowledge and verification that allows a prover to show that the plaintexts

underlying a set of homomorphic encryptions belong to a particular language.

To illustrate the main idea for the proof in this protocol we consider the example where

a prover (P) needs to prove to a verifier (V) that a ciphertext c = Enc(0; r) encrypts zero.

In this case the two parties execute the following protocol:

• Prover sends to Verifier c0 = Enc(0; r0).

• Verifier sends to Prover b 2 {0, 1}.

• If b = 0, Prover reveals r0 and Verifier checks that c0 = Enc(0; r0).

• If b = 1, Prover reveals r · r0 and Verifier checks that c · c0 = Enc(0; r · r0).

In the following full protocol we boost the soundness of the above proof from 1/2 to

1�negl with a polynomial number of parallel executions. To provide security for the parallel

executions we utilize the modification of [Goldwasser and Micali, 1982] which requires the

verifier to first commit to its challenge and extend this modified protocol to the multiparty

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 73

setting. We use the fact that a slight variation of the above protocol can be used to prove

that the plaintexts belong to any language that is closed under addition/subtraction to be

able to instantiate the protocols with any of the following languages:

• Description: Language consisting of a vector of encryptions of val:

Lu
val = {[c

0,j]1ju | for 1 j u, c
0,j = Encpk(val; r) for some r}

• Description: Language consisting of a vector of pairs of encryptions that encrypt the

same value.

Lu
=

= {[c0
0,j , c

1

0,j]1ju | for 1 j u, c0
0,j = Encpk(m0; r0) and

c1
0,j = Encpk(m1; r1) and m0 = m1 for some r0, r1}

We note that this language will be used subsequently with pairs of the form (c0
0,j , c

1

0,j)

such that c0
0,j and c1

0,j have been interpolated from encrypted shares of polynomials

of degree k and 2k respectively.

Lemma 8. Assume that E = (Gen,Enc,Dec) is a CPA-secure Vector Homomorphic en-

cryption scheme. Then protocol ⇧POK presented in Figure 4.3 is a zero knowledge proof of

knowledge for L.

See Appendix B.1 for the proof of the lemma.

4.4.2 Multiparty Coin Tossing

Following ideas from [Lindell, 2001; Barak and Lindell, 2002] and using the HEPKPV

protocol as an e�cient zero knowledge proof we present a protocol that implements constant

round multiparty coin tossing in Figure 4.4. The goal of the protocol is to allow s parties

T
1

, . . . , Ts to jointly compute a random number in the interval [1,max]. We assume the

existence of broadcast channel that the parties use for communication. All parties know a

homomorphic encryption scheme E = (Gen,Enc,Dec).

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 74

Homomorphic Encryption Proof of Knowledge and Proof of Verification

Input:

P
1

 C = (pk, c
1

, . . . , cu), (x
1

, . . . xu), (r
1

, . . . , ru), k, L where ci = Encpk(xi; ri) for

1 i u;

P
2

, . . . Ps C = (pk, c
1

, . . . , cu), L

Output:

P
2

, . . . Ps output ACCEPT if (c
1

, . . . , cu) 2 L, and REJECT otherwise.

Protocol:

1. For 1 i k, P
1

computes random encryptions (ci1, . . . , ciu) =

(Encpk(ei1, ri1), . . . ,Encpk(eiu, riu)) such that (ci1 . . . , ciu) 2 L. for 1 i k and

sends them on the broadcast channel.

2. For 2 j s Pj chooses a sequence of k bits bj1 . . . bjk and sends a commitment to

those bits: ComH(bj1 . . . bjk) on the broadcast channel.

3. P
1

chooses a sequence of k bits b
11

. . . b
1k and sends them on the broadcast channel.

4. For 2 j s Pj decommits the value bj1 . . . bjk.

5. All parties verify that the decommitted values correspond to the commitments that

were sent earlier and if the check fails abort.

6. The parties compute b
1

. . . bk = �s
j=1

(bj1 . . . bjk) and for each 1 i k:

(a) if bi = 0, P
1

sends to on the broadcast channel M = ((ei1, ri1), . . . , (eiu, riu)).

(b) if bi = 1, P
1

sends on the broadcast channel M = ((x
1

+ ei1, r1ri1), . . . , (x` +

eiu, r`riu)).

7. For each 1 i k:

(a) if bi = 0 each party Pj for 2 j s verifies that (ci1, . . . , ciu) =

(Encpk(ei1, ri1), · · · ,Encpk(xiu, riu)) and (ci1, . . . , ciu) 2 L. If the verification fails

the protocol aborts.

(b) if bi = 1 each party Pj for 2 j s verifies that (c
1

ci1, . . . , cuciu) =

(Encpk(x1+ ei1, r1ri1), · · · ,Encpk(xu+ eiu, ruriu)) and that (c
1

ci1, . . . , cuciu) 2 L. If

the verification fails the protocol aborts.

8. If any of the verifications steps of P
1

fail, abort the protocol. Otherwise, accept.

Figure 4.3: HEPKPV

Lemma 9. If E = (Gen,Enc,Dec) is semantically secure homomorphic encryption scheme,

the protocol ⇧coin presented in Figure 4.4 is a secure multiparty protocol when there is at

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 75

Multiparty Coin Tossing

Input: E = (Gen,Enc,Dec), max, k

Output: R

Protocol:

1. For each 1 i s party Ti runs Gen to obtain a pair of public and private keys

(pki, ski).

2. For each 1 i s party Ti chooses a random Ri 2 [0,max] and commits to it

sending Ci = Encpki(Ri, ri) to all other parties on the broadcast channel, where ri is the

randomness used for encryption.

3. For each 1 i s� 1 party Ti sends the value Ri on the broadcast channel.

4. All parties run in parallel s executions of the multiparty HEPKPV protocol. In the

j-th execution for 1 i s party Tj proves that Cj 2 L1

Rj
, i.e. Cj is an encryption of

Rj .

5. Party Ts computes R = �s
i=1

Ri and runs the multiparty HEPKPV protocol to prove

that Cs 2 L1

R�R0 , i.e. R = R0 + Rs where Cs was the commitment of Rs and R0 =

�s�1

i=1

Ri.

Figure 4.4: Choosing Joint Randomness

least one honest party.

See Appendix B.2 for the proof of the lemma.

4.4.3 Input Preprocessing and Verification

One of the ideas that we employ in our main protocol is to share function evaluation by

secret sharing the arguments of the function via polynomials of degree k and evaluating

the function on the corresponding shares in order to obtain shares of the final value of the

function. The above can be implemented straightforwardly using Shamir’s secret sharing

([Shamir, 1979]) and evaluating the polynomial on corresponding shares. The problem with

this approach is that if the degree of the output function is Deg, then we require at least

k ·Deg shares to reconstruct the output value. We avoid this blow-up in number of required

shares by applying the following transformation on the inputs.

We consider a multivariate polynomial Q(x
1

, . . . , x`) over the input set X = {x
1

, . . . , x`}
which we would like to evaluate on shares of the input variables in order to obtain shares

of the output value. Since the number of output shares that we will need to compute will

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 76

depend on the degree of Q and the degrees of the sharing polynomials Px
i

that we use

to share each of the input variable, we employ techniques that allow us to decrease the

degree of the final polynomial [Dachman-Soled et al., 2009]. The main idea is to introduce

new variables that represent higher degrees of the current variables. For each variable xi

that has maximum degree di in Q we substitute each power x2
j

i with a new variable for

0 j blog dic. Note that if we view the original polynomial Q as a polynomial over

these new variables, we have that each variable has degree at most one. Let Mt be the t-th

monomial in Q and let dM
t

,i 2 Mt be the degrees of the variables in monomial Mt. Thus,

the original degree of Q was maxt{
P

i2M
t

dM
t

,i}, whereas the degree of the transformed

polynomial over the new variables is only maxt{
P

i2M
t

log dM
t

,i}. In our protocol, each

party will pre-process its inputs to compute its new input variables and their shares and

will prove that the new shares are consistent with the initial inputs.

We realize the above functionality through two protocols: E�cient Preprocessing of

Input, presented in Figure 4.5, which starts with the input variables of a party and produces

commitments to shares of the new variables computed according to the above intuition, and

Preprocessing Verification, presented in Figure 4.6, that takes the commitments from the

e�cient preprocessing and verifies their correctness by opening and verifying the committed

values in a random subset of those. For the purposes of these protocols let J be the ordered

set of all elements of {0, 1}10kD that contain exactly k ones. Note that given R, an index of a

string in the set J , we can e�ciently reconstruct the R-th string, jR. Let JR = {i|jR[i] = 1},
where jR[i] denotes the i-th position of the string jR.

Claim 1. Assume R was chosen randomly after T committed to its inputs through the

E�cient Preprocessing protocol. If the parties run the Preprocessing Verification protocol

and do not abort, then with all but negligible probability, the committed input shares of T

are valid encryptions of k + 1-sharing polynomials of the inputs x`, x2` , . . . , x
2

blogd
`

c
` .

See Appendix B.3 for the proof of the claim.

Lemma 10. For all sets X
1

, X
2

where |X
1

| = |X
2

| = poly(k), we have that the output

distributions of the Verifier in consecutive executions of the E�cient Preprocessing protocol

and Preprocessing Verification protocol with inputs X
1

and X
2

(respectively) are computa-

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 77

E�cient Input Preprocessing

Let k be a security parameter and 10kD be the number of required shares. Let T be one of

the parties with input set X of size |X|. For each input xj 2 X, we assume that the highest

power of xj required is x2

↵j

j .

1. For each xj 2 X, T chooses a random polynomial Pxj of degree k such that Pxj (0) =

xj , and computes shares of the form Pxj (i) for 1 i 10kD. T chooses randomly

values rj,1, . . . , rj,k+1

and computes according to the Randomness generation protocol

the values r�j,k+2

, . . . r�j,10kD. T computes the encryptions Enc(Pxj(i), rj,i)
�.

2. For each xj , for ` = 0 to ↵j , for i = 1 to 10kD, T chooses randomly values

rj,`,1, . . . , rj,`,k+1

and r0j,`,1, . . . , r
0
j,`,k+1

and computes according to the Randomness

generation protocol the values r�j,`,k+2

, . . . r�j,`,10kD and (r0j,`,k+2

)�, . . . (r0j,`,10kD)�. S

computes the following:

• Local Computation on Shares: a polynomial P 2

x2

`
j

of degree 2k such that

P 2

x2

`
j

(i) = (P
x2

`
j
(i))2

• Degree Reduction Step: a random polynomial P
x2

`+1

j
of degree k such that

P
x2

`+1

j
(0) = P 2

x2

`
j

(0).

3. For each xj , for ` = 0 to ↵j , for i = 1 to 10kD, T computes the following commitments:

• New input shares: Encpk(Px2
`+1

j
(i), rj,`,i)� = Encpk(� · P

x2
`+1

j
(i), r�j,`,i) and

• Intermediate shares: Encpk(P2

x2
`

j

(i), r0j,`,i)
� = Encpk(� · P2

x2
`

j

(i), (r0j,`,i)
�)

where the randomness r�j,`,i and (r0j,`,i)
� are chosen using the Randomness generation

protocol and sends them on the broadcast channel.

Figure 4.5: Input Preprocessing

tionally indistinguishable.

See Appendix B.3 for the proof of the lemma.

4.5 Main Protocol

The multiparty polynomial evaluation has the following setup:

• Each party Tj has lj inputs Xj = {xj,1, . . . , xj,l
j

} for 1 j m.

• A polynomial Q(x
1,1, . . . , x

1,l
1

, . . . , xm,1, . . . , xm,l
m

), which depends on the inputs of

all parties.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 78

Input Preprocessing Verification

Common Inputs:

Commitments: Encpk(Px2
`+1

j
(i), rj,`,i)�, Encpk(P2

x2
`

j

(i), r0j,`,i)
� for 1 j s, 0 ` ↵j , 1

i 10kD

A number number R 2 [|J |] chosen by all parties using the Coin-Tossing protocol after

T committed to its inputs.

Private Inputs of T: Decommitments to the above values.

Protocol:

1. For all i 2 JR, 1 j s, 0 ` ↵j , 1 i 10kD S opens the com-

mitment Encpk(Px2
`+1

j
(i), rj,`,i)� and Encpk(P2

x2
`

j

(i), r0j,`,i)
� sending to the other parties

P
x2

`+1

j
(i), rj,`,i and P 2

x2

`
j

(i), r0j,`,i. All parties verify the committed encryptions.

2. For all i 2 JR, 1 j s, 0 ` ↵j , 1 i 10kD all parties check that P 2

x2

`
j

(i) =

(P
x2

`
j
(i))2.

3. For each 1 j s the parties run the LIPEV protocol to interpolate the values

c0,j
0,` from the shares c0,ji,` = (� · P

x2

`+1

j
(i), r�j,`,i) and c1,j

0,` from the shares c1,ji,` = (� ·
P 2

x2

`
j

(i), (r0j,`,i)
�) and to check that the shares indeed lie on polynomials of degree k

and 2k, respectively, for 1 i 10kD and then HEPKPV for the language L
↵j
=

=

{[c0,j
0,` , c

1,j
0,`]0`↵j}.

Figure 4.6: Preprocessing Verification

• A public parameter � = 10kD! and a security parameter k.

We use the following representation of the polynomial Q:

Q(x
1,1, . . . , x

1,l
1

, . . . , xm,1, . . . , xm,l
m

) =
nX

s=1

csx
↵
1,1,s

1,1 . . . x
↵
1,l

1

,s

1,l
1

. . . x
↵
m,1,s

m,1 . . . x
↵
m,l

m

,s

m,l
m

where ↵j,v,s = 0 if xj,v does not participate in the s-th monomial of Q and cs values are

known coe�cients. We define hj,s(xj,1, . . . , xj,l
j

) = x
↵
j,1,s

j,1 x
↵
j,2,s

j,2 . . . x
↵
j,l

j

,s

j,l
j

for 1 j m,

1 s n. Thus

P(x
1,1, . . . , x

1,l
1

, . . . , xm,1, . . . , xm,l
m

) =
nX

s=1

cs(
mY

j=1

hj,s).

Alternatively, we view hj,s for 1 j m, 1 s n in the following way:

hj,s(xj,1, x
2

j,1, . . . , x
2

blog↵

j,1,s

c

j,1 , . . . , xj,l
j

, x2j,l
j

, . . . , x2
blog↵

j,l

j

,s

c

j,l
j

)

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 79

in which each variable is of degree at most one.

A designated party receives the output of the polynomial evaluation while all other

parties learn nothing. We denote the designated output receiver by T ⇤. For 1 s n,

let Dh,s =
Pm

j=1

deg(hj,s) and for 1 j m, let Dh,j,s = k
Pj

v=1

deg(hv,s), where hj,s is

defined as above as a polynomials with variables of degree at most 1. Let D = maxns=1

Dh,s.

Protocol Intuition. The protocol consists of four phases: Input Preprocessing, Round-

Table Step, Re-randomization, Verification and Reconstruction. During the Input Prepro-

cessing phase, each party commits to shares of its inputs via the E�cient Preprocessing

protocol. In the Round Table Step the parties compute the encrypted evaluations of the

monomials in Q in a round-table fashion. Next, in the Re-Randomization phase, each party

helps re-randomize the output shares. Honest behavior of the parties is checked during the

Verification step via cut-and-choose. If the verification passes, the parties jointly decrypt

the output shares and the output receiver reconstructs the final polynomial evaluation re-

sult in the Reconstruction phase. We now present the detailed protocol and state our main

theorem 2. In the following, let E = (Gen,Enc,Dec) be a threshold encryption scheme that

possesses Property 1.

4.5.1 Security analysis

We state the security guarantees of the multivariate polynomial evaluation protocol pre-

sented in Section 4.5 in following theorem:

Theorem 6. If the Decisional Composite Residuosity problem is hard in Z⇤
n2

, where n is

a product of two strong primes, and protocol ⇧poly eval is instantiated with the threshold

Paillier encryption scheme TPm
enc such that E = TPm

enc, then ⇧poly eval securely computes

the Polynomial Evaluation functionality in the presence of malicious adversaries.

2We note that for each intermediate monomial h
j,s

passed between the parties in the round-table step,

each Party j needs to transmit only D

h,j,s

+ 1 shares to Party j + 1 since the rest of the shares may

be constructed by the receiving party via Lagrange interpolation over committed values. This may yield

significant savings in the communication complexity, which we assumed in our discussion in the introduction.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 80

Multiparty Polynomial Evaluation Protocol ⇧poly eval

Input: T
1

 {X
1

, pk, sk
1

, k,Q}, . . . , Tm {Xm, pk, skm, k,Q}
Output: T ⇤ ! Q(x

1,1, . . . , x1,l
1

, . . . , xm,1, . . . , xm,lm), {T
1

, . . . , Tm}\T ⇤ !?
Protocol:

Input Preprocessing:

1. For 1 j m, 1 s n Party Tj converts each hj,s from a function over

xj,1, . . . , xj,lj to a function in which each variable is of degree at most one:

hj,s(xj,1, x
2

j,1, . . . , x
2

blog ↵j,1,sc

j,1 , . . . , xj,lj , x
2

j,lj , . . . , x
2

blog ↵j,lj ,s
c

j,lj)

Let Dh,j,s = k
Pj

v=1

deg(hv,s).

2. For 1 j m, Party Tj runs the E�cient Input Preprocessing protocol to generate

10kD shares for each of its new inputs

xj,1, x
2

j,1, . . . , x
2

blog ↵j,1c

j,1 , . . . , xj,lj , x
2

j,lj , . . . , x
2

blog ↵j,lj
c

j,lj

where ↵j,t = maxni=1

↵j,t,i for 1 t lj and commits to these shares.

Round-Table Step:

3. For 1 s n party T
1

encrypts the polynomial coe�cients b
0,i = Encpk(cs; 1).

4. For 1 s n, T
1

generates 10kD numbers that will be used for the encryptions of

his shares as follows:

(a) Generate Dh,1,s + 1 random values r1,s
1

, . . . , r1,sDh,1,s+1

.

(b) Run the protocol for Generation for Encryption Randomness for Shamir

Shares with inputs (1, 0), . . . , (10kD, 0), rj,s
1

, . . . , rj,sDh,1,s+1

to compute

(rj,sDh,1,s+2

)�, . . . , (rj,s
10kD)�.

5. For 1 i 10kD, 1 s n T
1

uses the values r1,si from the previous step to

compute b
1,s,i = b

�·h
1,s(i)

0,j · Encpk(0; r1i)�, where

h
1,s(i) = h

1,s

�
Px

1,1(i), . . . , Px2

blog ↵
1,1,jc

1,1

(i), . . . , Px
1,l

1

(i), . . . , P
x2

blog ↵
1,l

1

,sc
1,l

1

(i)
�

and sends b
1,s,i to party T

2

.

6. For each 2 j m:

(a) Tj receives from Tj�1

coe�cients bj�1,1,i, . . . , bj�1,n,i for 1 i 10kD.

Figure 4.7: Polynomial Evaluation

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 81

6. (b) For 1 s n, Tj generates 10kD numbers that will be used for the encryptions

of his shares as follows:

i. Generate Dh,j,s + 1 random numbers rj,s
1

, . . . , rj,sDh,j,s+1

.

ii. Run the protocol for Generation for Encryption Randomness for Shamir

Shares with inputs (1, 0), . . . , (10kD, 0), rj,s
1

, . . . , rj,sDh,j,s+1

to compute

(rj,sDh,j,s+2

)�, . . . , (rj,s
10kD)�.

7. (a) For 1 s n Tj uses the values rj,si from the previous step to compute

bj,s,i = b
�·hj,s(i)
j�1,s,i · Encpk(0; rj,si)� where

hj,s(i) = hj,s(Pxj,1(i), . . . , Px2

blog ↵j,1c
j,1

(i), . . . , Pxj,lj
(i), . . . , P

x2

blog ↵j,lj
c

j,lj

(i))

and hj,s(i) denotes evaluation of hj,s on the i-th shares of its inputs .

(b) If j < m, Tj sends all bj,s,i to Pj+1

.

(c) If j = m, for each 1 i 10kD Tm computes S0
i = ⇧n

s=1

bm,s,i and sends them

to all parties on the broadcast channel.

Re-Randomization Step:

8. For 1 j m, Party Tj computes polynomial Pj,0 of degrees kD such that Pj,0(0) =

0.

9. For 1 j m, Party Tj generates 10kD values that it will used for share encryptions

as follows:

(a) Generate kD + 1 random values rj,1, . . . , rj,kD+1

.

(b) the protocol for Generation for Encryption Randomness for Shamir Shares

with inputs (1, Pj,0(1)), . . . , (10kD, Pj,0(10kD)), rj,1, . . . , rj,kD+1

to compute

r�j,kD+2

, . . . , r�j,10kD.

10. Tj uses the rj,i values computed in the previous step to commit to shares Zj,0 =

Encpk(Pj,0(i); rj,i)� for 1 i 10kD

11. All parties run the LIPEV and HEPKPV protocols in parallel to ensure that each

vector [Zj,i]1i10kD is an encryption of a polynomial with constant coe�cient 0.

12. The final encryptions are calculated as Si = S0
i ·⇧m

j=1

Zj,0 for 1 i 10kD.

Verification:

13. All parties verify independently using the LIPEV protocol that the encryptions Si

lie on a polynomial of degree kD. Otherwise reject.

Figure 4.8: Polynomial Evaluation Continued

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 82

14. All parties run a multi-party coin-tossing protocol (Figure 4.4) to choose a random

subset I of size k from [1, 10kD].

15. For each i 2 I parties T
1

, . . . , Tm decommit their corresponding shares from the

E�cient Input Preprocessing.

16. All parties run the Preprocessing Verification for their inputs.

17. For each i 2 I each party Tj decommits the i-th shares of its inputs as well as the

i-th share of the polynomials Pj,0. Additionally, each party Tj reveals the randomness

rj,si for 1 s n and rj,i used for the corresponding shares. To verify, each party

recomputes the entire share S⇤
i , using the inputs and randomness revealed and checks

that Si = S⇤
i . If any verification fails the protocol is aborted.

Reconstruction:

18. For each 1 i 10kD each party computes its partial decryption si,j of Si and sends

it to the designated output receiver T ⇤.

19. Party T ⇤ uses the partial decryptions si,j for 1 j m received in

the previous step to completely decrypt Si. T ⇤ reconstructs the value of

Q(x
1,1, . . . , x1,l

1

, . . . , xm,1, . . . , xm,lm) using interpolation and division by �m.

Figure 4.9: Polynomial Evaluation Continued

Proof. The correctness of the protocol in the case that all parties are honest follows from

Property 2, Property 3, and the correctness of the building-block protocols.

Proof Intuition. We start with a sketch that gives the intuition of the proof of security

for the protocol. Assume there is a fixed set B, |B| m, chosen at the outset of the protocol

and that a non-uniform probabilistic polynomial-time real adversary AB controls the parties

Tj such that j 2 B. We construct a non-uniform probabilistic expected polynomial-time

ideal model adversary simulator SB.

The idea behind how SB works is that it extracts the inputs of the parties Tj such

that j 2 B. using the extractor for the HEPKPV protocol. Additionally, SB simulates

the messages of the honest parties Ti, for i 2 [m] \ B using dummy inputs and outputs.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 83

When proving knowledge and validity of the parties’ inputs, SB uses the simulator for the

HEPKPV protocol. At the outset of the protocol, SB chooses a random subset I 0 of size

k such that I 0 ⇢ [10kD]. When committing to the secret-sharing of the honest parties, it

places random values in the positions indexed by I 0. SB computes correctly all calculations

that will be verified in the cut-and-choose step for elements in the subset I 0. Then, SC

uses the simulator for the Coin-Tossing protocol to guarantee that the outcome of the Coin-

Tossing is I = I 0. After the cut-and-choose step and all verifications have executed without

aborting, the simulator calls the Trusted Party with the inputs it has previously extracted

and receives the final output of the protocol. Note that the Simulator has the secret keys

of the malicious parties and thus is able to find out their partial decryption of the dummy

ciphertext. To ensure that the final output sent to party receiving output is correct, the

Simulator uses the share reconstruction protocol for threshold Paillier [Fouque et al., 2001]

to reconstruct shares for the honest parties so that the final reconstructed decryption is

equal to the output of the trusted party. SB uses the simulator for the threshold decryption

scheme to simulate the proof that the shares of the honest parties were decrypted correctly.

Intuitively, because the Simulator is able to choose the set I = I 0 ahead of time, he

can run the protocol using the challenge ciphertext from a CPA-IND experiment as the

constant coe�cient of the shared inputs of all uncorrupted parties, thereby reducing in-

distinguishability of the views to the semantic security of the encryption scheme TPm
enc.

Therefore, we have that AB’s view is indistinguishable in the Ideal Model when interacting

with a Simulator that chooses all 0 values as the constant coe�cients of the shared inputs

of the uncorrupted parties and its view in the Real model when each uncorrupted party

uses its actual input. This is due to the information-theoretic secrecy of the secret-sharing

scheme and the semantic security of the encryption scheme. The detailed descriptions if the

simulators and the distinguishability of the views are given in the full version of the paper.

Full Proof. We now describe in detail the Simulator SB

• SB chooses a random subset I 0 ⇢ [10kD] of size k, I 0 = {j
1

, . . . , jk}.

• For each of the corrupt parties, Tj for j 2 B, SB extracts the input of party Tj using

the extractor for the HEPKPV protocol.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 84

• E�cient Preprocessing: For each of the Honest Parties, Tj for j /2 B, SB simulates

the e�cient preprocessing step as described below.

1. SB chooses a random value ri,v,w and sets P
x2

i

j,v

(w) = ri,v,w for 1 v lj , 0
i ↵j,v, w 2 I 0. SB computes a random encryption Encpk(Px2

i
j,v

(w)).

2. SB chooses a random subset M ✓ [10kD] \ I 0 of size k.

3. SB sets P
x2

i

j,v

(0) = 0 for 1 v lj , 0 i ↵j,v and computes a random indexed

encryption (0,Encpk(Px2
i

j,v

(0))).

4. SB uses Lagrange interpolation over encrypted values and the above encryptions

to compute the indexed encryptions (w,Encpk(Px2
i

j,v

(w))�) for 1 v lj , 0 i
↵j,v, w 2 [10kD].

5. SB sets P 2

x2

i

j,v

(w) = (P
x2

i

j,v

(w))2 for 1 v lj , 0 i Dx
j,v

� 1, w 2 I 0 and

computes a random indexed encryption (w,Encpk((Px2
i

j,v

(w))2)).

6. SB sets P 2

x2

i

j,v

(w) = 0 for 1 v lj , 0 i ↵j,v�1, w = 0, w 2M and computes

a random indexed encryption (w,Encpk((Px2
i

j,v

(w))2)).

7. SB uses Lagrange interpolation over encrypted values and the above encryptions

to compute the indexed encryptions (w,Encpk((Px2
i

j,v

(w))2)�) for 1 v lj , 0
i ↵j,v, w 2 [10kD].

8. SB broadcasts the encryptions computed above.

• Round-Table Step: For each of the Honest Parties, Tj for j /2 B, SB simulates the

round-table step as described below:

1. For 1 s n, i 2 I 0, SB computes the indexed encryption (i, b0j,s,i) = (i, b
h
j,s

(i)
j�1,s,i ·

Encpk(0; r
j,s
i)) honestly using the values committed above and a randomly chosen

rj,si .

2. For 1 s n, SB chooses a set Ns ✓ [10kD] \ I 0 of size Dh,j,s � k.

3. For each s, 1 s n, SB computes the random indexed encryptions (i,Encpk(0))

for i = 0, i 2 Ns.

4. For 1 s n, SB uses Lagrange interpolation over encrypted values and the

above encryptions to compute (i, (b0j,s,i)
�) = (i, bj,s,i) for i 2 [10kD].

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 85

• For each of the Honest Parties, Tj for j /2 B, SB follows steps 5(d) and 5(e) of the

protocol.

• Re-Randomization Step: For each of the Honest Parties, SB chooses the encrypted

shares of Pj,0 in the following way:

1. For all but one of the honest parties: SB chooses the random indexed encryptions

of 0, (i,Encpk(0)) for 1 i kD + 1.

2. SB uses Lagrange interpolation over encrypted values to compute the rest of the

indexed encryptions (raised to �).

3. For the final honest party Ph: SB chooses a random degree kD polynomial P 0
h,0

and computes the following random indexed encryptions: Ei = (i,Encpk(P0
h,0(i)))

for 1 i kD + 1.

4. SB uses Lagrange interpolation over encrypted values to compute the rest of the

indexed encryptions (raised to �).

5. For 1 i 10kD, SB calculates the shares Ei ·S0
i and uses these as the encrypted

shares of Ph,0.

6. SB uses the HEPKPV protocol to prove that all the 0-shares were computed

correctly.

• SB plays the role of the honest parties as specified in steps 10, 11 of the protocol.

• Verification:

1. SB simulates a run of the Coin-Tossing protocol to ensure the outcome is the set

I 0 using the simulator for the Coin-Tossing protocol.

2. SB plays the role of the honest parties as specified in steps 14, 15, 16.

• Reconstruction:

1. If all the corrupt parties pass the cut-and-choose step, SB queries the Trusted

Party with the previously extracted inputs and receives back Out.

2. SB now shares Out via a random degree kD polynomial POut such that POut(0) =

Out ·�m.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 86

3. For each of the Corrupt Parties, Tj for j 2 B, SB calculates the partial decryption

of Sj,i, obtaining sj,i, using Tj ’s secret key.

4. SB uses the share reconstruction protocol for threshold Paillier to construct sim-

ulated shares sj,i for each value P sim
Out (i) for each of the Honest Parties and follows

step 1 of the protocol honestly using the simulated shares.

5. For each of the Honest Parties, Tj for j /2 B, SB uses the simulator for the thresh-

old encryption scheme to simulate the proof that sj is the correct decryption of

Sj .

We show that the view of AB in the simulation with SB is indistinguishable from its

view in a real execution.

In the case that one of the parties controlled by AB does not answer the challenges in

the E�cient Preprocessing protocol correctly, the output distributions are computationally

indistinguishable in the real and ideal executions. In the case that all the parties controlled

by AB do answer the challenges correctly, the probability that SB fails to extract the parties’

inputs is negligible.

We now consider the case that AB answers the challenge correctly and SB successfully

extracts the parties’ inputs. We consider the following hybrid distributions: The first hybrid

distribution consists of the joint ouput of AB and the honest parties in a real execution of

⇧poly eval. The second hybrid distribution is the same as the first, except instead of a real

execution of ⇧poly eval, the proofs of correct decryption of the threshold encryption scheme

are replaced with simulated proofs for each of the honest parties. The third hybrid distribu-

tion is the same as the second, except we additionally replace the real Coin-Tossing protocol

with a simulation. The fourth hybrid distribution is the same as the third, except for each

honest party Tj , we replace the real E�cient Preprocessing protocol and computation step

with a simulation (as above). The fifth hybrid distribution is the same as the fourth, except

we replace the computation of the Re-Randomization step with the one given above. The

sixth hybrid distribution is the same as the fifth, except we replace all intermediate outputs

of the honest parties’ the encryptions described above in the simulator’s execution of the

Round-Table step. The seventh hybrid distribution is the same as the sixth, except we

replace all committed input shares of the honest parties’ as described above in the simu-

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 87

lator’s execution of the E�cient Preprocessing step. The eighth hybrid distribution is the

same as the seventh, except we replace the final decrypted output by the simulated output

as described above. The eighth hybrid distribution is distributed identically to the joint

output of SB and the honest parties in an Ideal execution.

Indistinguishability follows due to the indistinguishability of the simulated runs of the

Proof of Correct Decryption, Coin-Tossing protocols, and E�cient Preprocessing protocols

from real runs, the information-theoretic security of the secret-sharing scheme, and the

semantic security of the threshold encryption scheme TPm
enc.

We give some intuition for the indistinguishability of the seventh and eighth hybrid

distribution. Given that the honest parties do not abort after the input preprocessing

verification and cut-and-choose step, we have that with all but negligible probability, at

least a .9-fraction of the final encrypted output shares were computed correctly. If the

honest parties do not abort in the LIPEV protocol, then the decryptions of the output

shares must all lie on some degree kD polynomial. Since any 2 degree kD polynomials

must disagree on at least a .9-fraction of the 10kD shares, we must have that the output

shares are actually all exactly correct. Due to the re-randomization steps, this degree kD

polynomial is distributed uniformly conditioned on the fact that its constant coe�cient is

equal to the final output value.

In the case that party T ⇤ is an honest party, we show that the joint output distribution

of AB and P ⇤ in the Real model is indistinguishable from the joint output distribution of SB

and P ⇤ in the Ideal model. Similarly to the analysis above, we note that if the honest party

reaches the end of the protocol, then with all but negligible probability all the shares were

computed exactly correctly. Thus, when the honest party in the Real model reconstructs

the final output, it will be the same value outputted by the honest party in the Ideal model.

We note that the Simulator exactly as specified does not run in expected polynomial

time. This is a subtlety that concerns the probability that the adversary will open the

commitment in the coin-tossing protocol correctly after rewinding, since after rewinding,

the commitment is no longer random, but is correlated with the input; all indices in I (the

set chosen by the coin-tossing protocol) are computed honestly, while all indices not in I

are incorrect. This technicality was pointed out by [Goldreich and Kahan, 1996] in their

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 88

work on constant-round zero knowledge. However, as in [Lindell, 2008] we slightly modify

the simulator so it will run in expected polynomial time. Very briefly, the simulator first

estimates p, the probability that all parties controlled by AB decommit correctly when the

commitment they received was randomly chosen, and then bounds the number of rewinding

attempts by poly(k)p, where poly(k) is a fixed polynomial.

4.6 Communication and Computation Complexity

Our protocol computes the polynomial functionality in a constant number of rounds (count-

ing round-table rounds as one, or with a constant number of players). The communication

complexity of the protocol can be divided into two types: messages that are broadcast to

all parties and the ”round-table” communication that is passed between two consecutive

parties. We note that the ”round-table” communication can be done o↵-line. The broad-

cast communication consists of the commitments of the inputs shares, the decommitments

used in the final verification phase, the encrypted and decrypted output shares as well as

the messages used in the coin tossing and HEPKPV protocols. These messages add up to

k(10D+1)(
Pm

j=1

Pl
j

t=1

log↵j,t+1). Note that the communication complexity may be much

smaller than the size of the polynomial representation. For example, if party Pj with input

xj,1 must contribute ↵j,t consecutive powers of xi: x1i , . . . , x
↵
j,t

i to ↵j,t di↵erent terms, the

broadcast communication complexity for this party will still only be k(10D+1) log↵j,t+1.

The round-table messages passed between consecutive parties include all intermediate mes-

sages in the computation that are sent by the all the parties except the last one, which in

total are 10kDn(m� 1). The computational complexity (where we count number of expo-

nentiations) for all m parties in total is O(kDnm). Further, if we apply the share packing

optimization from Section 4.7.1 over k executions of the protocol, we can drop k factor for

the new amortized complexities.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 89

4.7 Multiparty Set Intersection and Other Applications

4.7.1 Optimizations

We apply several optimizations to the protocol given in Section 4.5 for polynomials with

specific structures. First, if we have a monomial that is computed only from the inputs of

a subset of the parties, then clearly, we can evaluate it in a round-table fashion that only

includes parties in this subset and proceed to the Re-Randomization Step.

Additionally, in some cases, we can remove the requirement of a party to share all of

its inputs. Recall that we require the input-sharing in order to enable the cut-and-choose

verification of honest behavior of the parties. In the case when an input is used only once

in the polynomial, this type of proof may not be necessary. We can avoid sharing an

input if it belongs to the first party in the round table computation of the corresponding

monomial as long as we can verify that the encryption itself is valid with a ZKPOK and

extract the encrypted value. We notice that the requirements imposed on the structure of

the polynomial in order to be able to apply this optimization substantially limit the range

of the possible polynomials. However, in the next section we will see how the problem

of multiparty set intersection can be reduced to the evaluation of exactly this type of

polynomials.

Finally, we use the approach of multi-secret sharing from [Franklin and Yung, 1992]

that allows us to use the same polynomials to share the input values for multiple parallel

executions of the protocol, which lowers the amortized communication complexity of our

protocol. Intuitively, we choose a set of points on the sharing polynomials to represent the

input values for each of the di↵erent executions of the protocol, say points 1 to k for each

of k di↵erent executions. The shares that will be used in the computation will be those

corresponding to points not in this set. As a result, the final output polynomial will evaluate

to each of the di↵erent output values corresponding to each execution at the points 1 to k

respectively.

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 90

4.7.2 Multiparty Set Intersection as Polynomial Evaluation

The setting for the multiparty set intersection problem that we consider is as follows: there

are m parties T
1

, . . . , Tm who have input sets X
1

, . . . , Xm and wish to jointly compute

X
1

T
. . .

T
Xm; one of the parties Tm is the designated output receiver that will learn the

elements in the set intersection 3. The first step is our approach is to translate the problem

into a problem for secure multivariate polynomial evaluation that depends on the inputs

of all participants. Recall that a set X = {x
1

, . . . , xd} can be represented as a polynomial

P (x) = (x � x
1

) . . . (x � xd). Now if we consider the polynomial P 0(x) = r · P (x) + x,

where r is random, we have that if x0 2 X then P 0(x0) = x0 and if x0 /2 X then P 0(x0)

is uniformly distributed (see [Freedman et al., 2004]). In the multiparty case we have m

parties with input sets X
1

, . . . , Xm, represented by polynomials PX
1

(x), . . . , PX
m

(x). Thus

the polynomial P(x) = r ·Pm�1

i=1

PX
i

(x) + x, where r = r
1

+ r
2

+ · · · + rm and each ri is

a randomly chosen input contributed by Party i, will have the same property mentioned

above: if x0 2 X
1

T
. . .

T
Xm then P(x0) = x0 and if x0 /2 X

1

T
. . .

T
Xm then P(x0) is

uniformly distributed. Now to compute the intersection of the sets X
1

, . . . , Xm, the parties

T
1

, . . . , Tm�1

would construct the multivariate polynomial that represents the intersection of

their sets as above and the parties will run the polynomial evaluation algorithm to evaluate

this polynomial on all inputs of Tm. We treat the multivariate polynomial constructed by

T
1

, . . . , Tm�1

as polynomial P0 that has coe�cients 1 and its real coe�cients being input

variables for the parties.

Applying the optimizations described in Section 4.7.1 we obtain or final protocol for

computing multiparty set intersection for which we have the following theorem and com-

plexities:

Theorem 7. If the Decisional Composite Residuosity problem is hard in Z⇤
n2

, where n is

a product of two strong primes, protocol ⇧poly eval is instantiated with the threshold Pail-

lier encryption scheme TPm
enc such that E = TPm

enc, and Q = P0, then ⇧poly eval securely

computes the Set Intersection functionality 4 in the presence of malicious adversaries.

3We note that our protocol can be generalized to allow any subset of the parties to receive output.

4We consider here a slight variant of the Set Intersection functionality where Party i for 1 i m � 1

CHAPTER 4. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 91

We have that the broadcast communication complexity of the Set Intersection protocol is

O(md+d log2 d) (there is no round-table communication) and the computational complexity

is O(md2 log d), where d >> k is the maximum input set size of each party.

Multiparty Oblivious Polynomial Evaluation. In the protocol for multiparty set

intersection the coe�cients of the evaluated polynomial are inputs for di↵erent parties. If

we assume that the polynomial coe�cients are the inputs of one of the parties, we reduce the

problem to oblivious multivariate polynomial evaluation (introduced by [Naor and Pinkas,

2006] in the single-variable case) for a small class of multivariate polynomials.

submits the polynomial P
Xi to the Trusted Party, Party m submits X

m

and the Trusted Party returns the

intersection of X
1

, . . . , X

m

. In order to compute the standard Set Intersection functionality, we must use

the threshold El Gamal encryption scheme.

92

Part II

Outsourced Computation

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 93

Chapter 5

How to Delegate and Verify in

Public: Verifiable Computation

from Attribute-based Encryption

5.1 Motivation and Contributions

In the modern age of cloud computing and smartphones, asymmetry in computing power

seems to be the norm. Computationally weak devices such as smartphones gather informa-

tion, and when they need to store the voluminous data they collect or perform expensive

computations on their data, they outsource the storage and computation to a large and

powerful server (a “cloud”, in modern parlance). Typically, the clients have a pay-per-use

arrangement with the cloud, where the cloud charges the client proportional to the “e↵ort”

involved in the computation.

One of the main security issues that arises in this setting is – how can the clients trust

that the cloud performed the computation correctly? After all, the cloud has the financial in-

centive to run (occasionally, perhaps) an extremely fast but incorrect computation, freeing

up valuable compute time for other transactions. Is there a way to verifiably outsource com-

putations, where the client can, without much computational e↵ort, check the correctness

of the results provided by the cloud? Furthermore, can this be done without requiring much

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 94

interaction between the client and the cloud? This is the problem of non-interactive verifi-

able computation, which was considered implicitly in the early work on e�cient arguments

by Kilian [Kilian, 1995] and computationally sound proofs (CS proofs) by Micali [Micali,

1994], and which has been the subject of much attention lately [Goldwasser et al., 2008;

Gennaro et al., 2010; Chung et al., 2010; Applebaum et al., 2010; Benabbas et al., 2011;

Barbosa and Farshim, 2011; Bitansky et al., 2011; Goldwasser et al., 2011].

Our starting point is that while the recent solutions consider and solve the bare-bones

verifiable computation problem in its simplest form, there are a number of desirable features

that they fail to achieve. We consider two such properties – namely, public delegatability

and public verifiability.

Public Delegatability. In a nutshell, public delegatability says that everyone should

be able to delegate computations to the cloud. In some protocols [Gennaro et al., 2010;

Chung et al., 2010; Applebaum et al., 2010; Benabbas et al., 2011], a client who wishes to

delegate computation of a function F is required to first run an expensive pre-processing

phase (wherein her computation is linear in the size of the circuit for F) to generate a

(small) secret key SKF and a (large) evaluation key EKF . This large initial cost is then

amortized over multiple executions of the protocol to compute F (xi) for di↵erent inputs

xi, but the client needs the secret key SKF in order to initiate each such execution. In

other words, clients can delegate computation to the cloud only if they put in a large initial

computational investment. This makes sense only if the client wishes to run the same

computation on many di↵erent inputs. Can clients delegate computation without making

such a large initial commitment of resources?

As an example of a scenario where this might come in handy, consider a clinic with a

doctor and a number of lab assistants, which wishes to delegate the computation of a certain

expensive data analysis function F to a cloud service. Although the doctor determines the

structure and specifics of F , it is in reality the lab assistants who come up with inputs to

the function and perform the delegation. In this scenario, we would like to ask the doctor to

run the (expensive) pre-processing phase once and for all, and generate a (small) public key

PKF and an evaluation key EKF . The public key lets anyone, including the lab assistants,

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 95

delegate the computation of F to the cloud and verify the results. Thus, once the doctor

makes the initial investment, any of the lab assistants can delegate computations to the

cloud without the slightest involvement of the doctor. Needless to say, the cloud should not

be able to cheat even given PKF and EKF .

Public Verifiability. In a similar vein, the delegator should be able to produce a (public)

“verification key” that enables anyone to check the cloud’s work. In the context of the

example above, when the lab assistants delegate a computation on input x, they can also

produce a verification key V Kx that will let the patients, for example, obtain the answer

from the cloud and check its correctness. Neither the lab assistants nor the doctor need to

be involved in the verification process. Needless to say, the cloud cannot cheat even if it

knows the verification key V Kx.

Put together, we call a verifiable computation protocol that is both publicly delegatable and

publicly verifiable a public verifiable computation protocol. We are not aware of any such

protocol (for a general class of functions) that is non-interactive and secure in the standard

model. Note that we still require the party who performs the initial function preprocessing

(the doctor in the example above) to be trusted by those delegating inputs and verifying

outputs.

As a bonus, a public verifiable computation protocol is immune to the “rejection prob-

lem” that a↵ects several previous constructions [Gennaro et al., 2010; Chung et al., 2010;

Applebaum et al., 2010]. Essentially, the problem is that these protocols do not provide

reusable soundness; i.e., a malicious cloud that is able to observe the result of the verification

procedure (namely, the accept/reject decision) on polynomially many inputs can eventually

break the soundness of the protocol. It is an easy observation that public verifiable com-

putation protocols do not su↵er from the rejection problem. Roughly speaking, verification

in such protocols depends only on the public key and some (instance-specific) randomness

generated by the delegator, and not on any long-term secret state. Thus, obtaining the

result of the verification procedure on one instance does not help break the soundness on a

di↵erent instance.1

1In fact, this observation applies also to any protocol that is publicly delegatable and not necessarily

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 96

5.1.1 Our Contributions

Verifiable Computation from Attribute-Based Encryption. Our main result is a

(somewhat surprising) connection between the notions of attribute-based encryption (ABE)

and verifiable computation (VC). In a nutshell, we show that a public verifiable computation

protocol for a class of functions F can be constructed from any attribute-based encryption

scheme for a related class of functions – namely, F [F . Recall that attribute-based encryp-

tion (ABE) [Sahai and Waters, 2005; Goyal et al., 2006] is a rich class of encryption schemes

where secret keys ABE.SKF are associated with functions F , and can decrypt ciphertexts

that encrypt a message m under an “attribute” x if and only if F (x) = 1.

For simplicity, we state all our results for the case of Boolean functions, namely functions

with one-bit output. For functions with many output bits, we simply run independent copies

of the verifiable computation protocol for each output bit.

Theorem 8 (Main Theorem, Informal). Let F be a class of Boolean functions, and let

F = {F | F 2 F} where F̄ denotes the complement of the function F . If there is a key-

policy ABE scheme for F [F , then there is a public verifiable computation protocol for

F .

Some remarks about this theorem are in order.

1. First, our construction is in the pre-processing model, where we aim to outsource the

computation of the same function F on polynomially many inputs xi with the goal of

achieving an amortized notion of e�ciency. This is the same as the notion considered

in [Gennaro et al., 2010; Chung et al., 2010], and di↵erent from the one in [Goldwasser

et al., 2008]. See Definition 6.

2. Secondly, since the motivation for verifiable computation is outsourcing computational

e↵ort, e�ciency for the client is obviously a key concern. Our protocol will be e�cient

for the client, as long as computing an ABE encryption (on input a message m and

attribute x) takes less time than evaluating the function F on x. We will further

address the e�ciency issue in the context of concrete instantiations below (as well as

in Section 5.3.2).

publicly verifiable.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 97

3. Third, we only need a weak form of security for attribute-based encryption which we

will refer to as one-key security. Roughly speaking, this requires that an adversary,

given a single key ABE.SKF for any function F of its choice, cannot break the semantic

security of a ciphertext under any attribute x such that F (x) = 0. Much research e↵ort

on ABE has been dedicated to achieving the much stronger form of security against

collusion, namely when the adversary obtains secret keys for not just one function,

but polynomially many functions of its choice. We will not require the strength of

these results for our purposes. On the same note, constructing one-key secure ABE

schemes is likely to be much easier than full-fledged ABE schemes.

We consider attribute-based encryption (ABE) schemes to be ones in which each secret

key ABE.SKF is associated with a function F . We provide further discussion about the

di↵erence and the parallel between the notions of attribute-based encryption and predicate

encryption in Appendix C.1.

Let us now describe an outline of our construction. The core idea of our construction

is simple: attribute-based encryption schemes naturally provide a way to “prove” that

F (x) = 1. Say the server is given the secret key ABE.SKF for a function F , and a ciphertext

that encrypts a random message m under the attribute x. The server will succeed in

decrypting the ciphertext and recovering m if and only if F (x) = 1. If F (x) = 0, he fares

no better at finding the message than a random guess. The server can then prove that

F (x) = 1 by returning the decrypted message.

More precisely, this gives an e↵ective way for the server to convince the client that

F (x) = 1. The pre-processing phase for the function F generates a master public key

ABE.MPK for the ABE scheme (which acts as the public key for the verifiable computation

protocol) and the secret key ABE.SKF for the function F (which acts as the evaluation key

for the verifiable computation protocol). Given the public key and an input x, the delegator

encrypts a random message m under the attribute x and sends it to the server. If F (x) = 1,

the server manages to decrypt and return m, but otherwise, he returns ?. Now,

• If the client gets back the same message that she encrypted, she is convinced beyond

doubt that F (x) = 1. This is because, if F (x) were 0, the server could not have found

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 98

m (except with negligible probability, assuming the message is long enough).

• However, if she receives no answer from the server, it could have been because F (x) =

0 and the server is truly unable to decrypt, or because F (x) = 1 but the server

intentionally refuses to decrypt.

Thus, we have a protocol with one-sided error – if F (x) = 0, the server can never cheat,

but if F (x) = 1, he can.

A verifiable computation protocol with no error can be obtained from this by two in-

dependent repetitions of the above protocol – once for the function F and once for its

complement F̄ . A verifiable computation protocol for functions with many output bits can

be obtained by repeating the one-bit protocol above for each of the output bits. Intuitively,

since the preprocessing phase does not create any secret state, the protocol provides pub-

lic verifiable computation. Furthermore, the verifier performs as much computation as is

required to compute two ABE encryptions.

Perspective: Signatures on Computation. Just as digital signatures authenticate

messages, the server’s proof in a non-interactive verifiable computation protocol can be

viewed as a “signature on computation”, namely a way to authenticate that the computation

was performed correctly. Moni Naor has observed that identity-based encryption schemes

give us digital signature schemes, rather directly [Boneh and Franklin, 2003]. Given our

perspective, one way to view our result is as a logical extension of Naor’s observation to

say that just as IBE schemes give us digital signatures, ABE schemes give us signatures on

computation or, in other words, non-interactive verifiable computation schemes.

Multi-Function Verifiability and ABE with Outsourcing. The definition of ver-

ifiable computation focuses on the evaluation of a single function over multiple inputs.

In many constructions [Gennaro et al., 2010; Chung et al., 2010; Benabbas et al., 2011]

the evaluated function is embedded in the parameters for the VC scheme that are used

for the input processing for the computation. Thus evaluations of multiple functions on

the same input would require repeated invocation for the ProbGen algorithm. A notable

di↵erence are approaches based on PCPs [Goldwasser et al., 2008; Bitansky et al., 2011;

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 99

Goldwasser et al., 2011] that may require a single o✏ine stage for input processing and then

allow multiple function evaluations. However, such approaches inherently require verifica-

tion work proportional to the depth of the circuit, which is at least logarithmic in the size of

the function and for some functions can be also proportional to the size of the circuit. Fur-

ther these approaches employ either fully homomorphic encryption or private information

retrieval schemes to achieve their security properties.

Using the recently introduced definition of ABE with outsourcing [Green et al., 2011],

we achieve a multi-function verifiable computation scheme that decouples the evaluated

function from the parameters of the scheme necessary for the input preparation. This VC

scheme provides separate algorithms for input and function preparation, which subsequently

can be combined for multiple evaluations. When instantiated with an existing ABE scheme

with outsourcing [Green et al., 2011], the verification algorithm for the scheme is very e�-

cient: its complexity is linear in the output size but independent of the input length and the

complexity of the computation. Multi-function VC provides significant e�ciency improve-

ments whenever multiple functions are evaluated on the same input, since a traditional VC

scheme would need to invoke ProbGen for every function.

Attribute-Based Encryption from Verifiable Computation. We also consider the

opposite direction of the ABE-VC relation: can we construct an ABE scheme from a VC

scheme? We are able to show how to construct an ABE scheme from a very special class

of VC schemes with a particular structure in Appendix C.2. Unfortunately, this does not

seem to result in any new ABE constructions.

5.2 Definitions

5.2.1 Public Verifiable Computation

We propose two new properties of verifiable computation schemes, namely

• Public Delegation, which allows arbitrary parties to submit inputs for delegation, and

• Public Verifiability, which allows arbitrary parties (and not just the delegator) to

verify the correctness of the results returned by the worker.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 100

Together, a verifiable computation protocol that satisfies both properties is called a pub-

lic verifiable computation protocol. The following definition captures these two properties.

Definition 6 (Public Verifiable Computation). A public verifiable computation scheme

(with preprocessing) VC is a four-tuple of polynomial-time algorithms (KeyGen,ProbGen,Compute,Verify)

which work as follows:

• (PKF , EKF) KeyGen(F, 1�): The randomized key generation algorithm takes as

input a security parameter � and the function F , and outputs a public key PKF and

an evaluation key EKF .

• (�x, V Kx) ProbGen(PKF , x): The randomized problem generation algorithm uses

the public key PKF to encode an input x into public values �x and V Kx. The value

�x is given to the worker to compute with, whereas V Kx is made public, and later

used for verification.

• �out Compute(EKF ,�x): The deterministic worker algorithm uses the evaluation

key EKF together with the value �x to compute a value �out.

• y Verify(V Kx,�out): The deterministic verification algorithm uses the verification

key V Kx and the worker’s output �out to compute a string y 2 {0, 1}⇤[{?}. Here, the
special symbol ? signifies that the verification algorithm rejects the worker’s answer

�out.

A number of remarks on the definition are in order.

First, in some instantiations, the size of the public key (but not the evaluation key) will

be independent of the function F , whereas in others, both the public key and the evaluation

key will be as long as the description length of F . For full generality, we refrain from making

the length of the public key a part of the syntactic requirement of a verifiable computation

protocol, and instead rely on the definition of e�ciency to enforce this (see Definition 9

below).

Secondly, our definition can be viewed as a “public-key version” of the earlier VC defi-

nition [Gennaro et al., 2010; Chung et al., 2010]. In the earlier definition, KeyGen produces

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 101

a secret key that was used as an input to ProbGen and, in turn, ProbGen produces a se-

cret verification value needed for Verify (neither of these can be shared with the worker

without losing security). Indeed, the “secret-key” nature of these definitions means that

the schemes could be attacked given just oracle access to the verification function (and

indeed, there are concrete attacks of this nature against the schemes in [Chung et al., 2010;

Gennaro et al., 2010; Applebaum et al., 2010]). Our definition, in contrast, is stronger in

that it allows any party holding the public key PKF to delegate and verify computation of

the function F on any input x, even if the party who originally ran ProbGen is no longer

online. This, in turn, automatically protects against attacks that use the verification oracle.

Definition 7 (Correctness). A verifiable computation protocol VC is correct for a class

of functions F if for any F 2 F , any pair of keys (PKF , EKF) KeyGen(F, 1�), any

x 2 Domain(F), any (�x, V Kx) ProbGen(PKF , x), and any �out Compute(EKF ,�x),

the verification algorithm Verify on input V Kx and �out outputs y = F (x).

Providing public delegation and verification introduces a new threat model in which the

worker knows both the public key PKF (which allows him to delegate computations) and

the verification key V Kx for the challenge input x (which allows him to check whether his

answers will pass the verification).

Definition 8 (Security). Let VC be a public verifiable computation scheme for a class of

functions F , and let A = (A
1

, A
2

) be any pair of probabilistic polynomial time machines.

Consider the experiment ExpPubV erif
A [VC, F,�] for any F 2 F below:

Experiment ExpPubV erif
A [VC, F,�]

(PKF , EKF) KeyGen(F, 1�);

(x⇤, state) A
1

(PKF , EKF);

(�x⇤ , V Kx⇤) ProbGen(PKF , x⇤);

�⇤
out A

2

(state,�x⇤ , V Kx⇤);

y⇤ Verify(V Kx⇤ ,�⇤
out)

If y⇤ 6=? and y⇤ 6= F (x⇤), output ‘1’, else output ‘0’;

A public verifiable computation scheme VC is secure for a class of functions F , if for every

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 102

function F 2 F and every p.p.t. adversary A = (A
1

, A
2

):

Pr[ExpPubV erif
A [VC, F,�] = 1] NEGL�. (5.1)

where negl denotes a negligible function of its input.

Later, we will also briefly consider a weaker notion of “selective security” which requires

the adversary to declare the challenge input x⇤ before it sees PKF .

For verifiable outsourcing of a function to make sense, the client must use “less resources”

than what is required to compute the function. “Resources” here could mean the running

time, the randomness complexity, space, or the depth of the computation. We retain the

earlier e�ciency requirements [Gennaro et al., 2010] – namely, we require the complexity of

ProbGen and Verify combined to be less than that of F . However, for KeyGen, we ask only

that the complexity be poly(|F |). Thus, we employ an amortized complexity model, in which

the client invests a larger amount of computational work in an “o✏ine” phase in order to

obtain e�ciency during the “online” phase. We provide two strong definitions of e�ciency

– one that talks about the running time and a second that talks about computation depth.

Definition 9 (E�ciency). A verifiable computation protocol VC is e�cient for a class of

functions F that act on n = n(�) bits if there is a polynomial p s.t.: 2

• the running time of ProbGen and Verify together is at most p(n,�), the rest of the

algorithms are probabilistic polynomial-time, and

• there exists a function F 2 F whose running time is !(p(n,�)). 3

In a similar vein, VC is depth-e�cient if the computation depth of ProbGen and Verify

combined (written as Boolean circuits) is at most p(n,�), whereas there is a function F 2 F
whose computation depth is !(p(n,�)).

We now define the notion of unbounded circuit families which will be helpful in quanti-

fying the e�ciency of our verifiable computation protocols.

2To be completely precise, one has to talk about a family F = {F
n

}
n2N parameterized by the input

length n. We simply speak of F to implicitly mean F
n

whenever there is no cause for confusion.

3This condition is to rule out trivial protocols, e.g., for a class of functions that can be computed in time

less than p(�).

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 103

Definition 10. We define a family of circuits {Cn}n2N to be unbounded if for every poly-

nomial p and all but finitely many n, there is a circuit C 2 Cn of size at least p(n). We call

the family depth-unbounded if for every polynomial p and all but finitely many n, there is

a circuit C 2 Cn of depth at least p(n).

5.2.2 Key-Policy Attribute-Based Encryption

Introduced by Goyal, Pandey, Sahai and Waters [Goyal et al., 2006], Key-Policy Attribute-

Based Encryption (KP-ABE) is a special type of encryption scheme where a Boolean func-

tion F is associated with each user’s key, and a set of attributes (denoted as a string

x 2 {0, 1}n) with each ciphertext. A key SKF for a function F will decrypt a ciphertext

corresponding to attributes x if and only if F (x) = 1. KP-ABE can be thought of as a

special-case of predicate encryption [Katz et al., 2008] or functional encryption [Boneh et

al., 2011], although we note that a KP-ABE ciphertext need not hide the associated policy

or attributes. We will refer to KP-ABE simply as ABE from now on. We state the formal

definition below, adapted from [Goyal et al., 2006; Lewko et al., 2010].

Definition 11 (Attribute-Based Encryption). An attribute-based encryption scheme ABE
for a class of functions F = {Fn}n2N (where functions in Fn take n bits as input) is a tuple

of algorithms (Setup,Enc,KeyGen,Dec) that work as follows:

• (PK,MSK) Setup(1�, 1n) : Given a security parameter � and an index n for the

family Fn, output a public key PK and a master secret key MSK.

• C Enc(PK,M, x): Given a public key PK, a message M in the message space

MsgSp, and attributes x 2 {0, 1}n, output a ciphertext C.

• SKF KeyGen(MSK,F): Given a function F and the master secret key MSK,

output a decryption key SKF associated with F .

• µ Dec(SKF,C): Given a ciphertext C 2 Enc(PK,M, x) and a secret key SKF for

function F , output a message µ 2 MsgSp or µ =?.

Definition 12 (ABE Correctness). Correctness of the ABE scheme requires that for all

(PK,MSK) Setup(1�, 1n), all M 2 MsgSp, x 2 {0, 1}n, all ciphertexts C Enc(PK,M, x)

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 104

and all secret keys SKF KeyGen(MSK,F), the decryption algorithm Dec(SKF,C) out-

puts M if F (x) = 1 and ? if F (x) = 0. (This definition could be relaxed to hold with high

probability over the keys (PK,MSK), which su�ces for our purposes).

We define a natural, yet relaxed, notion of security for ABE schemes which we refer to

as “one-key security”. Roughly speaking, we require that adversaries who obtain a single

secret key SKF for any function F of their choice and a ciphertext C Enc(PK,M, x)

associated with any attributes x such that F (x) = 0 should not be able to violate the

semantic security of C. We note that much work in the ABE literature has been devoted to

achieving a strong form of security against collusion, where the adversary obtains not just

a single secret key, but polynomially many of them for functions of its choice. We do not

require such a strong notion for our purposes.

Definition 13 (One-Key Security for ABE). Let ABE be a key-policy attribute-based en-

cryption scheme for a class of functions F = {Fn}n2N, and let A = (A
0

, A
1

, A
2

) be a

three-tuple of probabilistic polynomial-time machines. We define security via the following

experiment.

Experiment ExpABE
A [ABE , n,�]

(PK,MSK) Setup(1�, 1n);

(F, state
1

) A
0

(PK);

SKF KeyGen(MSK,F);

(M
0

,M
1

, x⇤, state
2

) A
1

(state
1

, SKF);

b {0, 1}; C Enc(PK,Mb, x⇤);

b̂ A
2

(state
2

, C);

If b = b̂, output ‘1’, else ‘0’;

The experiment is valid if M
0

,M
1

2 MsgSp and |M
0

| = |M
1

|. We define the advantage of

the adversary in all valid experiments as

AdvA(ABE , n,�) = |Pr[b = b0]� 1/2|.

We say that ABE is a one-key secure ABE scheme if AdvA(ABE , n,�) NEGL(�).

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 105

5.2.3 Multi-Function Verifiable Computation

The original definition of verifiable computation [Gennaro et al., 2010] assumed that mul-

tiple inputs would be prepared for a single function; here, we expand this definition to

e�ciently allow workers to verifiably apply multiple functions to a single input. In other

words, previously, to evaluate F (x) and G(x), the client needed to run KeyGen for F , KeyGen

for G, and then run ProbGen on x twice, once for F and once for G (since the public key PK

used for the input preprocessing in ProbGen depends on the function that is evaluated). Our

new definition only requires the client to run ProbGen once, and yet still allows the client

to verify that a particular output was the output of a particular function on a particular

input.

We present the multi-function property in the secret key setting of the original definition

of verifiable computation [Gennaro et al., 2010], but note that it is orthogonal to the public

delegation and verification defined in Section 5.2.1, and hence a scheme may have both

properties, none, or one but not the other.

Since the original definition embeds the function to be computed in the scheme’s pa-

rameters, we separate the generation of the parameters for the scheme, which will be used

in ProbGen, into a Setup stage, and the generation of tokens for the evaluation of di↵erent

functions into a KeyGen routine, which could be executed multiple times using the same

parameters for the scheme. This allows the evaluation of multiple functions on the same

instance produced by ProbGen.

Definition 14 (Multi-Function Verifiable Computation). A VC scheme VC = (Setup,

KeyGen,ProbGen, Compute, Verify) is a multi-function verifiable computation scheme if it

has the following properties:

• Setup(�)! (PKparam, SKparam): Produces the public and private parameters that do

not depend on the functions to be evaluated.

• KeyGenPK
param

,SK
param

(F) ! (PKF , SKF): Produces a keypair for evaluating and

verifying a specific function F .

• ProbGenPK
param

,SK
param

(x) ! (�x, ⌧x): The algorithm requires the secret SKparam,

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 106

which is independent of the function that will be computed. It generates both the

encoding �x for the input, and the secret verification key ⌧x.

• ComputePK
param

,PK
F

(�x) ! �y: The computation algorithm uses both parts of the

public key to produce an encoding of the output y = F (x).

• VerifySK
F

,⌧
x

(�y) ! y [?: Using the private, function-specific key SKF and the

private, input-specific value ⌧x, the verification algorithm converts the worker’s output

into y = F (x), or outputs ? to indicate that �y does not represent a valid output of

F on x.

Definition 15 (Multi-Function Verifiable Computation Security). Let VC = (Setup,KeyGen,

ProbGen, Compute, Verify) be a multi-function verifiable computation scheme. We define

security via the following experiment.

Experiment ExpMultV erif
A [VC,�]

(PKparam, SKparam)
R Setup(�);

(x, F, �̂y) AOKeyGen(·),OProbGen(·)(PKparam);

ŷ VerifySK
F

,⌧
x

(�̂y)

If ŷ 6=? and ŷ 6= F (x), output ‘1’, else ‘0’;

We define the adversary’s advantage and the scheme’s security in the same fashion as

Definition 8.

In the experiment, the adversary has oracle access to OKeyGen(F), which calls

KeyGenPK
param

,SK
param

(F), returns PKF , and stores SKF . Similarly, the adversary can

access the OProbGen(·) oracle, which calls ProbGenSK
param

(x), returns �x, and stores ⌧x.

Eventually, the adversary returns an encoding �̂y which purports to be an output of F

applied to x. The challenger runs Verify with the corresponding values of ⌧x and SKF , and

the adversary wins if this check passes.

5.2.3.1 KP-ABE With Outsourcing

Green, Hohenberger, and Waters define a notion of ABE with outsourcing in which the party

performing the decryption can o✏oad most of the decryption work to an untrusted third

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 107

party [Green et al., 2011]; the third party learns nothing about the underlying plaintext,

and the party holding the secret key can complete the decryption very e�ciently, in time

independent of the size of the formula associated with the key. Although they define and

construct ABE with outsourcing for both CP-ABE and KP-ABE, below, we focus on the

definitions for KP-ABE, which will be relevant for our work. We also give an IND-CPA

security definition, since we do not require the stronger RCCA they defined. Note that

Green et al.’s construction [Green et al., 2011] is selectively secure, but they provide a

sketch, based on Lewko et al.’s work [Lewko et al., 2010], to show that their scheme can

also be made adaptively secure.

Note that in this context the outsourcing done is for the very specific function of ABE

partial decryption. The definitions also do not include a notion of integrity or verification,

as in verifiable computation, but instead are concerned with the secrecy of the underlying

plaintext.

Definition 16 (Key-Policy Attribute-Based Encryption With Outsourcing [Green et al.,

2011]). A KP-ABE scheme with outsourcing, ABE, is a tuple of algorithms (Setup,Enc,

KeyGen, Transform,Dec) defined as follows:

• Setup(�, U)! (PK,MSK) : Given a security parameter � and the set of all possible

attributes U , output a public key PK and a master secret key MSK.

• EncPK(M, �) ! C: Given a public key PK, a message M , and a set of attributes �,

output ciphertext C.

• KeyGenMSK(F) ! (SKF , TKF): Given a function F and the master secret key

MSK, output a decryption key SKF and a transformation key TKF associated with

that function.

• TransformTK
F

(C)! C 0 [?: Given a ciphertext C = EncPK(M, �) and a transforma-

tion key TKF for function F , output a partially decrypted ciphertext C 0 if F (�) = 1,

or ?, otherwise.

• DecSKF
(C0)! M [?: Given a partially decrypted ciphertext C 0 = TransformTK

F

(EncPK(M, �))

and a secret key SKF for function F , output M if F (�) = 1, or ?, otherwise.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 108

Definition 17 (KP-ABE With Outsourcing IND-CPA Security). Let ABE = (Setup,Enc,

KeyGen, Transform,Dec) be a key-policy attribute-based encryption scheme with outsourcing.

We define security via the following experiment.

Experiment ExpABE�Out
A [ABE , F, U,�]

(PK,MSK)
R Setup(�, U);

(M
0

,M
1

, �) AOKeyGen(·),OCorrupt

(·)(PK);

b {0, 1};
b̂ AOKeyGen(·),OCorrupt

(·)(PK,EncPK(Mb, �)) ;

If b = b̂, output ‘1’, else ‘0’;

In the experiment, the adversary has access to two oracles. OKeyGen(F) invokes

(SKF , TKF) KeyGenMSK(F), stores SKF and returns TKF . OCorrupt

(F) returns SKF

if the adversary previously invoked OKeyGen(F) and returns ? otherwise. Eventually, A
chooses two messages M

0

,M
1

of equal length and a set of challenge attributes �, and he

receives the encryption of one of two messages. Ultimately, he must decide which of the two

plaintext messages was encrypted.

We consider the experiment valid if 8SKF 2 R : F (�) 6= 1, where R = {SKF } is the

set of valid responses to the O
Corrupt

(F) oracle. In other words, the adversary cannot hold

a key that trivially decrypts messages encrypted under the challenge attribute �.

We define the advantage of the adversary in all valid experiments as

AdvA(ABE , U,�) =
����Pr[b = b0]� 1

2

���� .

We say that ABE is a secure key-policy attribute-based encryption scheme with outsourcing

if AdvA(ABE , U,�) < negl(�).

5.3 Verifiable Computation from Attribute-Based Encryp-

tion

In Section 5.3.1, we present our main construction and proof, while Section 5.3.2 contains

the various instantiations of our main construction and the concrete verifiable computation

protocols that we obtain as a result.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 109

5.3.1 Main Construction

Theorem 9. Let F be a class of Boolean functions (implemented by a family of circuits C),
and let F = {F | F 2 F} where F̄ denotes the complement of the function F . Let ABE be

an attribute-based encryption scheme that is one-key secure (see Definition 13) for F [F ,

and let g be any one-way function.

Then, there is a verifiable computation protocol VC (secure under Definition 8) for F . If

the circuit family C is unbounded (resp. depth-unbounded), then the protocol VC is e�cient

(resp. depth-e�cient) in the sense of Definition 9.

We first present our verifiable computation protocol.

Let ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) be an attribute-based encryp-

tion scheme for the class of functions F [F . Then, the verifiable computation protocol

VC = (VCKeyGen,ProbGen,Compute,Verify) for F works as follows.4 We assume, without

loss of generality, that the message space M of the ABE scheme has size 2�.

Key Generation VCKeyGen: The client, on input a function F 2 F with input length n,

runs the ABE setup algorithm twice, to generate two independent key-pairs

(msk
0

,mpk
0

) ABE.Setup(1n, 1�) and (msk
1

,mpk
1

) ABE.Setup(1n, 1�)

Generate two secret keys skF ABE.KeyGen(msk
0

, F) (corresponding to F) and

skF ABE.KeyGen(msk
1

, F) (corresponding to F).

Output the pair (skF , skF) as the evaluation key and (mpk
0

,mpk
1

) as the public key.

Delegation ProbGen: The client, on input x and the public key PKF , samples two uni-

formly random messages m
0

,m
1

R M, computes the ciphertexts

CT
0

 ABE.Enc(mpk
0

,m
0

) and CT
1

 ABE.Enc(mpk
1

,m
1

)

Output the message �x = (CT
0

,CT
1

) (to be sent to the server), and the verification

key V Kx = (g(m
0

), g(m
1

)), where g is the one-way function.

4We denote the VC key generation algorithm as VCKeyGen in order to avoid confusion with the ABE key

generation algorithm.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 110

Computation Compute: The server, on receiving the ciphertexts (CT
0

,CT
1

) and the eval-

uation key EKF = (skF , skF) computes

µ
0

 ABE.Dec(skF ,CT0

) and µ
1

 ABE.Dec(skF ,CT1

)

and send �out = (µ
0

, µ
1

) to the client.

Verification Verify: On receiving V Kx = (v
0

, v
1

) and �out = (µ
0

, µ
1

), output 5

y =

8
>>><

>>>:

0 if g(µ
0

) = v
0

and g(µ
1

) 6= v
1

1 if g(µ
1

) = v
1

and g(µ
0

) 6= v
0

? otherwise

Remark 1. Whereas our main construction requires only an ABE scheme, using an attribute-

hiding ABE scheme (a notion often associated with predicate encryption schemes [Katz et

al., 2008; Boneh et al., 2011]) would also give us input privacy, since we encode the func-

tion’s input in the attribute corresponding to a ciphertext.

Remark 2. To obtain a VC protocol for functions with multi-bit output, we repeat this pro-

tocol (including the key generation algorithm) independently for every output bit. To achieve

better e�ciency, if the ABE scheme supports attribute hiding for a class of functions that in-

cludes message authentication codes (MAC), then we can define F 0(x) = MACK(F (x)) and

verify F 0 instead, similar to the constructions suggested by Applebaum, Ishai, and Kushile-

vitz [Applebaum et al., 2010], and Barbosa and Farshim [Barbosa and Farshim, 2011].

Remark 3. The construction above requires the verifier to trust the party that ran ProbGen.

This can be remedied by having ProbGen produce a non-interactive zero-knowledge proof of

correctness [Blum et al., 1988] of the verification key V Kx. While theoretically e�cient, the

practicality of this approach depends on the particular ABE scheme and the NP language

in question.

Proof. Correctness The correctness of the VC scheme above follows from:

• If F (x) = 0, then F (x) = 1 and thus, the algorithm Compute outputs µ
0

= m
0

and

µ
1

=?. The algorithm Verify outputs y = 0 since g(µ
0

) = g(m
0

) but g(µ
1

) =?6=
g(m

1

), as expected.

5As a convention, we assume that g(?) =?.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 111

• Similarly, if F (x) = 1, then F (x) = 0 and thus, the algorithm Compute outputs

µ
1

= m
1

and µ
0

=?. The algorithm Verify outputs y = 1 since g(µ
1

) = g(m
1

) but

g(µ
0

) =?6= g(m
0

), as expected.

We now consider the relation between the e�ciency of the algorithms for the underlying

ABE scheme and the e�ciency for the resulting VC scheme. Since the algorithms Compute

and Verify can potentially be executed by di↵erent parties, we consider their e�ciency

separately. It is easily seen that:

• The running time of the VC key generation algorithm VCKeyGen is twice that of

ABE.Setup plus ABE.KeyGen.

• The running time of Compute is twice that of ABE.Dec.

• The running time of ProbGen is twice that of ABE.Enc, and the running time of Verify

is the same as that of computing the one-way function.

In short, the combined running times of ProbGen and Verify is polynomial in their input

lengths, namely p(n,�), where p is a fixed polynomial, n is the length of the input to the

functions, and � is the security parameter. Assuming that F is an unbounded class of

functions (according to Definition 10), it contains functions that take longer than p(n,�)

to compute, and thus our VC scheme is e�cient in the sense of Definition 9. (Similar

considerations apply to depth-e�ciency).

We now turn to showing the security of the VC scheme under Definition 8. We show that

an attacker against the VC protocol must either break the security of the one-way function

g or the one-key security of the ABE scheme.

Proof. Security Let A = (A
1

, A
2

) be an adversary against the VC scheme for a function

F 2 F . We construct an adversary B = (B
0

, B
1

, B
2

) that breaks the one-key security of

the ABE, working as follows. (For notational simplicity, given a function F , we let F
0

= F ,

and F
1

= F .)

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 112

1. B
0

first tosses a coin to obtain a bit b 2 {0, 1}. (Informally, the bit b corresponds to

B’s guess of whether the adversary A will cheat by producing an input x such that

F (x) = 1 or F (x) = 0, respectively.)

B
0

outputs the function Fb, as well as the bit b as part of the state.

2. B
1

obtains the master public key mpk of the ABE scheme and the secret key skF
b

for

the function Fb. Set mpkb = mpk.

Run the ABE setup and key generation algorithms to generate a master public key

mpk0 and a secret key skF
1�b

for the function F
1�b under mpk0. Set mpk

1�b = mpk0.

Let (mpk
0

,mpk
1

) be the public key for the VC scheme and (skF
0

, skF
1

) be the evalu-

ation key. Run the algorithm A
1

on input the public and evaluation keys and obtain

a challenge input x⇤ as a result.

If F (x⇤) = b, output a uniformly random bit and stop. Otherwise, B
1

now chooses

two uniformly random messages M (b), ⇢ M and outputs (M (b), ⇢, x⇤) together with

its internal state.

3. B
2

obtains a ciphertext C(b) (which is an encryption of either M (b) or ⇢ under the

public key mpkb and attribute x⇤).

B
2

constructs an encryption C(1�b) of a uniformly random message M (1�b) under the

public key mpk
1�b and attribute x⇤.

Run A
2

on input �x⇤ = (C(0), C(1)) and V Kx⇤ = (g(M (0)), g(M (1))), where g is the

one-way function. As a result, A
2

returns �out.

If Verify(V Kx⇤ ,�out) = b, output 0 and stop.

We now claim the algorithms (B
0

, B
1

, B
2

) described above distinguish between the en-

cryption of M (b) and the encryption of ⇢ in the ABE security game with non-negligible

advantage.

We consider two cases.

Case 1: C(b) is an encryption of M (b). In this case, B presents to A a perfect view of the

execution of the VC protocol, meaning that A will cheat with probability 1/p(�) for

some polynomial p.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 113

Cheating means one of two things. Either F (x⇤) = b and the adversary produced an

inverse of g(M (1�b)) (causing the Verify algorithm to output 1� b), or F (x⇤) = 1� b

and the adversary produced an inverse of g(M (b)) (causing the Verify algorithm to

output b).

In the former case, B outputs a uniformly random bit, and in the latter case, it

outputs 0, the correct guess as to which message was encrypted. Thus, the overall

probability that B outputs 0 is 1/2 + 1/p(�).

Case 2: C(b) is an encryption of the message ⇢. In this case, as above, B outputs a random

bit if F (x⇤) = b. Otherwise, the adversary A has to produce �out that makes the

verifier output b, namely a string �out such that g(�out) = g(M (b)), while given only

g(M (b)) (and some other information that is independent of M (b)).

This amounts to inverting the one-way function which A can only do with a negli-

gible probability. (Formally, if the adversary wins in this game with non-negligible

probability, then we can construct an inverter for the one-way function g).

The bottom line is that the adversary outputs 0 in this case with probability 1/2 +

NEGL(�).

This shows that B breaks the one-key security of the ABE scheme with a non-negligible

advantage 1/p(�)�NEGL(�).

Remark 4. If we employ an ABE scheme that is selectively secure, then the construction

and proof above still go through if we adopt a notion of “selectively-secure” verifiable com-

putation in which the VC adversary commits in advance to the input on which he plans to

cheat.

5.3.2 Instantiations

We describe two di↵erent instantiations of our main construction.

E�cient Selectively Secure VC Scheme for Formulas. The first instantiation uses

the (selectively secure) ABE scheme of Ostrovsky, Sahai and Waters [Ostrovsky et al., 2007]

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 114

for the class of (not necessarily monotone) polynomial-size Boolean formulas (which itself

is an adaptation of the scheme of Goyal et al. [Goyal et al., 2006] which only supports

monotone formulas6). This results in a selectively secure public VC scheme for the same

class of functions, by invoking Theorem 9. Recall that selective security in the context

of verifiable computation means that the adversary has to declare the input on which she

cheats at the outset, before she sees the public key and the evaluation key.

The e�ciency of the resulting VC scheme for Boolean formulas is as follows: for a

boolean formula C, KeyGen runs in time |C| · poly�; ProbGen runs in time |x| · poly�, where
|x| is the length of the input to the formula; Compute runs in time |C| · poly�; and Verify

runs in time O(�). In other words, the total work for delegation and verification is |x| ·poly�
which is, in general, more e�cient than the work required to evaluate the circuit C. Thus,

the scheme is e�cient in the sense of Definition 9. The drawback of this instantiation is

that it is only selectively secure.

Recently, there have been constructions of fully secure ABE for formulas starting from

the work of Lewko et al. [Lewko et al., 2010] which, one might hope, leads to a fully secure

VC scheme. Unfortunately, all known constructions of fully secure ABE work for bounded

classes of functions. For example, in the construction of Lewko et al., once a bound B is

fixed, one can design the parameters of the scheme so that it works for any formula of size at

most B. Furthermore, implicit in the work of Sahai and Seyalioglu [Sahai and Seyalioglu,

2010] is a construction of an (attribute-hiding, one-key secure) ABE scheme for bounded

polynomial-size circuits (as opposed to formulas).

These constructions, unfortunately, do not give us e�cient VC protocols. The reason is

simply this: the encryption algorithm in these schemes run in time polynomial (certainly,

at least linear) in B. Translated to a VC protocol using Theorem 9, this results in the

worker running for time ⌦(B) which is useless, since given that much time, he could have

computed any circuit of size at most B by himself!

6Goyal et al.’s scheme [Goyal et al., 2006] can also be made to work if we use DeMorgan’s law to transform

f and f̄ into equivalent monotone formulas in which some variables may be negated. We then double the

number of variables, so that for each variable v, we have one variable representing v and one representing

its negation v̄. Given an input x, we choose an attribute such that all of these variables are set correctly.

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 115

Essentially, the VC protocol that emerges from Theorem 9 is non-trivial if the encryption

algorithm of the ABE scheme for the function family F is (in general) more e�cient than

computing functions in F .

Depth-E�cient Adaptively Secure VC Scheme for Arbitrary Functions. Al-

though the (attribute-hiding, one-key secure) ABE construction of Sahai and Seyalioglu [Sa-

hai and Seyalioglu, 2010] mentioned above does not give us an e�cient VC scheme, it does

result in a depth-e�cient VC scheme for the class of polynomial-size circuits. Roughly

speaking, the construction is based on Yao’s Garbled Circuits, and involves an ABE en-

cryption algorithm that constructs a garbled circuit for the function F in question. Even

though this computation takes at least as much time as computing the circuit for F , the key

observation is that it can be done in parallel. In short, going through the VC construction

in Theorem 9, one can see that both the Compute and Verify algorithms can be implemented

in constant depth (for appropriate encryption schemes and one-way functions, e.g., the ones

that result from the AIK transformation [Applebaum et al., 2004]), which is much faster in

parallel than computing F , in general.

Interestingly, the VC protocol thus derived is very similar to the protocol of Applebaum,

Ishai and Kushilevitz [Applebaum et al., 2010]. We refer the reader to [Sahai and Seyalioglu,

2010; Applebaum et al., 2010] for details.

We believe that this scheme also illuminates an interesting point: unlike other ABE

schemes [Goyal et al., 2006; Ostrovsky et al., 2007; Lewko et al., 2010], this ABE scheme

is only one-key secure, which su�ces for verifiable computation. This relaxation may point

the way towards an ABE-based VC construction that achieves generality, e�ciency, and

adaptive security.

n+Mariana: Add something about new ABE from Lewko and Waters

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 116

5.4 Multi-Function Verifiable Computation from KP-ABE

With Outsourcing

The original definition of KP-ABE does not readily lend itself to multi-function verifiable

computation. Specifically, it does not allow the client an easy way to verify which function

was used to compute an answer. For example, suppose the client gives out keys SKF and

SKG for functions F and G. Following the ABE to VC construction from Section 5.3 to

outsource computation on input x, the client gives out (among other things) a ciphertext

EncPK(M0, x). Now, suppose F (x) = 1, but G(x) 6= 1. The worker can use SKF to

obtain M
0

, but claim that this output corresponds to a computation of G. In essence,

the construction from Section 5.3 gives us a way to verify that an output corresponds

to a particular input, but if we give out more than one secret key, it cannot distinguish

between functions. One remedy would be to run two parallel instances of the ABE to VC

construction, but then we need to run ProbGen for each function we wish to compute on a

given input.

A more elegant solution is to use an ABE scheme that requires an extra step to decrypt

a ciphertext. Thus, we show how to build multi-function verifiable computation from KP-

ABE with outsourcing [Green et al., 2011] (see Section 5.2.3.1). We use the transformation

key to allow the worker to compute, and then use the secret key as a verification key for

the function. This allows us to verify both the input and specific function used to compute

a particular result returned by the worker.

Interestingly, a similar scheme can be constructed from Chase’s multi-authority ABE [Chase,

2007], by using function identifiers (e.g., a hash of the function description, or a unique ID

assigned by the client) in place of user identifiers, and using the “user key” generated by

the Central Authority as a verification token for a particular function. However, since this

approach does not employ the multi-authority ABE scheme in a black-box fashion, in this

section, we focus on the construction from KP-ABE with outsourcing.

We specify the construction in detail below. For clarity, we only consider functions with

single-bit outputs, but the construction can be generalized just as we did in Section 5.3.

Construction 1. Let ABE = (Setup,Enc,KeyGen,TransformDec) be a KP-ABE scheme

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 117

with outsourcing with attribute universe U . We construct a multi-function verifiable com-

putation scheme as follows:

• Setup(�)! (PKparam, SKparam) : Run ABE .Setup(�, U) twice to obtain (PK0,MSK0)

and (PK1,MSK1).

Set PKparam = (PK0, PK1) and SKparam = (MSK0,MSK1).

• KeyGenPK
param

,SK
param

(F)! (PKF , SKF) : Compute (SK0

¯F
, TK0

¯F
) ABE .KeyGenMSK0

(F̄)

and (SK1

F , TK
1

F) ABE .KeyGenMSK1

(F), where F̄ is the complement of F .

Output PKF = (TK0

¯F
, TK1

F) and SKF = (SK0

¯F
, SK1

F). In other words, the public

key will be the transformation keys, and the secret verification key will be the “true”

secret keys.

• ProbGenPK
param

,SK
param

(x)! (�x, ⌧x): Generate a pair of random messages (M
0

,M
1

)
R

{0, 1}�⇥{0, 1}�. Compute ciphertexts C
0

 ABE .EncPK0(M0, x) and C
1

 ABE .EncPK1(M1, x).

Output �x = (C
0

, C
1

) and ⌧x = (M
0

,M
1

).

• ComputePK
param

,PK
F

(�x)! �y: Parse PKF as (TK0

¯F
, TK1

F). Compute C 0
0

=

ABE .TransformTK0

¯

F

(C
0

) and C 0
1

= ABE .TransformTK1

F

(C
1

). Output �y = (C 0
0

, C 0
1

).

• VerifySK
F

,⌧
x

(�y) ! y: Parse SKF as (SK0

¯F
, SK1

F), ⌧x as (M
0

,M
1

), and �y as

(C 0
0

, C 0
1

). If ABE .DecSK0
F̄
(C0

0) = M0, then output y = 0. If ABE .DecSK1
F
(C0

0) = M1,

then output y = 1. Otherwise, output ?.

The above construction will provide the e�ciency property required for a VC scheme

(verification that is more e�cient than the delegated computation) as long as the Transform

algorithm is computationally more expensive than the Enc and Dec algorithms of the ABE

scheme. However, this requirement is inherent in the definition of ABE with outsourcing.

Remark 5. Construction 1 is publicly delegatable, since ProbGen only makes use of PKparam;

i.e., it only employs the public ABE keys to perform ProbGen, so anyone may do so.

However, the verification function cannot be made public while still preserving the abil-

ity to verify the specific function used. Specifically, giving out SKF in Green et al.’s ABE

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 118

scheme [Green et al., 2011] would directly allow the worker to lie about the function used,

i.e., claim that an output computed with F was the result of applying G. Even so, the ad-

versary would still be unable to lie about the output’s value. Thus, if we only care about the

integrity of the output value and the fact that it was produced by some function submitted

to KeyGen, then this construction can be made publicly verifiable as well.

Proof Intuition. The proof of security looks very similar to Proof 5.3.1. The intuition for

input security is the same as before, i.e., the revelation of one of the two random messages

associated with a ProbGen invocation demonstrates that the computation was performed on

that particular input. Unlike with a regular ABE scheme, we can also verify the function

used, since decrypting with a key that does not match the transformation key used will not

produce the expected message. This is provided by the security of the ABE with outsourced

decryption, which guarantees semantic security of the encrypted messages even when the

adversary sees the transformation keys used for the outsourced portion of the decryption.

Theorem 10. Let ABE = (Setup,Enc,KeyGen,TransformDec) be a secure (according to

Definition 17) KP-ABE scheme with outsourcing with attribute universe U . Let VCABE =

(Setup,KeyGen,ProbGen,Compute,Verify) be a multi-function verifiable computation scheme

obtained from ABE using Construction 1. Then VCABE is secure according to Definition 15.

Proof. Theorem 10

Let us assume that there exists an adversary AV C that succeeds to cheat in the security

game (Definition 15) for the scheme VCABE with non-negligible probability µ. We show

how to construct an adversary AABE that wins the security game from Definition 1 with

non-negligible probability.

1. AABE chooses a random bit r
R {0, 1}.

2. AABE receives a public key in the ABE security game. Call it PKr
abe.

3. AABE generates a second pair of keys (PK1�r
abe ,MSK1�r

abe) ABE .Setup(�, U).

4. On a call to Setup in the VC security gameAABE provides toAV C the keys (PK0

abe, PK1

abe).

CHAPTER 5. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 119

5. On a call to KeyGen(f1) in the VC security game AABE computes the complement

function f0 f̄1. AABE submits a query in the ABE security game for f r and

receives back the transformation key TKfr . He also generates on his own the keys

(TKf1�r , SKf1�r) ABE .KeyGenMSK1�r

abe

(f1�r), and returns (TKf0 , TKf1) to AV C .

6. The adversary AABE guesses one of the inputs x that he receives from AV C to be

the challenge input and sets � = x. He chooses three messages m
0

,m
1

,m
2

, sends

m
0

,m
1

and � to the challenger in the ABE security game, and receives back the

challenge ciphertext cr. AABE computes c1�r ABE .EncPK1�r
abe

(m2, �) and sets �x
(c0, c1). For any other input y, AABE chooses two messages m

0

,m
1

and returns

�x (ABE .EncPK0
abe
(m0, �),ABE .EncPK1

abe
(m1, �)).

7. AV C returns to AABE a cheating output (x, f1, �̂y = (C 0
0

, C 0
1

)) for the evaluation of a

function f1 on the input x.

8. If f1(x) = r, then AABE returns a random bit. Otherwise, he invokes his oracle

SKfr Corrupt(f r), uses SKfr to decrypt C 0
1�r and obtain M . If M = m

0

, he

returns 0; if M = m
1

, he returns 1, and otherwise, he returns a random bit.

To see that AABE succeeds with non-negligible probability, note that if f1(x) = 0,

then to cheat, AV C must convince the verify function that y = 1; i.e., he must return

�̂y = (C 0
0

, C 0
1

) such that ABE.DecSK1(C0
1) = M1. If r = 0, the cheat doesn’t involve

the challenge ciphertext c0, so AABE makes a random guess. If r = 1, then AABE calls

Corrupt(f1). Since f1(x) = 0, this will not violate the ABE security game.

The case for f1(x) = 1 is symmetric.

Therefore, AABE succeeds in the security game with probability µ
2Q , where Q is the

number of queries made to ProbGen by AV C ; since Q is polynomial in �, this is non-

negligible.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 120

Chapter 6

Outsourcing Multi-Party

Computation with Non-Colluding

Adversaries

6.1 Motivation and Contributions

Early feasibility results in MPC showed that any functionality can be securely computed

[Yao, 1982; Yao, 1986; Goldreich et al., 1987; Chaum et al., 1988a]. Since then, there

has been a large number of works improving the security definitions, strengthening the

adversarial model, increasing the number of malicious parties tolerated and studying the

round and communication complexity (we refer the reader to [Goldreich, 2004] and the

references therein). Most of these works, however, implicitly assume that the computation

will be executed in a homogeneous computing environment, where all the participants play

similar roles and have the same amount of resources. As such, almost all MPC protocols

have a symmetric workload in the sense that every party is required to do the same amount

of work. In practice, however, distributed computations rarely take place in such settings

and, more often than not, they are carried out by a diverse set of devices that could

include, e.g., high-performance servers, large-scale clusters, personal computers and even

weak mobile devices. And while it is certainly possible to execute standard MPC protocols

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 121

in such environments, it is undesirable from a practical point of view since the computation

will be bounded by the resources of the weakest device.

Towards making MPC more practical, it is then natural to seek protocols with asym-

metric workloads. While such protocols can be designed—in the semi-honest model—based

on fully-homomorphic encryption (FHE), the resulting constructions are still too compu-

tationally expensive to be of practical interest. In this work, we take a di↵erent approach

and show that if some of the parties are dishonest but do not collude, then it is possible

to design protocols with asymmetric workloads and avoid the use of FHE altogether. We

believe security in the presence of non-colluding adversaries is a useful guarantee as there

are many instances in practice where collusion is unlikely to occur. This can happen either

because it is not feasible, is too costly, or because it is prevented by other means, e.g., by

physical means, by the Law or due to conflicting interests. Non-collusion can also occur

if the parties in the system are compromised by independent adversaries that simply do

not have the capacity or the opportunity to compromise the same system (e.g., indepen-

dent malware spreading through a network or hackers that are not aware of each other’s

presence).

An important example of a heterogeneous environment—and the main motivation for

our work—is cloud computing, where a computationally powerful service provider o↵ers

possibly weaker clients access to its resources “as a service”. This leads us to consider the

problem of MPC in a setting where, in addition to the parties evaluating the functionality,

there is an untrusted server that (1) does not have any input to the computation; (2) does

not receive any output from the computation; but (3) has a vast (but bounded) amount of

computational resources. We refer to this as server-aided MPC and our aim is to design

protocols with workloads that are asymmetric and that minimize the computation of the

parties at the expense of the server.

6.1.1 Our Contributions

We consider MPC in the server-aided setting, where the parties have access to a single

server with a large amount of computational resources that they can use to outsource their

computation. In this setting, we are concerned with designing protocols that minimize the

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 122

computation of the parties at the expense of the server. While it is possible to treat the

server as one more participant in a multi-party computation and to use standard MPC con-

structions to obtain server-aided protocols, a naive implementation of this approach would

result in a symmetric workload. We observe, however, that asymmetry can be achieved un-

der a weaker adversarial model and, in particular, when certain parties do not collude. While

our main motivation for considering non-colluding adversaries is to design server-aided pro-

tocols without making use of FHE and with better e�ciency than the naive implementation

discussed above, our formalization of non-collusion might be of interest in other scenarios

such as the conventional MPC settings. We make several contributions:

1. We formalize and define security for server-aided MPC. Our security definition is

in the ideal/real-world paradigm and guarantees that, in addition to the standard

security properties of MPC, the server learns no information about the client’s inputs

or outputs and cannot a↵ect the correctness of the computation.

2. We consider a new adversarial model for MPC in which corrupted parties do not

necessarily collude. Non-collusion in heterogeneous computing environments often

occurs in practice and therefore is important to consider. To address this question,

we generalize the standard security definition for MPC to allow for a finer-grained

specification of collusion between the parties. This requires us to introduce formal

characterizations of non-colluding adversaries which may be of independent interest.

Also, as we will see, by considering non-colluding adversaries we are able to obtain

highly e�cient protocols.

3. We explore the connection between server-aided MPC and secure delegated computa-

tion. Roughly speaking, a server-aided MPC protocol can be viewed as a (interactive)

delegated computation scheme for multiple parties. We show how to transform any

secure delegated computation scheme into a server-aided MPC protocol.

In addition to the theoretical contributions discussed above, we also describe two e�cient

general-purpose server-aided MPC protocols based on Yao’s garbled circuits [Yao, 1982],

and an e�cient special-purpose protocol for private set intersection:

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 123

4. The first protocol we consider is (a slight variant of) the FKN protocol [Feige et al.,

1994]. We show that it is secure against a malicious server and semi-honest parties

that do not collude with the server. It allows all but one of the parties to outsource

their computation to the server; making their computation only linear in the size

of their inputs (which is optimal). In addition, the protocol does not require any

public-key operations (except for a one time coin-tossing protocol).

5. Our second protocol extends the FKN protocol to be secure even when all but one

of the parties is malicious. Our construction uses cut-and-choose techniques from

[Mohassel and Franklin, 2006; Lindell and Pinkas, 2007], but requires us to address

several subtleties that do not exist in the standard two-party setting. One main prob-

lem we need to solve is how to allow an untrusted server to send the majority output

of multiple circuits to the parties without learning the actual output or modifying the

results. We achieve this by constructing a new oblivious cut-and-choose protocol that

allows the verifier in the cut-and-choose mechanism to outsource its computation to

an untrusted server.

6. Our third protocol is a new and e�cient server-aided protocol for private set in-

tersection. Our construction provides security against a malicious server as well as

malicious participants. The bulk of computation by each participant is a number of

PRF evaluations that is linear in the size of its input set. In comparison, the most

e�cient two-party set intersection protocol [Hazay and Nissim, 2010] with equivalent

security guarantees, requires O(m + n(log logm + p)) exponentiations where m and

n are the sizes of the input sets and p is the bit length of each input element, which

is logarithmic in the input domain range. Protocols that provide security in weaker

adversarial models (e.g., the random oracle model, the CRS model, and limited input

domain) and achieve linear computational complexity in the total size of the input

sets still require a linear number of public key operations.

Our solution generalizes to the case of multi-party set intersection, preserving the

same computational complexity for each participant. The best existing solution for

this case [Dachman-Soled et al., 2011] has computation cost of O(Nd2 log d) in the

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 124

case of N parties with input sets of size d.

The above-mentioned protocols are significantly more e�cient than the existing MPC

protocols for the same problems. In order to provide a better sense of the e�ciency gain ob-

tained by these server-aided constructions, we initiate in Section 6.9 an informal discussion

on e�ciency in the server-aided model. In particular we outline di↵erent ways of quantifying

the e�ciency of a server-aided MPC protocol, each of which is suitable for a specific setting

or application. We also provide some intuition for why any noticeable improvement in the

e�ciency of our general-purpose constructions is likely to yield considerably more practical

secure delegated computation schemes. We note that a more formal study of e�ciency in

the server-aided model is an interesting research direction.

6.2 Overview of Protocols

In this overview and throughout the rest of the paper, we mostly focus on server-aided two-

party computation (two parties and a server). However, as we discuss in future sections,

our constructions easily extend to the multi-party case as well.

The first two protocols are based on Yao’s garbled circuit construction. In both proto-

cols, the only interaction between the two parties, denoted by P
1

and P
2

, is to generate a

set of shared random coins to be used in the rest of the protocol. This step is independent

of the parties’ inputs and the function being evaluated and can be performed o✏ine (e.g.,

for multiple instantiations of the protocol at once). Moreover, the coin-tossing needs to be

performed exactly once to share a secret key. In all future runs of the protocol, P
1

and P
2

can use their shared secret key and a pseudorandom function, to generate the necessary

coins. After this step, the two parties interact directly with the untrusted server until they

retrieve their final result.

The FKN protocol. In the (modified) FKN protocol (described in Section 6.5), after

generating the shared random coins, each party sends a single message to the server and

receives an encoding of his own output. The parties then individually use their local coins to

recover their outputs. For P
1

and P
2

, this protocol is significantly more e�cient than using

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 125

a standard secure two-party computation protocol. First, none of the parties (including

the server) have to perform any public-key operations, except to perform the coin-tossing

which as discussed above is only performed once. This is in contrast to standard MPC

where public-key operations (which are considerably more expensive than their secret-key

counterparts) are a necessary. Second, one of the parties (P
2

in our case) only needs to do

work that is linear in the size of his input and output, and independent of the size of the

circuit being computed.

The server and P
1

will do work that is linear in the size of the circuit. If the server-

aided protocol is run multiple times for the same or di↵erent functionalities, it is possible to

reduce the online work of P
1

by performing the garbling of multiple circuits (for the same

or di↵erent functions) in the o✏ine phase. The online work for P
1

will then be similar to

P
2

and only linear to the size of his input and output.

We prove the protocol secure against a number of corruption and non-collusion scenarios.

Particularly, the protocol can handle cases where the server, or P
2

are malicious while the

other players are either honest, or semi-honest but non-colluding.

Making FKN robust. The security of the modified FKN protocol breaks down when

party P
1

is malicious. We address this in Section 6.6 by augmenting it with cut-and-choose

techniques for Yao’s two-party protocol (e.g., see [Mohassel and Franklin, 2006; Lindell and

Pinkas, 2007]). First, note that the cut-and-choose procedure no longer takes place between

P
1

and P
2

since this would require P
2

to do work linear in the circuit size (significantly

reducing his e�ciency gain). Instead, P
2

outsources his cut-and-choose verification to the

server. However, a few subtleties arise that are specific to the server-aided setting and

require modifications to the existing techniques. At a high level, the di�culty is that,

unlike the standard setting, the server only learns the garbled outputs and therefore cannot

determine the majority output on his own. One might try to resolve this by having the

server send the garbled outputs to P
1

and P
2

and have them compute the majority but,

unfortunately, this is also insecure.

We take the following approach. Instead of treating the garbled output values as the

garbling of the real outputs (as prescribed by the translation table), we use them as evalu-

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 126

ation points on random polynomials that encode (as their constant factor) the “ultimate”

garbled values corresponding to the real outputs. This encoding can be interpreted as a

Reed-Solomon encoding of the ultimate garbled values using the intermediate ones returned

by the circuit evaluation. Intuitively, as long as the majority of the garbled evaluation points

are correct, the error correction of Reed-Solomon codes guarantees correct and unambigu-

ous decoding of the majority output by the server. Further care is needed to ensure that

the server performs the decoding obliviously, and that for each output bit he is only able to

decode one Reed-Solomon codeword without learning the corresponding output. For this

purpose, it turns out that we need the polynomials used for the Reed-Solomon encoding

to be permutations over the finite field. To achieve this goal, we sample our polynomials

uniformly at random from the family of Dickson polynomials of an appropriate degree.

Delegation-based protocol. We show how to construct a server-aided two-party com-

putation protocol based on any secure non-interactive delegated computation scheme. A

delegated computation scheme allows a client to securely outsource the computation of a

circuit C on a private input x to an untrusted worker. The notion of secure delegated

computation is closely related to that of verifiable computation [Goldwasser et al., 2008;

Gennaro et al., 2010; Chung et al., 2010], with the additional requirement that the client’s

input and output remains private. Our construction is interesting in the sense that, it

formalizes the intuitive connection between the problems of server-aided computation and

verifiable computation by interpreting server-aided protocols as a means for verifiably and

privately outsourcing a secure two-party computation protocol to an untrusted worker. The

resulting protocol inherits the e�ciency of the underlying delegated computation scheme.

Set intersection protocol. We present a construction for outsourced computation for

the problem of set intersection where two or more parties want to find the intersection of

their input sets. The main idea of our protocol is that to have the server compute the set

intersection of the input sets but since we want to preserve the privacy of the inputs, he

is only given PRF evaluations on the elements under a key that all parties have agreed

on. Then each party will be able to map the returned intersection PRF values to real

elements. In order to protect against a malicious server, we augment this approach by

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 127

mapping each input value to several unlinkable PRF evaluations. Now the server will be

asked to compute the set intersection on the new expanded sets and will be able to cheat

without being detected only if he guesses correctly which PRF evaluations correspond to the

same input value. This approach, however, introduces a new security issue in that it allows

the parties to be malicious by creating inconsistent PRF values. We fix this by requiring

each party to prove that he has computed correctly the multiple PRF evaluations for each

of his input elements by opening them after the server has committed to the output result.

In order not to lose the privacy guarantees for the inputs, however, we apply another level

of PRF evaluations.

6.3 Preliminaries and Standard Definitions

Notation. We write x � to represent an element x being sampled from a distribution

�, and x
$ X to represent an element x being sampled uniformly from a set X. If f is

a function, we refer to its domain as Dom(f) and to its range as Ran(f). The output x

of an algorithm A is denoted by x A. If A is a probabilistic algorithm we sometimes

write y A(x; r) to make the coins r of A explicit. [n] denotes the set {1, . . . , n}. We

refer to the ith element of a sequence v as either vi or v[i]. Throughout k will refer to

the security parameter. A function ⌫ : N ! N is negligible in k if for every polynomial

p(·) and su�ciently large k, ⌫(k) < 1/p(k). Let poly(k) and NEGL(k) denote unspecified

polynomial and negligible functions in k, respectively. We write f(k) = poly(k) to mean

that there exists a polynomial p(·) such that for all su�ciently large k, f(k) p(k), and

f(k) = NEGL(k) to mean that there exists a negligible function ⌫(·) such that for all

su�ciently large k, f(k) ⌫(k).

Private key encryption. A private-key encryption scheme is a set of three polynomial-

time algorithms (Gen,Enc,Dec) that work as follows. Gen is a probabilistic algorithm that

takes a security parameter k in unary and returns a secret key K. Enc is a probabilistic

algorithm that takes a key K and an n-bit message m and returns a ciphertext c. Dec is a

deterministic algorithm that takes a key K and a ciphertext c and returns m if K was the

key under which c was produced. Informally, a private-key encryption scheme is considered

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 128

secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do not leak any

useful information about the plaintext even to an adversary that can adaptively query an

encryption oracle.

Functionalities. An n-party randomized functionality is a function f : ({0, 1}⇤)n ⇥
{0, 1}⇤ ! {0, 1}⇤, where the first input is a sequence of n strings x, the second input

is a set of random coins and the output is a sequence of n strings y. We will often omit the

coins and simply write y f(x). If we do wish to make the coins explicit then we write

y f(x; r). We denote the ith party’s output by fi(x). A functionality is deterministic if

it only takes the input string x as input and it is symmetric if all parties receive the same

output. It is known that any protocol for securely computing deterministic functionalities

can be used to securely compute randomized functionalities (cf. [Goldreich, 2004] Section

7.3) so in this work we focus on the former. A basic functionality we will make use of is the

coin tossing functionality FCT(1`, 1`) = (r, r), where |r| = ` and r is uniformly distributed.

Garbled circuits. Yao’s garbled circuit construction consists of five polynomial-time

algorithms Garb = (GarbCircuit,GarbIn,Eval,GarbOut,Translate) that work as follows. We

present GarbCircuit, GarbIn and GarbOut as deterministic algorithms that take a set of coins

r as input. GarbCircuit is a deterministic algorithm that takes as input a circuit C that

evaluates a function f , and a set of coins r 2 {0, 1}k and returns a garbled circuit G(C).

GarbIn is a deterministic algorithm that takes as input a player index i 2 {1, 2}, an input

x , coins r 2 {0, 1}k, and returns a garbled input G(x). Eval is a deterministic algorithm

takes as input a garbled circuit G(C) and two garbled inputs G(x) and G(y) and returns

a garbled output G(o). GarbOut is a deterministic algorithm that takes as input a random

coins r 2 {0, 1}k and returns a translation table T. Translate is a deterministic algorithm

that takes as input a garbled output G(o) and a translation table T and returns an output

o.

We note that it is possible to arrange the above five functions in such a way that the

computational complexity of GarbIn is linear in the input size, the computational complexity

of GarbOut and Translate is linear in the output size, while the complexity of GarbCircuit

and Eval are linear in the circuit size. We use this important property when discussing

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 129

e�ciency of our protocols.

Informally, Garb is considered secure if (G(C),G(x),G(y)) reveals no information about

x and y. An added property possessed by the construction is verifiability which, roughly

speaking, means that, given (G(C),G(x),G(y)), no adversary can output some G(o) such

that Translate(G(o),T) 6= f(x, y). We discuss these properties more formally in Ap-

pendix D.1.

Delegated computation. A delegated/verifiable computation scheme consists of four

polynomial-time algorithms Del = (Gen,ProbGen,Compute,Verify) that work as follows.

Gen is a probabilistic algorithm that takes as input a security parameter k and a function

f and outputs a public and secret key pair (pk, sk) such that the public key encodes the

target function f . ProbGen is a probabilistic algorithm that takes as input a secret key sk

and an input x in the domain of f and outputs a public encoding �x and a secret state

⌧x. Compute is a deterministic algorithm that takes as input a public key pk and a public

encoding �x and outputs a public encoding �y. Verify is a deterministic algorithm that takes

as input a secret key sk, a secret state ⌧x and a public encoding �y and outputs either an

element y of f ’s range or the failure symbol ?. Informally, a delegated computation scheme

is private if the public encoding �x of x reveals no useful information about x. In addition,

the scheme is verifiable if no adversary can find an encoding �y0, for some y0 6= f(x), such

that Verifysk(⌧x,�y0) 6= ?. We say that a delegated computation scheme is secure if it is

both private and verifiable. We refer the reader to Section D.2 for a formal definition of

verifiable computation.

6.4 Non-Collusion in Multi-Party Computation

The standard ideal/real world definition for MPC, proposed by Canetti [Canetti, 2000b]

and building on [Beaver, 1992; Goldwasser and Levin, 1991; Micali and Rogaway, 1992],

compares the real-world execution of a protocol for computing an n-party functionality f

to the ideal-world evaluation of f by a trusted party. In the real-world execution, the parties

run the protocol in the presence of an adversary A that is allowed to corrupt a subset of

the parties. In the ideal execution, the parties interact with a trusted party that evaluates

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 130

f in the presence of a simulator S that corrupts the same subset of parties.

Typically, only a single adversary A is considered. This monolithic adversary captures

the possibility of collusion between the dishonest parties. One distinguishes between passive

corruptions, where the adversary only learns the state of the corrupted parties; and active

corruptions where the adversary completely controls the party and, in particular, is not

assumed to follow the protocol. Typically, adversaries that make passive corruptions are

semi-honest whereas adversaries that make active corruptions are malicious. In this work,

we will make a distinction between malicious adversaries who make active corruptions and

can behave arbitrarily and deviating adversaries who make active corruptions but whose

behavior may not be arbitrarily malicious (i.e., their behavior may be limited to a certain

class of attacks). Another distinction can be made as to how the adversary chooses which

parties to corrupt. If it must decide this before the execution of the protocol then we say

that the adversary is static. On the other hand, if the adversary can decide during the

execution of the protocol then we say that the adversary is adaptive. We only consider

static adversaries in this work.

Roughly speaking, a protocol ⇧ is considered secure if it emulates, in the real-world, an

evaluation of f in the ideal-world. This is formalized by requiring that the joint distribution

composed of the honest parties’ outputs and of A’s view in the real-world execution be

indistinguishable from the joint distribution composed of the honest parties’ outputs and

the simulator S’s view in the ideal-world execution. As mentioned above, the standard

security definition for MPC models adversarial behavior using a monolithic adversary. This

has the advantage that it captures collusion and thus provides strong security guarantees.

There are, however, many instances in practice where collusion does not occur. This can

happen either because it is not feasible, too costly, or because it is prevented by other means

(e.g., by physical means, by the Law or due to conflicting interests). This is particularly

true in the setting of cloud computing where one can think of many scenarios where the

server (i.e., the cloud operator) will have little incentive to collude with any of the other

parties.

This naturally leads to the two following questions: (1) how do we formalize secure

computation in the presence of non-colluding adversaries? and (2) what do we gain by

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 131

weakening the security guarantee? In particular, can we design protocols that are more

e�cient or that remain secure even if all parties are corrupted? Note that while the standard

definition becomes meaningless if all parties are corrupted (since the monolithic adversary

then knows all the private information in the system), this is not so if the parties are

corrupted by non-colluding adversaries.

6.4.1 Formalizing Non-Collusion With Respect to Semi-Honest Adver-

saries

Intuitively, we think of collusion between participants in a MPC protocol as an exchange

of “useful information”, where by useful information we mean anything that allows the

colluding parties to learn something about the honest parties’ inputs that is not prescribed

by the protocol. For our purposes, a non-colluding adversary is therefore:

“an adversary that avoids revealing any useful information to other parties.”

As we will see, formalizing this intuition is not straight-forward. In the following dis-

cussion, we divide the messages sent by a party into two types: protocol and non-protocol

messages. Assuming the protocol starts with a “start” message and ends with an “end”

message, a protocol message is one that comes after the start message and before the end

message, and a non-protocol message is one that comes either before the start message or

after the end message. To formalize our intuition we need to make two crucial changes to

the standard definition which we discuss below.

Independent adversaries. First, in addition to the monolithic adversary (which cor-

rupts multiple parties) we include a set of non-monolithic adversaries that corrupt at most

one party and have access only to the view of that party. We also assume that all the

adversaries are independent in the sense that they do not share any state 1. Intuitively,

this essentially guarantees that these adversaries do not send any non-protocol messages to

each other and therefore that they can only collude using protocol messages. Throughout

the rest of this work all adversaries are independent.

1This idea already appears in work on collusion-free protocols [Lepinksi et al., 2005; Alwen et al., 2008;

Alwen et al., 2009].

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 132

When working with independent adversaries, we will consider three possible adversarial

behaviors: semi-honest, malicious and non-cooperative. Semi-honest and malicious behavior

refer to the standard notions: a semi-honest adversary follows the protocol while a mali-

cious adversary can deviate arbitrarily. Informally, a non-cooperative adversary is one that

deviates from the protocol as long as he does not (willingly) send useful information to

another party. We will discuss how to formalize this intuition in section 6.4.2, and for now

we focus on semi-honest adversaries. Note that, intuitively, if an adversary is independent

and semi-honest, then it is non-colluding in the sense outlined above because it will send

only protocol messages (by independence) and because these messages will reveal at most

what is prescribed by the protocol (due its semi-honest behavior).

Partial emulation. Our second modification is a weakening of the notion of emulation to

only require that indistinguishability hold with respect to the honest parties’ outputs and

a single adversary’s view. In other words, we require that for each independent adversary

Ai, the joint distribution composed of the honest parties’ outputs and Ai’s view in the

real-world, be indistinguishable from the joint distribution composed of the honest parties’

outputs and the simulator S 0
i’s output in the ideal world. Roughly speaking, this implies

that the protocol remains private (i.e., the parties do not learn information about each

other’s inputs) as long as the parties do not share any information.

To see why partial emulation is needed in our setting, consider two independent adver-

saries A
1

and A
2

whose outputs are correlated based on some protocol message exchanged

between them. Under the standard notion of emulation, the simulators S
1

and S
2

would

also have to output correlated views. The problem, however, is that because S 0
1

and S 0
2

are

independent they cannot exchange any messages and a-priori it is not clear how they could

correlate their outputs 2.

We are now ready to introduce our security definition for non-colluding semi-honest ad-

versaries. Like the standard definition of security with abort, we do not seek to guarantee

2This could potentially be addressed using a setup assumption, but here we restrict ourselves to the plain

model.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 133

fairness or guaranteed output delivery and this is captured by allowing the adversaries to

abort during the ideal-world execution. In addition, however, we also allow the server to

select which parties will and will not receive their outputs. This weakening of the standard

definition was first proposed by Goldwasser and Lindell in [Goldwasser and Lindell, 2002]

and has the advantage of removing the need for a broadcast channel.

Real-world execution. The real-world execution of protocol ⇧ takes place between play-

ers (P
1

, . . . , Pn), server Pn+1

and adversaries (A
1

, . . . ,Am+1

), where m n. Let H ✓ [n+1]

denote the honest parties, I ⇢ [n+1] denote the set of corrupted and non-colluding parties

and C ⇢ [n + 1] denote the set of corrupted and colluding parties. Since we only consider

static adversaries these sets are fixed once the protocol starts.

At the beginning of the execution, each party (P
1

, . . . , Pn) receives its input xi, a set

of random coins ri and an auxiliary input zi while the server Pn+1

receives only its coins

rn+1

and an auxiliary input zn+1

. Each adversary (A
1

, . . . ,Am) receives an index i 2 I

that indicates the party it corrupts, while adversary Am+1

receives C indicating the set of

parties it corrupts.

For all i 2 H, let outi denote the output of Pi and for i 2 I [C, let outi denote the

view of party Pi during the execution of ⇧. The ith partial output of a real-world execution

of ⇧ between players (P
1

, . . . , Pn+1

) in the presence of adversaries A = (A
1

, . . . ,Am+1

) is

defined as

real
(i)
⇧,A,I,C,z(k,x; r)

�

=
�
outj : j 2 H

 [outi.

Ideal-world execution. In the ideal-world execution, all the parties interact with a

trusted party that evaluates f . As in the real-world execution, the ideal execution begins

with each party (P
1

, . . . , Pn) receiving its input xi, its coins ri and an auxiliary input zi,

while the server Pn+1

receives only its coins rn+1

and an auxiliary input zn+1

. Each party

(P
1

, . . . , Pn) sends x0i to the trusted party, where x0i = xi if Pi is semi-honest and x0 is

an arbitrary value if Pi is malicious. If any x0i = ?, then the trusted party returns ? to

all parties. If this is not the case, then the trusted party asks the server to specify which

of the corrupted parties should receive their outputs and which should receive ?. The

trusted party then returns fi(x0
1

, . . . , x0n) to the corrupted parties Pi that are to receive

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 134

their outputs and ? to the remaining corrupted parties. The trusted party then asks the

corrupted parties that received an output whether they wish to abort. If any of them does,

then the trusted party returns ? to the honest parties. If not, it returns fi(x0
1

, . . . , x0n) to

honest party Pi.

For all i 2 H, let outi denote the output returned to Pi by the trusted party, and

for i 2 I [C let outi be some value output by Pi. The ith partial output of an ideal-

world execution between parties (P
1

, . . . , Pn+1

) in the presence of independent simulators

S = (S
1

, . . . ,Sm+1

) is defined as

ideal
(i)
f,S,I,C,z(k,x; r)

�

=
�
outj : j 2 H

 [outi.

Security. Informally, a protocol ⇧ is considered secure against non-colluding semi-honest

adversaries if it partially emulates, in the real-world, an evaluation of f in the ideal-world.

Definition 18 (Security against semi-honest adversaries). Let f be a deterministic n-party

functionality and ⇧ be an n-party protocol. Furthermore, let I ⇢ [n+ 1] and C ⇢ [n+ 1] be

such that I \C = ; and |I| = m. We say that ⇧ (I,C)-securely computes f if there exists

a set {Simi}i2[m+1]

of ppt transformations such that for all semi-honest ppt adversaries

A = (A
1

, . . . ,Am+1

), for all x 2 ({0, 1}⇤)n and z 2 ({0, 1}⇤)n+1, and for all i 2 [m+ 1],
⇢
real

(i)
⇧,A,I,C,z(k,x; r)

�

k2N

c⌘
⇢
ideal

(i)
f,S,I,C,z(k,x; r)

�

k2N
,

where S = (S
1

, . . . ,Sm+1

) and Si = Simi(Ai) and where r is chosen uniformly at random.

6.4.2 Formalizing Non-Collusion With Respect to Deviating Adversaries

While non-collusion in the semi-honest model can be formalized via independent adversaries

and partial emulation, this is not su�cient when the adversaries are allowed to deviate

from the protocol. The di�culty is that such adversaries can use protocol messages to

collude since they can send arbitrary messages. Of course, collusion can be prevented

through physical means (e.g., using ballot boxes as in [Lepinksi et al., 2005]) or trusted

communication channels (e.g., the mediator model used in [Alwen et al., 2008; Alwen et al.,

2009]) but our goal here is not to obtain (or define) protocols that prevent adversaries from

colluding but to formally characterize adversaries that do not wish to or cannot collude.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 135

Towards formalizing our intuition, we introduce the notions of non-cooperative and

isolated adversaries. Let (A
1

, . . . ,Am+1

) be a set of independent adversaries. Informally,

an adversary Ai is non-cooperative with respect to another adversary Aj (for j 6= i) if it

does not share any useful information with Aj . An adversary Ai is isolated if all adversaries

{Aj}j 6=i are non-cooperative with respect to Ai. In other words, Ai is isolated if no one

wants to share any useful information with him. We formalize this intuition in the following

definitions.

Definition 19 (Non-cooperative adversary). Let f be a deterministic n-party functionality

and ⇧ be an n-party protocol. Furthermore, let H, I and C be pairwise disjoint subsets of

[n+1] and let A = (A
1

, . . . ,Am+1

), where m = |I|, be a set of independent ppt adversaries.

For any i, j 2 [m + 1] such that i 6= j, we say that adversary Aj is non-cooperative with

respect to Ai if there exists a ppt simulator Vi,j such that for all x 2 ({0, 1}⇤)n, for all

z, r 2 ({0, 1}⇤)n+1 and all y 2 Ran(fi) [{?},
⇢
Vi,j(y, zi), rj

�

k2N

c⌘
⇢
viewi,j , rj

�� outputi = y : {out`}` real
(i)
⇧,A,I,C,z(k,x; r)

�

k2N

whenever Pr [outputi = y] > 0. Here viewi,j denotes the messages between Ai and Aj in

the real-world execution and outputi = y is the event that party Pi receives output value y.

Note that with the notion of non-cooperation, we are restricting the behavior of the

non-cooperating adversary. In particular, we are assuming it will deviate from the protocol

but in such a way that it will not disclose any useful information to the isolated adversary

Ai. Therefore, one has to be careful in specifying the isolated party’s behavior (i.e., whether

it is semi-honest or malicious) so that the non-cooperation assumption is not so strong as to

imply the security of the protocol. In particular, requiring that the simulator Vi,j work with

respect to a malicious Ai seems too strong. Similarly, requiring that it work with respect to

an honest Ai seems too weak as honest adversaries can always be simulated. A more useful

and reasonable notion seems to follow from requiring that Vi,j work with respect to semi-

honest adversaries. This can be interpreted as saying that the non-cooperative adversary

does not intentionally disclose useful information to an isolated adversary. In particular,

this means that the non-cooperative adversary will not take actions such as sending its

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 136

private input to the isolated party. It does not, however, restrict the isolated adversary

from trying to “trick” the non-cooperative adversary into revealing this information.

As described above, an isolated adversary is one with which no other adversary wants

to cooperate. Roughly speaking, we formalize this intuition by requiring that there exist an

emulator for the isolated adversary Ai that, given only Ai’s output value fi(x), returns Ai’s

view from a real-world execution. Intuitively, the notion of isolation restricts the behavior

of the other adversaries towards Ai by allowing them to behave arbitrarily as long as their

collective actions do not result in Ai learning any useful information in the sense discussed

above. This informal description neglects some important subtleties that we address below.

Definition 20 (Isolated adversary). Let f be a deterministic n-party functionality and ⇧

be an n-party protocol. Furthermore, let H, I and C be pairwise disjoint subsets of [n + 1]

and let A = (A
1

, . . . ,Am+1

), where m = |I|, be a set of independent ppt adversaries. For

any i, j 2 [m+1] such that i 6= j, we say that a semi-honest adversary Ai is isolated if there

there exists a ppt emulator Ei such that for all x 2 ({0, 1}⇤)n and r, z 2 ({0, 1}⇤)n+1, and

all y 2 Ran(fi) [{?},
⇢
Ei
�
y, zi

�
, {rj}j 6=i

�

k2N

c⌘
⇢
outi, {rj}j 6=i

�� outputi = y : {out`}` real
(i)
⇧,A,I,C,z(k,x; r)

�

k2N

whenever Pr [outputi = y] > 0. Here outputi = y is the event that party Pi receives output

value y.

Towards understanding Definition 20, it is perhaps instructive to consider how we will

make use of it. Recall that to prove the security of a protocol ⇧ against independent

adversaries (A
1

, . . . ,Am+1

), we need, for all i 2 [m + 1], to describe a simulator Si whose

output in an ideal execution is indistinguishable from Ai’s output in a real execution. To

achieve this, we consider a simulator Si that works by simulating Ai so that it can recover

Ai’s output and return it as its own. Now suppose that, in the real world, ⇧ requires

Ai to interact with some other adversary Aj . It follows that Si will somehow have to

simulate this interaction, i.e., Si will have to simulate the (protocol) messages from Aj .

These messages, however, could be “colluding messages” in the sense that they could carry

information that helps Ai in learning more that what is prescribed by the protocol and it

may be impossible for Si to simulate them as they could include information known only

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 137

to Ai and Aj (e.g., this information could be hardwired in Ai and Aj). This is the main

reason that simply requiring that the real and ideal adversaries be independent (together

with partial emulation) is not enough to capture non-collusion with respect to deviating

adversaries.

Our approach here will be to “strengthen” the simulator Si by assuming that the adver-

saries {Aj}j 6=i are non-cooperative with respect to Ai. In Lemma 11 below, we will show

that this implies that Ai is isolated and, therefore, there exists an emulator Ei that will

return a view that is indistinguishable from Ai’s view when interacting with {Aj}j 6=i in a

real-world execution.

Lemma 11. Let f be a deterministic n-party functionality and ⇧ be an n-party protocol.

Furthermore, let A = (A
1

, . . . ,Am+1

) be a set of independent ppt adversaries. For any

i, j 2 [m+ 1], if {Aj}j 6=i are non-cooperative with respect to Ai, then Ai is isolated.

Proof. Consider the emulator Ei that, given y and zi, computes vi,j Vi,j(y, zi) for all j 6= i

and returns the view outi composed of {vi,j}i 6=j . Let {Aj
1

, . . . ,Aj
m

} be the adversaries that

are non-cooperative with respect to Ai and let {Vi,j
1

, . . . ,Vi,j
m

} be their corresponding

simulators (which are guaranteed to exist by the fact that they are non-cooperating with

respect to Ai). We show that Ei’s output is indistinguishable from the view of Ai in a

real execution using the following sequence of games. Game
0

consists of running {outj}j
real

(i)
⇧,A,I,C,z(k,x) and outputting outi. For all ` 2 [m], Game` is similar to Game`�1

except

that the messages between Ai and Aj
`

in outi are replaced with messages generated by

Vi,j
`

(y, zi). Note that the output of Gamem is distributed exactly as the output of Ei.
The indistinguishability of the outputs of Game

0

and Game
1

follows directly from the

non-cooperation of Aj
1

with respect to Ai so we show that, for all 2 ` m, if there

exists a ppt distinguisher D` that distinguishes the output of Game` from that of Game`�1

,

then there exists a ppt distinguisher B` that distinguishes the messages exchanged between

Ai and Aj
`

in a real-world execution from the messages generated by Vi,j
`

. Given a set

of messages vi,j
`

(generated either from a real-world execution or from Vi,j
`

), B` works as

follows. It first runs {outj}j real
⇧,A,I,C,z(k,x) and, for 1 t ` � 1, it replaces the

messages between Ai and Aj
t

in outi by vi,j
t

 Vi,j
t

(y, zi). It then replaces the messages

between Ai and Aj
`

in outi with vi,j
`

and simulates D(outi). It returns “real” if D outputs

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 138

` and “simulated” if D outputs ` + 1. Notice that if vi,j
`

was generated from a real-world

execution then B constructs outi exactly as in Game`�1

whereas if vi,j
`

is generated from

Vi,j
`

then B constructs outi as in Game`. It follows then that D’s advantage is equal to

B’s advantage in distinguishing between the outputs of Game`�1

and Game` which, by our

initial assumption, is non-negligible.

Since, in our setting, we will consider multiple adversaries with di↵erent adversarial

behaviors it will be convenient to specify the behavior of each adversary using the following

notation. If A
1

is semi-honest we will write A
1

[sh] and if A
1

is malicious we write A
1

[m].

If A
1

is non-cooperative with respect to A
2

then we write A
1

[nc
2

]. Throughout, we will

often need to describe classes of adversarial behaviors. We refer to such classes as adversary

structures and describe them as follows. Consider, for example, a three party protocol

between players P
1

, P
2

and P
3

. A protocol with security against the adversary structure

Adv =

⇢✓
A

1

⇥
m
⇤
,A

2

⇥
m
⇤
,A

3

⇥
sh
⇤◆

,

✓
A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤
,A

3

⇥
nc

1

, nc
2

⇤◆�
,

is secure in the following two cases: (1) A
1

and A
2

are malicious while A
3

is semi-honest;

and (2) A
1

and A
2

are semi-honest while A
3

is non-cooperating with respect to both A
1

and A
2

. We stress that we require the same protocol to be secure for each of the cases in

the adversarial structure. This is a stronger guarantee than having separate protocols that

address each of the cases since one does not need to know in advance which parties are

corrupted in order to choose which protocol to use (as long as it falls in one of the cases of

the adversarial structure).

We now present our security definition for non-colluding deviating adversaries. It is

based on the real- and idea-world executions defined in section 6.4.

Definition 21 (Security against deviating adversaries). Let f be a deterministic n-party

functionality and ⇧ be an n-party protocol. Furthermore, let I ⇢ [n + 1] and C ⇢ [n + 1]

be such that I \C = ; and |I| = m and let Adv be an adversary structure. We say that ⇧

(I,C,Adv)-securely computes f if there exists a set {Simi}i2[m+1]

of ppt transformations

such that for all ppt adversaries A = (A
1

, . . . ,Am+1

) that satisfy Adv, for all x 2 ({0, 1}⇤)n

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 139

and z 2 ({0, 1}⇤)n+1, and for all i 2 [m+ 1],

⇢
real

(i)
⇧,A,I,C,z(k,x; r)

�

k2N

c⌘
⇢
ideal

(i)
f,S,I,C,z(k,x; r)

�

k2N

where S = (S
1

, . . . ,Sm+1

) and Si = Simi(Ai) and where r is chosen uniformly at random.

Notice that the standard security definitions of secure MPC in the presence of a semi-

honest and malicious adversary can be recovered from Definition 21 by setting I = ; and

letting the adversary in Adv be semi-honest or malicious.

6.5 An E�cient Protocol for Non-Colluding Semi-Honest Par-

ties

In this Section, we describe a slight variation of the protocol by Feige, Killian and Naor

from [Feige et al., 1994] (from now referred to as the FKN protocol). The protocol makes

use of Yao’s garbled circuit construction as a black-box. We provide a high level description

of Yao’s construction in Appendix D.1.

At a high level, the FKN protocol works as follows. P
1

and P
2

are assumed to share

a set of random coins. P
1

then uses these coins to generate a garbling of the circuit, the

translation table and a garbling of its own input. P
1

sends the garbled circuit, its garbled

input and the translation table to the server. P
2

uses the same coins, but only computes its

own garbled input and the translation table. P
2

sends its garbled inputs to the server. The

server evaluates the garbled circuit using the garbled inputs, translates the garbled output

and returns the evaluation to both parties.

We slightly modify the FKN protocol to adapt it to our setting in which the server is not

allowed to learn the output and where we do not assume the parties share a set of random

coins. For this purpose, it su�ces that (1) the parties execute a coin tossing protocol to

generate the random coins; and (2) that P
1

not send the translation table to the server.

The server can still evaluate the garbled output which the parties can translate on their

own. Intuitively, the privacy and verifiability properties of the garbled circuit construction

(see Appendix D.1) and the coin-tossing protocol guarantee that a malicious server cannot

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 140

Inputs: P
1

’s input is x, P
2

’s input is y, and S has no inputs. All parties know the circuit

C which computes the functions f .

Outputs: P
1

and P
2

learn the output f(x, y).

1. P
1

and P
2

execute a coin tossing protocol to generate coins r. As a result, both

players learn r.

2. P
1

computes G(C) GarbCircuit(C; r), G(x) GarbIn(C, 1, x; r) and T
GarbOut(r). It sends G(C) and G(x) to S.

3. P
2

computes G(y) GarbIn(C, 2, y; r) and T GarbOut(r). It then sends G(y) to

S.

4. S computes G(o) Eval(G(C),G(x),G(y)) and sends it to P
1

and P
2

.

5. P
1

and P
2

separately compute o Translate(G(o),T).

Figure 6.1: The (modified) FKN protocol.

return the wrong result or learn anything about the inputs of P
1

and P
2

if he does not

collude with either party.

We formally describe this variant of the FKN protocol in Figure 6.1 and in Theorem 11

below we show that it is secure against the following adversary structure:

Adv
1

=

⇢✓
AS

⇥
sh
⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤◆

,

✓
AS

⇥
m
⇤
,A

1

⇥
h
⇤
,A

2

⇥
h
⇤◆

,

✓
AS

⇥
nc

1

, nc
2

⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤◆

,

✓
AS

⇥
h
⇤
,A

1

⇥
h
⇤
,A

2

⇥
m
⇤◆

,

✓
AS

⇥
sh
⇤
,A

1

⇥
sh
⇤
,A

2

⇥
ncS

⇤◆�
.

Before proving the security of the FKN protocol in our model, we present a simple

Lemma that we will use throughout this work and that will simplify our proofs significantly.

Lemma 12. If a multi-party protocol ⇧ between n players P
1

, . . . , Pn, securely computes

f = (f
1

, . . . , fn), (1) in presence of semi-honest and independent parties and (2) in presence

of a malicious Pj and honest Pk for k 2 [n]�{j}, then the protocol is also secure in presence

of (3) a Pj who is non-cooperative with respect to all other parties who are semi-honest.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 141

Proof. We need to prove that protocol ⇧ is secure when the adversary Aj corrupting Pj is

non-cooperative with respect to all other parties. Since Aj is non-cooperative, and all other

parties are semi-honest (and hence non-cooperative), based on Lemma 11, we can assume

that Ak is isolated for k 2 [n] � {j}. Hence, we can use the definition of isolation in our

simulation of such Ak’s.

We first need to provide a simulator Simj for simulating a non-cooperative Pj in the

ideal world. However, since ⇧ is secure against a malicious Pj when all other parties are

honest, we already know that a simulator Simj0 exists that simulates Pj in that case. Simj

imitates Simj0 completely.

We also need to describe a simulator Simk for k 2 [n] � {j}. The simulator Simk runs

the adversary Ak controlling Pk in the real world, on input xk. It sends xk to the trusted

party and receives back fk(x1, . . . , xn). Since Ak is isolated, according to Definition 20,

there exists an emulator Ek that takes fk(x1, . . . , xn) as input and can be used to simulate a

semi-honest Ak’s output. Simk feeds fk(x1, . . . , xn) to Ek and plays the role of semi-honest

Pk in interaction with it. At the end of this interaction, Simk outputs what the semi-honest

Pk would, and halts. According to the Definition 20, Simk will successfully simulate the

output of Ak in this way.

2

Since we present all our proofs in the FCT-hybrid model, we need to make sure that

a coin-tossing protocol with security in all adversary structures we consider in fact exists.

However, any two-party coin-tossing protocol (between P
1

and P
2

) with security against

malicious adversaries would be su�cient in our server-aided setting. Such a protocol can

easily be proven secure when all three parties are semi-honest and independent. It is also

secure, by definition, when either P
1

or P
2

are malicious. It is also secure when the server

is malicious and the other two parties are honest since the server is not involved in the pro-

tocol, in any way. Finally, Lemma 12 guarantees that the same coin-tossing protocol is also

secure in all adversary structures where one party is malicious and the rest are semi-honest

and isolated.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 142

We are now ready to state and prove the security of the FKN protocol with respect to

Adv
1

.

Theorem 11. The (modified) FKN protocol described in Figure 6.1 securely computes any

function f in the FCT-hybrid model for the adversary structure Adv
1

.

Proof. We consider each case in Adv
1

separately.

Claim 2. The protocol
�AS

⇥
sh
⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤�
-securely computes f in the FCT-hybrid

model.

We describe three independent transformations SimS , Sim1

and Sim
2

:

• SimS simulates AS as follows: it computes (st,G(C),T) GarbCircuit(C), G(x0)
GarbIn(st, C, 1, x0) and G(y0) GarbIn(st, C, 2, y0) for random x0 and y0; and sends

G(C), G(x0) and G(y0) to AS . If AS outputs ?, then SimS tells the trusted party to

abort. In either case, SimS outputs AS ’s entire view.

The privacy property of garbled circuits (see Definition 42) guarantees that G(x) and

G(y) are indistinguishable from x0 and y0 to AS who does not know the coins r. In

addition, in both the real and ideal execution the semi-honest AS does not abort

since he is given valid garbled inputs (in the real world this is true since the other

two parties are also semi-honest). Therefore, the views of AS in the real and the ideal

executions are indistinguishable.

• Sim
1

receives x as input and sends it to the trusted party in order to receive f(x, y). It

then simulates A
1

as follows. It answers A
1

’s FCT query by returning random coins r.

Sim
1

then computes (st,G(C),T) GarbCircuit(C; r) and uses the translation table

to find a garbling G(o) of f(x, y). Finally, it returns G(o) to A
1

and outputs A
1

’s

entire view.

The view of A
1

consists of the garbled circuits it creates and the garbled outputs

it receives. In both the real and the ideal execution he receives the garbled output

values corresponding to f(x, y). In the real world this is guaranteed by the fact that S

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 143

and P
2

are honest and the correctness property of garbled circuits (see Definition 41).

Therefore, the views of A
1

in the real and the ideal executions are indistinguishable.

• Sim
2

works analogously to Sim
1

.

2

Claim 3. The protocol
�AS

⇥
m
⇤
,A

1

⇥
h
⇤
,A

2

⇥
h
⇤�
- securely computes f in the FCT-hybrid

model.

Consider the simulator SimS that simulates AS as follows. It chooses coins r and com-

putes G(C) GarbCircuit(C; r). SimS chooses random inputs x0 for P
1

and y0 for P
2

.

Then he sends G(C) together with garbled input labels G(x0) GarbIn(C, 1, x0; r) and

G(y0) GarbIn(C, 2, y0; r) to AS . SimS receives the garbled outputs that AS returns for

P
1

and P
2

. If any of the outputs does not correspond to the correct value, the simulator

instructs the trusted party to return ? to that party. The view of AS consists of the garbled

circuits and the garbled input values that he receives. The garbled values that correspond

to zero and one are indistinguishable for the adversary since he does not know the seed

for the PRG (correctness property in definition 41). Therefore the garbled labels for the

real inputs x and y in the real execution and the random values x0 and y0 in the ideal

execution are indistinguishable for the AS . It follows the views of the adversary in the

real and the ideal execution are also indistinguishable. The outputs of P
1

and P
2

are also

indistinguishable in the real and the ideal execution. They receive the correct output, if AS

computes and returns the result honestly. Otherwise, in the ideal execution they receive ?
from the trusted party, and in the real execution AS cannot produce with all but negligible

probability garbled output values for any other output but the correct evaluation of the

garbled circuit by the verifiability property of garbled circuits (see Definition 43).

2

Claim 4. The protocol
�AS

⇥
nc

1

, nc
2

⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤�
-securely computes f in the FCT-

hybrid model.

The proof of this claim is automatically implied given the last two claims and Lemma 12.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 144

2

Claim 5. The protocol
�AS

⇥
h
⇤
,A

1

⇥
h
⇤
,A

2

⇥
m
⇤�
-securely computes f in the FCT-hybrid model.

Sim
2

simulates the view of adversary A
2

. The simulator answers A
2

’s query to FCT with

random coins r. He receives the garbled values G(y) GarbIn(C, 2, y; r) corresponding to

the input of A
2

. Using the coins r, Sim
2

extracts A
2

’s input value y. If extraction fails

he returns ? to A
2

. Otherwise, the simulator obtains the output f(x, y) from the trusted

party, computes the corresponding garbled output values and sends them to A
2

. The view

of A
2

, which consists of the output he receives, is indistinguishable in the real and the ideal

execution. If the garbled input is contructed correctly, in both cases he gets f(x, y) (in the

real world this is true since the other two parties are honest). If he submits invalid garbled

values for his input, he receives ? from the simulator in the ideal execution, and in the real

world with high probability S will fail to evaluate the circuit and will return ?. Similarly,

the output of P
1

will be indistinguishable in the real and the ideal execution.

2

Claim 6. The protocol
�AS

⇥
sh
⇤
,A

1

⇥
sh
⇤
,A

2

⇥
ncS

⇤�
-securely computes f in the FCT-hybrid

model.

Once again the above claim is automatically implied given the proof of previous claims

and Lemma 12.

2

E�ciency. First note that neither P
1

, P
2

nor the server S have to perform any public key

operations (i.e. no oblivious transfers are needed) with the exception of the initial coin-

tossing between P
1

and P
2

which either requires the existence of a secure channel between

them or public-key operations. Moreover, the coin-tossing needs to be performed exactly

once to share a secret key. In all future runs of the protocol, P
1

and P
2

can use their

shared secret key and a pseudorandom function, to generate the necessary seeds. This is

a considerable improvement since public key operations are significantly more expensive

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 145

compared to secret-key ones. Second, P
2

only needs to do work that is linear in the size of

his input and the output, and independent of the circuit size since he only computes the

GarbIn,GarbOut and Translate algorithms and the computational cost of these algorithms

do not depend on the circuit size. Finally, note that the interaction between P
1

and P
2

is

minimal and only takes place in the context of coin tossing (Step 1 of the protocol). In

addition, since this interaction is independent of the function f and of the parties’ inputs

x and y, it can be performed o↵-line and for many instances of the protocol at once. The

server and P
1

will do work that is linear in the size of the circuit. If the server-aided protocol

is run multiple times for the same or di↵erent functionalities, we can reduce the online work

of P
1

by performing the garbling of multiple circuits (for the same or di↵erent functions)

in the o✏ine phase. The online work for P
1

would then be similar to P
2

and only linear to

the size of his input and output.

Extending to multiple parties. Our protocol can be easily extended to multiple parties

as follows. All the parties, except for the server, begin by executing a coin-tossing protocol

which results in them sharing a set of coins. The coins are then used by one of parties to

garble the circuit and all the parties to garble their inputs. The garbled circuit and inputs

are then sent to the server who evaluates the circuit and returns the garbled outputs to the

parties.

It is not di�cult to show that this extended protocol is secure when either: (1) the

server is malicious and the other parties are semi-honest; or (2) the server is isolated and

semi-honest, the garbler is semi-honest and the remaining parties are malicious.

6.6 Protecting Against Deviating Circuit Garblers

The security of the FKN protocol critically relies on the circuit garbler being honest (or

semi-honest) and breaks down completely if this is not the case. To add robustness, we

augment the protocol to handle the case where player P
1

deviates from the protocol but is

non-cooperative (with respect to S).

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 146

Using the semi-honest server for verification. If we assume that the server is semi-

honest, there is a simple strategy for protecting against deviating but non-cooperative circuit

garblers: similar to the protocol of the previous section, P
1

and P
2

run the coin-tossing

protocol and as before P
1

uses the retrieved randomness to generate a garbled circuit. This

time, however, P
2

also generates the garbled circuit (using the same randomness) and sends

his version of the circuit to the server. The server then verifies that the two garbled circuits

he receives are the same, and if so, proceeds with the rest of the computation. Note that

as long as one of the players is semi-honest, dishonestly garbled circuits are detected by

the honest server. This approach yields a server-aided protocol with a significantly better

average e�ciency gain (see Section 6.9 for an overview of di↵erent notions of e�ciency

gain) compared to the standard two-party Yao protocol with security against malicious

adversaries, since it avoids the cut-and-choose steps.

Our goal, however, is to design a protocol that maintains the benefits of the previ-

ous protocol (i.e., security against a non-cooperative server) and simultaneously provides

protection in cases where the circuit garbler P
1

is non-cooperative with respect to S.

To protect against a non-cooperative P
1

, we use the existing cut-and-choose techniques

for Yao’s garbled circuit protocol (e.g. see [Mohassel and Franklin, 2006; Lindell and Pinkas,

2007]). Note that here the cut-and-choose step cannot take place between P
1

and P
2

since

that would significantly increase the work of P
2

and, to a large extent, diminish our ultimate

goal of gaining e�ciency. Hence, we construct a cut-and-choose protocol between P
1

and an

untrusted server instead. Note that some subtleties arise that are specific to our server-aided

setting and require modifications to the way the cut-and-choose steps are performed.

The computational cost of the resulting protocol increases by a factor of � (the number

of circuits) for the players and the server. However, the new protocol inherits the two

important e�ciency advantages of the previous one, i.e., the computation still only consists

of secret-key operations and P
2

’s computation is only linear in the size of his input and

output and, in particular, is independent of the circuit size.

Standard cut-and-choose. In a standard cut-and-choose, P
1

sends multiple copies of

the garbled circuit to S. S then asks P
1

to open the secrets related to a subset of those

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 147

circuits. S verifies the correctness of the opened circuits, evaluates the remaining circuits

(called evaluation circuits) and outputs the majority result as the final output. Note that

it is essential to compute the majority output and not abort immediately after seeing an

inconsistent output. As discussed in previous work (e.g. see [Mohassel and Franklin, 2006;

Lindell and Pinkas, 2007]), abort in this situation would reveal additional information to a

deviating P
1

about P
2

’s input. Furthermore, to enable P
2

to compute the correct majority

output, additional care is needed to make sure P
1

provides the same input to most of

the circuits evaluated by S. Avoiding this extra equality-check would undermine both

the correctness (by returning the wrong answer to P
2

), and the privacy (by allowing P
1

to learn a di↵erent function of the inputs) of the protocol. In [Lindell and Pinkas, 2007]

and [Mohassel and Franklin, 2006], additional consistency-checking mechanisms are added

to the cut-and-choose step in order to guarantee the equality of inputs to most of the

circuits. Since the techniques from the two papers are similar, and both would work for our

server-aided construction, we give a general description of the mechanism that includes both

approaches as a special case. More precisely, in addition to the garbled circuits a collection

of input-equality widgets are also computed by P
1

and sent along with the garbled circuits

to S. During the opening phase of the cut-and-choose, a subset of these input-checking

widgets are also opened and verified. This step ensures that unless the majority of P
1

’s

garbled inputs (to the evaluation circuits) are the same, his deviation from the protocol will

be detected with high probability during the opening phase.

6.6.1 What goes wrong in the server-aided setting?

We need to address three issues with the above cut-and-choose strategy when it is applied

in the server-aided model.

1. First, since P
1

and P
2

independently compute and send to S their garbled inputs

for the evaluation circuits, and since we still want to protect against a deviating P
2

,

P
1

needs to generate the input-checking widgets for P
2

’s input wires as well. This

modification could potentially introduce a new security problem. Particularly, for one

pair of circuits, P
1

can issue a bad equality-check for a specific bit value of P
2

’s input

wires (e.g. 0) and a correct equality-check for the other bit value (e.g. 1). In the case

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 148

that the pair of circuits are chosen for evaluation (which happens with non-negligible

probability), if S aborts, P
1

concludes that P
2

’s input is 0 and if he does not, he

concludes that P
2

’s input bit is a 1. However, this problem is easy to address. In fact,

S need not abort if the input keys for two circuits he is evaluating do not pass the

checks. He can simply evaluate the subset of remaining circuits that pass the checks

and assign “invalid” outputs to the rest (without aborting). The final majority output

is also computed, by taking this “invalid” outputs into consideration. In the rest of

this section, whenever we talk about retrieving the majority output, we refer to this

approach.

2. Second, a more subtle issue arises when the server tries to send the majority output

as the final result to the parties. In the standard cut-and-choose, the circuit evaluator

learns the actual outputs to all the evaluation circuits and therefore can easily deter-

mine the majority. In the server-aided setting, however, we do not allow the server

to learn the actual output values. S only learns the garbled outputs and therefore

cannot determine the majority output on his own.

First attempt. Initially, one might try to resolve this issue by sending the computed

garbled outputs to P
1

and P
2

and requiring them to compute the majority output

on their own (note that P
1

and P
2

know the translation table). Unfortunately, this

solution compromises the security of the protocol. For instance, this allows a deviat-

ing P
1

to learn “too much” information, by sending only a constant number of bad

circuits (e.g. circuits that compute a function other than the agreed one), and learn-

ing multiple functions of P
2

’s input with a non-negligible probability of not getting

caught.

Second attempt. An alternative solution is not to reveal to the server the mapping of

output keys to their actual bit values, but to map them to two random values k
0

and

k
1

corresponding to 0 and 1, respectively. While this would prevent the server from

learning the output of computation, it makes the protocol insecure in the scenario

where the server is the dishonest party. In particular, this allows a deviating server to

return either k
0

or k
1

as the correct output of computation even if it is not the right

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 149

output.

As mentioned earlier, we are interested in a solution that allows a semi-honest server

to compute the majority output without learning the output itself (output privacy)

and at the same time can provide a guarantee that a deviating server would not be

able to modify the result of the computation.

Our oblivious cut-and-choose method. The high level idea behind our solution

is as follows. After the opening phase, �/2 unopened circuits remain. For each output

wire, P
1

and P
2

generate two polynomials g
0

and g
1

of degree �/4 over the finite field

GF (2�). g
0

and g
1

are chosen uniformly from the space of permutation polynomials

of a special form which we will discuss shortly. Let k
0

= g
0

(0) and k
1

= g
1

(1). k
0

and

k
1

are used as keys corresponding to 0 and 1, respectively.

P
1

and P
2

evaluate g
0

at keys corresponding to 0 in the �/2 evaluation circuits, and g
1

at keys corresponding to 1. These evaluations along with two ciphertexts c
0

= Ek
0

(0�)

and c
1

= Ek
1

(0�) are sent to S and the same process is repeated for all output wires.

These evaluations can be seen as Reed-Solomon encoding of the keys k
0

and k
1

. S then

evaluates the remaining �/2 circuits and uses a Reed-Solomon decoding algorithm

to recover one of k
0

, or k
1

(S obliviously decodes both but only one of the keys

decrypts the corresponding ci to 0�). Let b be the correct output for the wire we

are discussing. In case of a deviating P
1

, the error correcting property of the Reed-

Solomon codes ensures that as long as a “su�ciently large” fraction of the garbled

outputs are correct, the decoding algorithm correctly decodes the correct key kb (and

hence this fulfils the servers’ search for the majority output). On the other hand, in

the adversarial scenario where the server is dishonest, we argue that he does not learn

anything about k
1�b. This is exactly where we need g

0

and g
1

to be randomly chosen

permutation polynomials (Dickson polynomials) of a special form. Intuitively, if g
1�b

is a permutation over the finite field, the knowledge of its evaluations at uniformly

random evaluation points does not reveal any information about the polynomial itself

(and specifically its constant coe�cient) to S since all the permutation polynomials of

the same form as g
1�b can be evaluated to the same values given the right evaluation

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 150

points, and hence are equally likely to have been chosen. This intuition is formalized

in the proof of security for the case when the server is deviating.

How to sample g
0

and g
1

. A Dickson polynomial of degree n denoted by Dn(x,↵) is

given by

Dn(x,↵) =

bn/2cX

i=0

n

n� i

✓
n� i

i

◆
(�↵)ixn�2i

Dickson polynomials have the nice property of acting as permutations of finite fields.

More accurately, we have the following lemma about them.

Lemma 13. The Dickson polynomial Dn(x,↵) is a permutation polynomial for a

finite field of size q if n is coprime to q2 � 1.

Hence, in order for g
0

and g
1

to be permutation polynomials, we require that �/4

is coprime to 2�+1 � 1. In addition, for g
0

and g
1

to have constant coe�cients, �/4

needs to be even (due to the way Dickson polynomials are defined). Finally, we

require that if ↵ is chosen uniformly at random in GF (2�), the constant coe�cient

of D�/4(x,↵) is a uniformly random element of the field too. The reason for this last

requirement is so that we can use the constant coe�cients as random keys k
0

and k
1

in the protocol. Since the constant coe�cient of D�/4(x,↵), for an even value of �/4,

is of the form 2↵�/8, we essentially need that ↵�/8 be a permutation over the field as

well. Once again, according to Lemma 13 this is case if �/8 is coprime to 2�+1 � 1

since D�/8(x, 0) = x�/8 is itself a Dickson polynomial.

To summarize, we sample g
0

and g
1

by choosing � such that �/4 is even and coprime to

2�+1�1 (this already implies that �/8 is coprime to 2�+1�1); generating two random

elements ↵
0

,↵
1

2 GF (2�); and letting g
0

= D�/4(x,↵0

) and g
1

= D�/4(x,↵1

).

Finally, we note that choosing a � that satisfies the above properties is fairly easy.

For example, any � = 8p where p is a prime number is coprime to 2�+1� 1 and hence

can be used in our protocol. To obtain a � close to 80, one could let p = 11. For a �

close to 128, once could let p = 17, and so on.

3. A third issue in our setting is that a deviating P
1

can cheat by agreeing on a seed ri

with P
2

but using a di↵erent seed r0i to generate the garbled circuit which he sends

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 151

to S. More specifically, consider the two garbled circuits Gi(C) GarbCircuit(C; ri)

and G0
i(C) GarbCircuit(C; r0i) generated by the two di↵erent seeds. A dishonest P

1

can potentially choose the seed r0i such that for a particular input wire of P
2

, the key

k corresponds to a 0 in Gi(C) but corresponds to a 1 in G0
i(C). In other words, P

1

can flip P
2

’s input bit without P
2

or S detecting it. This issue does not arise in the

standard two-party variant of Yao’s protocol against malicious adversaries, due to the

existence of the OTs. In the two-party case, P
1

and P
2

engage in a series of OTs

(before the cut-and-choose step) as a result of which P
2

learns his garbled inputs for

all circuits. In the opening phase, P
2

can verify that the OTs were performed honestly

for the opened circuits, and hence gain confidence about the correctness of his garbled

inputs in the majority of the unopened circuits too. Since we no longer invoke OTs

in our server-aided protocols, we need a di↵erent mechanism for resolving this issue.

First attempt. One may try to solve this problem by making S ask both P
1

and P
2

to send him the seeds for the opened circuits, and verify that the two sets of seeds

are equal. However, this creates a new vulnerability for the case when S is dishonest

since he could ask for two di↵erent subset of circuits to be opened by each of P
1

and

P
2

. This allows S to learn either P
1

or P
2

’s input values.

The correct solution is to have S send the set of seeds he receives from P
1

, to P
2

who

can verify that they are equal to his own seeds and abort the protocol, otherwise (see

step 5 of the protocol).

In Theorem 12 below we show that our protocol is secure against the following adversary

structure:

Adv
2

= Adv
1

[⇢✓
AS

⇥
h
⇤
,A

1

⇥
m
⇤
,A

2

⇥
h
⇤◆

,

✓
AS

⇥
sh
⇤
,A

1

⇥
ncS

⇤
,A

2

⇥
sh
⇤◆�

.

Theorem 12. The protocol in Figure 6.2 securely computes the function f in the FCT-

hybrid model against the adversary structure Adv
2

.

Proof. The proof for the first adversarial model of Adv
1

(where all three parties are semi-

honest) is almost identical to the proof for the same model in Theorem 11 and hence is

omitted here. Next, we prove security against the remaining adversarial scenarios in the

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 152

Inputs: P
1

’s input is x, P
2

’s input is y, and S has no inputs. All parties know the circuit C

which computes the functions f . They also agree on an integer � such that �/8 is coprime

to 2�+1 � 1.

Outputs: P
1

and P
2

learn the output f(x, y).

1. P
1

and P
2

execute a coin tossing protocol to generate � + 1 sets of coins r
1

, . . . , r�,

and r0.

2. P
1

computes � garbled circuits (Gi(C) GarbCircuit(C; ri) and garbled inputs

Gi(x) GarbIn(C, 1, x; r) for 1 i �. � is chosen such He sends the computed

garbled circuits and inputs to S. He also sends the input-equality widgets correspond-

ing to those garbled circuits to S.

3. S randomly chooses a subset T ⇢ [1 . . .�] of size �/2 and asks P
1

to send the coins

ri for i 2 T , and also reveal the secrets or the equality-checkers corresponding to the

opened circuits.

4. S verifies that the opened circuits and input-equality widgets were generated correctly.

If the verification fails for any circuit, S aborts.

5. S also sends the coins ri for i 2 T to P
2

who checks if the coins are what he agreed

on with P
1

in the coin-tossing phase or not. If not, he aborts the protocol.

6. P
1

and P
2

separately send their garbled inputs for the remaining circuits to S. S uses

the remaining input-equality widgets to determine the subset of the circuits in S that

pass the input-equality checks. In what follows, the evaluation result for those circuits

that fail the checks is set to “invalid” by the server (without aborting).

7. At this point, t = �/2 circuits remain to be evaluated. Renumber the remaining

circuits as C
1

, . . . , Ct. Denote by `o the number of output wires in each circuit, and let

(wi
1,0, w

i
1,1), · · · , (wi

t,0, w
i
t,1) the keys corresponding to the output wire 1 i `o, in

the t circuits. For all 1 i `o, P1

and P
2

use the coins r0 to independently generate

the following

• Two uniformly random elements ↵i
0

,↵i
1

2 GF (2�), and the corresponding Dickson

polynomials gi
0

(x) = D�/4(x,↵
i
0

), and gi
1

(x) = D�/4(x,↵
i
1

) over GF (2�). Denote

their corresponding constant coe�cients by ki
0

and ki
1

, respectively.

• P
1

and P
2

also compute two ciphertexts ci
0

= Eki
0

(0�) and ci
1

= Eki
1

(0�) using a

symmetric-key encryption scheme E.

Figure 6.2: A server-aided two-party protocol robust against a deviating P
1

adversary structure.

Claim 7. The protocol
�AS

⇥
m
⇤
,A

1

⇥
h
⇤
,A

2

⇥
h
⇤�
-securely computes f in the FCT-hybrid model.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 153

8. P
1

and P
2

then independently compute Y i
0

= (gi
0

(wi
1,0), . . . , g

i
0

(wi
t,0)) and Y i

1

=

(gi
1

(wi
1,1), . . . , g

i
1

(wt,1)) for 1 i `o and send ((Y i
0

, ci
0

), (Y i
1

, ci
1

)) to S. Each pair will

be sent in a randomly permuted order so that S does not learn which one corresponds

to 0 and which one corresponds to 1. The randomness for the permutation will also be

derived from the coins r0, and hence P
1

and P
2

will both do the same permutations.

9. S checks that the permuted ((Y i
0

, ci
0

), (Y i
1

, ci
1

)) pairs he receives from P
1

and P
2

are

in fact the same. If not, he aborts. Else, S evaluates the remaining t circuits and

for each output wire 1 i `o, retrieves the keys Xi
b = (wi

1,b, . . . , w
i
t,b) for a bit

b 2 {0, 1} where b is the actual output value for wire i. (With high probability, only a

small fraction of these keys will be corrupted or “invalid” or else S would catch them

in the opening phase).

10. For every 1 i `o, S runs the Reed-Solomon decoding algorithm on both pairs

(Xi
b, Y

i
0

) and (Xi
b, Y

i
1

) to recover the decodings di
0

and di
1

. S uses di
0

to decrypt ci
0

and uses di
1

to decrypt ci
1

. With high probability, only the decryption with dib returns

the message 0�. S returns dib for 1 i `o to P
1

and P
2

.

11. P
1

and P
2

use their translation tables to separately recover the actual output values.

Figure 6.3: Figure 6.2 Continued

Consider the simulator SimS that simulates AS as follows. It chooses coins r
1

, . . . , r�, r0

and computes Gi(C) GarbCircuit(C; ri) for 1 i �. SimS then sends Gi(C) for all

1 i � to AS . AS returns a subset T of size �/2. For each i 2 T , SimS returns ri to AS .

SimS then chooses random inputs x0 for P
1

and y0 for P
2

. He then sends the garbled

input labels Gi(x0) GarbIn(C, 1, x0; ri) and Gi(y0) GarbIn(C, 2, y0; ri) to AS for all

i 2 S � T . Denote by `
0

, the number of output wires in each circuit. For each 1 i `o,

SimS use the seed r0 to generate two random Dickson polynomials gi
0

and gi
1

of degree �/4,

and evaluates them at the �/2 keys for output wire i. Denote the constant coe�cients of gi
0

and gi
1

by ki
0

and ki
1

respectively. SimS then sends the evaluations along with the ciphertexts

ci
0

= Eki
0

(0�) and ci
1

= Eki
1

(0�) on behalf of P
1

and P
2

to AS . For each 1 i `o, SimS

receives a key kib. If k
i
b is not a valid key, the simulator instructs the trusted party to return

? to P
1

and P
2

. SimS then outputs whatever AS does and halts.

The view of AS consists of the garbled circuits, the opened seeds, the garbled input

values, and evaluations of the Dickson polynomials at the output keys. The garbled input

values that correspond to zero and one are indistinguishable for the adversary since he

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 154

does not know the seed for the unopened circuits (correctness property in definition 41).

Therefore the garbled labels for the real inputs x and y in the real execution and the random

values x0 and y0 in the ideal execution are indistinguishable for AS . All the other messages

AS receives are the same things he would see in the real protocol and hence it follows the

views of the adversary in the real and the ideal execution are therefore indistinguishable.

The remaining issue is to prove that the outputs of P
1

and P
2

are also indistinguishable in

the real and the ideal execution. Note that they receive the correct output, if AS computes

and returns the result, honestly. Otherwise, in the ideal execution they receive ? from

the trusted party. In the real execution, for AS to return an incorrect output key ki
1�b

for a specific output wire i, he needs to guess the constant coe�cient of the corresponding

polynomial gi
1�b. But, the only knowledge AS has of this polynomial is the fact that it is

a uniformly random Dickson polynomial of degree �/4 that evaluates to values y
1

, . . . , y�/2

at �/2 uniformly random points that are unknown to him. The fact that these evaluation

points are unknown to AS is implied by the verifiability property of Yao’s garbled circuit

(see Definition 43).

It remains for us to show that seeing y
1

, . . . , y�/2 does note leak any information about

the underlying polynomial gi
1�b (and particularly its constant coe�cient). However, since

gi
1�b is a permutation and the evaluation points are uniformly random values from GF (2�,

yi’s essentially constitute �/2 uniformly random values in GF (2�), and hence do not contain

any information about gi
1�b. Put di↵erently, for any Dickson polynomials of degree �/4 p(x),

there exist a unique set of evaluation points x
1

, . . . , x�/2 such that p(xi) = yi for 1 i �/2.

This completes our argument.

2

Claim 8. The protocol
�AS

⇥
h
⇤
,A

1

⇥
m
⇤
,A

2

⇥
h
⇤�
-securely computes f in the FCT-hybrid model.

We construct a simulator Sim
1

for A
1

. Before describing the simulation, however, we

give a Lemma implied by the security of the cut-and-choose variants of Yao’s protocol (we

refer the reader to [Lindell and Pinkas, 2007] where the Lemma is implicitly proved). We

point out, however, that in our setting, the role of the honest verifying party is divided

between an honest server and an honest P
2

, and hence the Lemma goes through since their

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 155

verification mechanisms combined is equivalent to the verification mechanism performed

by the single honest party in the standard two-party case of malicious Yao. In particular,

it is essential for both the server to check the correctness of the opened circuits and the

input-equality widgets in steps 3 and 4, and for the honest P
2

to check the correctness of

the revealed seeds in step 5. This point is also dircetly related to the third issue we explored

in the discussion above.

Lemma 14 ([Lindell and Pinkas, 2007]). There exists an expected polynomial time extractor

Ext, that takes P
1

’s input x and runs and rewinds A
1

. If A
1

creates more than 3/4 of the

evaluation circuits honestly (a total of 3�/8 circuits), and provides the same input x0 for all

of those correct circuits, w.h.p., Ext extracts and outputs x0. Else, Ext will output ? with all

but negligible probability. Furthermore, the probability of Ext outputting ? when interacting

with A
1

is exactly the same as the probability of an honest server outputting ? in the real

protocol.

The fraction 3/4 in the above Lemma is adjustable to any constant fraction greater

than 1/2. Changing the constant fraction a↵ects the extractor’s probability of error in the

Lemma, but that probability still remains negligible in the security parameter. In order to

ensure correct decoding, we need a constant fraction of 3/4 or higher in our proofs.

Our transformation Sim
1

works as follows:

1. it makes a query to FCT, and A
1

answers back with r
1

, . . . , r�, and r0.

2. it runs the extractor Ext from Lemma 14 to either obtain the input x0 that A
1

has

provided for the majority of the circuits, or to receive the abort signal ?. For the

latter, Sim
1

simulates the server aborting and outputs whatever A
1

does.

3. it uses r0 to generate the permutation polynomials gi
0

(x) and gi
1

(x) with constant

coe�cients ki
0

, ki
1

2 {0, 1}�, for 1 i `o.

4. it sends x0 to the trusted party and obtains z = f(x0, y). For bits bi of the output z,

he selects the corresponding key kib
i

, (for 1 i `o) and returns them to P
1

.

We show that A
1

cannot distinguish his interaction with an honest S and P
2

in the real

world from his interaction with Sim
1

in the ideal world. The view of the adversary consists

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 156

of the garbled circuits he submits and the output he receives. Therefore, it is enough to

show that the output that A
1

receives in the real execution is the same as what he receives

in the above simulation. Based on the existence of the extractor Ext from Lemma 14, we

are assured that in case of an abort, the view of A
1

in the simulation is indistinguihsable

from when he interacts with the honest server. Furthermore, in the case that Ext extracts

an input x0, we know that with high probability 3/4 of the evaluation circuits (i.e., 3�/8

circuits) constructed by A
1

are correct and use the same input x0. Let z = f(x0, y). We now

have that for every bit bi of z, the honest server in the real execution, receives �/2 evaluation

points for polynomial gb
i

of degree �/4 and that 3�/8 of those are correct. In other words,

the error in the Reed-Solomon codeword is less than �/8 < (�/2 � �/4)/2. Hence, the

Reed-Solomon decoding algorithm run by the honest server unambiguously recovers the

garbled inputs kb
i

for all 1 i `o. Since the server runs the decoding obliviously on both

polynomials, however, we also need to show that for polynomials g
1�b

i

, the decoding will

always fail to return a valid key k
1�b

i

. However, this is the case since for each polynomial

g
1�b

i

at most �/8 = �/2� 3�/8 of the evaluation points are correct while the degree of the

polynomial is �/4. Hence, the RS decoding algorithm either fails or returns a key k 6= k
1�b

i

for all 1 i `o. Consequently, S will not be able to correctly decrypt ci
1�b to the message

0� using the key k. This completes our argument.

2

2

Claim 9. The protocol
�AS

⇥
h
⇤
,A

1

⇥
h
⇤
,A

2

⇥
m
⇤�
-securely computes f in the FCT-hybrid model.

The simulation for this case is very similar to the case of malicious P
1

. In fact, note that

P
2

can only perform a subset of cheating strategies of P
1

, by sending bad or inconsistent

garbled inputs (but not garbled circuits). Hence, a simpler variant of the extractor Ext in

Lemma 14 can be used to simulate A
2

in the ideal world. Given Ext, the remainder of

Sim
2

’s strategy will be identical to that of Sim
1

described above, and the same analysis goes

through.

2

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 157

Claim 10. The protocol
�AS

⇥
sh
⇤
,A

1

⇥
ncS

⇤
,A

2

⇥
sh
⇤�
-securely computes f in the FCT-hybrid

model.

The proof of this claim is automatically implied given the proofs of the above claims

and Lemma 12.

2

6.6.2 Extending to Multiple Parties

We describe, at a high level, how our protocol can be extended to the multi-party setting.

All parties engage in the coin-tossing protocol and learn the necessary seeds. Then, the

circuit garbler and the server proceed as they would in the the two-party case. All other

parties (clients) who need to send their garbled inputs to the server, engage in a MPC

protocol between themselves and the server, wherein their inputs is the seeds they hold and

their own input keys, and the server’s output is the input key for all parties. Note that

this MPC protocol needs to be secure against non-cooperative parties (except for one semi-

honest party and a semi-honest server), and hence, the naive solution of having each party

send their input key to the server would not be su�cient. Nevertheless, due to the particular

setting we work in, a very e�cient construction for implementing this MPC protocol exists,

but we defer a more detailed description of this step to a more complete version.

In addition to sending their garbled inputs, we require all the parties to send the server

the evaluations of the polynomials g0i and g1i at the garbled output values of the garbled

circuits used in the protocol. The server then checks that all the parties sent the same

evaluations for g0i and g1i and if so, uses those values for the interpolation of the garbled

outputs. Otherwise, the server aborts.

In addition to security against Adv
1

, this protocol also provides security when all but one

of the parties are non-cooperative with respect to the server and the server and a single party

are semi-honest. Furthermore, if we modify the coin tossing protocol to include the server

but without providing him with the result of the coin-toss, the protocol can also handle

an adversarial structure where all parties (except for the server) are non-cooperative with

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 158

respect to the server. We note that an adversarial structure where all parties (except the

server) are non-cooperative is meaningful since this corresponds to cases where each party

can deviate from the protocol but does not share any private information or coordinate its

behavior with other parties.

6.7 Server-Aided Computation From Delegated Computa-

tion

We describe a general construction for server-aided two-party computation based on any

non-interactive delegated computation scheme and any secure two-party computation pro-

tocol. The resulting server-aided construction inherits the e�ciency of the underlying pro-

tocols.

Informally, a delegated computation scheme allows a client to outsource the computation

of a circuit C on a private input x to an untrusted worker such that: (1) the client’s work

is substantially smaller than evaluating C(x) on his own; (2) the worker does not learn any

information about the client’s input or output; and (3) the worker cannot return an incorrect

answer without being detected. The notion of secure delegated computation is closely

related to that of verifiable computation [Goldwasser et al., 2008; Gennaro et al., 2010;

Chung et al., 2010], with the additional requirement that the client’s input and output

remain private.

Our protocol. Our protocol, described in detail in Figure 6.4, works as follows. Let

Del = (Gen,ProbGen,Compute,Verify) be a secure delegated computation scheme. The

parties P
1

and P
2

use Del to outsource the evaluation of f on their combined inputs (i.e.,

the concatenation of x and y) to the server. However, since P
1

and P
2

do not want to

reveal their inputs to each other, they use secure two-party computation to simulate the

client in a delegated computation interaction. More precisely, they run the Gen, ProbGen

and Verify algorithms of Del via secure two-party computation. The server S performs the

same functionality as that of the worker in the delegated computation interaction. Put

di↵erently, we use Del to outsource a two-party computation protocol between P
1

and P
2

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 159

to the server S.

Inputs P
1

’s input is x and P
2

’s input is y. Server S does not have any input.

Output P
1

and P
2

want to learn the function F on their inputs. Without loss of generality

we assume that F takes x and y as one concatenated input, i.e., the parties are computing

F (x||y).

1. P
1

and P
2

use the ideal functionality Ff
2pc, where f takes as input x and y, computes

(pk, sk) Gen(1k,F) and (�x||y, ⌧x||y) ProbGensk(x||y) and outputs

✓�
pk,�x||y, ⌧

1

x||y, sk
1

�
,
�
pk,�x||y, ⌧

2

x||y, sk
2

�◆
,

where ⌧x||y = ⌧1x||y � ⌧2x||y and sk = sk1� sk2. In essence P
1

and P
2

both learn pk and

�x||y while they each only learn a random share of ⌧x||y and sk.

2. P
1

and P
2

each send �x||y and pk to the server S but keep their shares of ⌧x||y to

themselves. Server checks to see that the two values received from the parties are the

same and aborts otherwise.

3. Server S computes Computepk(�x||y)! �z where z = F (x||y) and sends �z to P
1

and

P
2

.

4. P
1

and P
2

use the ideal functionality Fg
2pc where g takes as input ⌧1x||y, ⌧

2

x||y, sk
1 and

sk2 and outputs (z, z) where z = Verifysk1�sk2((⌧
1

x||y � ⌧2x||y),�z). P1

and P
2

output z

as their final output.

Figure 6.4: A server-aided two-party protocol from any delegated computation scheme

Intuitively, our protocol is secure since: (1) the verifiability of Del guarantees that

a malicious server cannot change the outcome of the computation; and (2) the privacy

property Del guarantees that the server cannot learn any useful information about the

parties’ inputs. Furthermore, even if a malicious server colludes with either P
1

or P
2

, the

colluding parties will not learn any information about the remaining party’s input since the

interaction between P
1

and P
2

is done via a secure two-party computation. We prove this

intuition in Theorem 13 using the following adversary structure:

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 160

Adv
4

=

⇢✓
AS

⇥
sh
⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤◆

,

✓
AS

⇥
m
⇤
,A

1

⇥
h
⇤
,A

2

⇥
h
⇤◆

,

✓
AS

⇥
nc

1

, nc
2

⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤◆�

.

Theorem 13. If Del is secure, then the server-aided two-party protocol described in Figure

6.4 is secure in the F2pc-hybrid model against the adversary structure Adv
4

.

Proof. We sketch the proofs for each item in Adv
4

separately.

Claim 11. The protocol
�AS

⇥
sh
⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤�
-securely computes F in the F2pc-hybrid

model.

We describe three independent transformations SimS , Sim1

and Sim
2

:

• SimS runs AS . SimS then generates two arbitrary inputs x0, y0, computes (pk, sk)
Gen(1k,F) and (�x0||y0 , ⌧x0||y0) ProbGensk(x0||y0) and sends �x0||y0 to AS . The privacy

property of Del ensures that AS ’s view is indistinguishable from its view in the real-

world execution with semi-honest P
1

and P
2

(where they use their real inputs x and

y). At some point, AS sends the output �z. SimS then outputs whatever AS does

and halts. Since, AS is semi-honest in this case, this will be the correct output.

• Sim
1

runs A
1

. Note that since we prove the security of the protocol in the F2pc-hybrid

model, A
1

will send his input x to F2pc. Sim
1

forwards x to the trusted party of the

ideal execution and gets back F (x, y). Sim
1

generates an arbitrary input y0 for P
2

,

runs (pk, sk) Gen(1k,F), and runs ProbGensk(x||y0) to compute �x||y0 , ⌧x||y0 . He

then sends �x||y0 and random values ⌧1x||y0 and sk1 to A
1

. The privacy property of Del

guarantees that in A
1

’s view, �x||y0 is indistinguishable from �x||y for any y and y0. The

same is true for ⌧1x||y0 and sk1 which are simply random shares. It is worth noting that

the privacy property of Del requires that �x||y0 hide all partial information about the

encoded input. Therefore, the tuple (x,�x||y0) is also indistinguishable form the tuple

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 161

(x,�x||y) for any y. Hence, we safely assume that A
1

’s view so far is indistinguishable

from his view in the real execution with semi-honest P
2

and S.

Sim
1

then computes �z0 Computepk(�x||y0) and sends �z0 to A
1

on behalf of the

server. Note that for the same reason as above and due to the privacy property of

Del, A
1

cannot distinguish �z0 from �z. A1

eventually sends sk1 and ⌧1x||y as his input

to the trusted party of the F2pc-functionality for the second run of MPC that runs

the Verify function. Since A
2

is semi-honest, Sim
1

simply returns the value F (x, y)

that he received from the trusted party of the ideal-world execution to A
1

. Sim
1

then

outputs whatever A
1

does and halts.

• Sim
2

’s strategy is identical to Sim
1

’s since their roles in the protocol are symmetric.

2

Claim 12. The protocol
�AS

⇥
m
⇤
,A

1

⇥
h
⇤
,A

2

⇥
h
⇤�
-securely computes F in the F2pc-hybrid

model.

We describe a transformation SimS for the adversary AS . Note that since S does not

have any inputs to the protocol, there is no need for input extraction during the simulation.

SimS only needs to simulate AS ’s view correctly and make sure that in the case of an abort,

or other types of cheating by AS , P1

and P
2

’s output in the ideal execution is an abort as

well.

SimS runs AS . SimS then generates two arbitrary inputs x0, y0, computes (pk, sk)
Gen(1k,F) and (�x0||y0 , ⌧x0||y0) ProbGensk(x0||y0) and sends �x0||y0 to AS . The privacy

property of Del ensures thatAS ’s view is indistinguishable from his view in the real execution

with honest P
1

and P
2

(where they use their real inputs). At some point, AS will either

abort or send the output �z0 to the two parties. SimS computes z0 Verifysk(⌧x0||y0 ,�z0). If

z0 = ?, SimS sends an abort message to the trusted party and simulates P
1

and P
2

aborting.

SimS then outputs whatever AS does and halts.

Note that the verifiability property of Del (see definition 45) ensures that if z0 6= F (x0, y0)

then z0 = ? with high probability. Also note that the probability that z0 = ? in the

simulation with inputs x0 and y0 is (all but negligibly) close to the same probability for any

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 162

other inputs including inputs x and y of P
1

and P
2

in the real execution. If this was not

the case, once again we could use AS to break the privacy property of Del. These two facts

combined demonstrate that the joint distribution of outputs of AS , P1

and P
2

in the real

execution are computationally indistinguishable from those of SimS , Sim1

and Sim
2

in the

ideal execution.

2

Claim 13. The protocol
�AS

⇥
nc

1

, nc
2

⇤
,A

1

⇥
sh
⇤
,A

2

⇥
sh
⇤�
-securely computes F in the F2pc-

hybrid model.

The proof of this claim follows from the previous two claims and Lemma 12.

E�ciency. Note that in the above protocol P
1

and P
2

only simulate the client in the

delegated computation interaction and not the server. Using general-purpose protocols

such as Yao’s protocol [Yao, 1982], the computation performed by P
1

and P
2

will be linear

in that of client in the delegated computation interaction. Given the e�ciency properties

of delegated computation, this will be significantly lower than P
1

and P
2

running their own

secure two-party computation protocol to compute F on their private inputs. The server’s

computation is identical to that of the worker in the delegated computation interaction.

We know of two non-interactive delegated computation schemes in the literature. The

first is the construction of [Gennaro et al., 2010] based on Yao’s garbled circuits and fully

homomorphic encryption. When instantiated using their protocol, P
1

and P
2

would need

perform O(k · |C|) computation in the preprocessing stage, where C is the circuit that

computes the function F and k is the security parameter. In the online stage however, the

work of P
1

and P
2

is O(n +m) where n is the size of their inputs and m the size of their

outputs. Hence, the amortized complexity of the work by the players is O(n + m). The

server’s work will be O(|C|).
The second instantiation is based on the construction of [Chung et al., 2010] which

uses non-interactive proofs with soundness amplification, as well as a fully homomorphic

encryption scheme. When instantiated using their protocol, the o✏ine cost of computa-

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 163

tion for P
1

and P
2

would be poly(k, |C|) while the online and hence the amortized cost is

poly(k, log(|C|)). The servers computation is poly(k, |C|). The main advantage of the latter

instantiation is that the public key of the scheme will be significantly smaller.

6.8 Server-Aided Private Set Intersection

The setting for the problem of set intersection includes two parties that have private input

sets and wish to compute the intersection of the elements in their sets. This problem has

numerous applications in practice and has been considered in a series of works [Freedman

et al., 2004; Hazay and Lindell, 2008; Kissner and Song, 2005; Jarecki and Liu, 2009;

Dachman-Soled et al., 2009; Cristofaro et al., 2010; Hazay and Nissim, 2010; Dachman-

Soled et al., 2011]. These papers o↵er protocols addressing various adversarial models

under di↵erent assumptions with a range of e�ciency characteristics. In the semi-honest

adversarial model, the protocols for set intersection have linear complexity in the size of

the inputs. The goal of many of these works is to approach this complexity in stronger

adversarial models. For instance, Cristofaro et al. [Cristofaro et al., 2010] achieve linear

complexity in the malicious case in the random oracle model. Jarecki et al. [Jarecki and

Liu, 2009] propose a protocol with linear complexity secure in the standard model in the

presence of malicious parties, based on the Decisional q-Di�e-Hellman Inversion assumption

(in the CRS model), where a safe RSA modulus is generated by a trusted third party, and

the input domain is of size polynomial in the security parameter.

We consider the problem of set intersection in the setting of outsourced computation

where we would like to enable the computationally powerful server to execute the majority of

the work involved comparing the values in the two input sets. Essentially we are interested

in a solution where each of the two parties performs work that is linear in the size of his

input set to preprocess the data and sends the results to the server who will compute the

final intersection result.

A simple solution for the case when all parties are semi-honest. In the case of a semi-

honest server we can obtain such a protocol as follows: the two input parties agree on a

PRF key, and submit to the server the result of the evaluation of the PRF under this key on

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 164

each of the points in their input sets. Subsequently the server computes the set intersection

of the two sets of PRF values he received, and sends the output to the two parties, who

can map the PRF values back to the real input points. As long as the server follows the

protocol honestly the two parties will receive the correct output without being able to learn

anything about their private data due to the security guarantees of the PRF.

Protecting against a malicious server. The above protocol fails to guarantee correct-

ness of the output in the case of a malicious server who can deviate from the prescribed

protocol since he can return an arbitrary result without the parties being able to detect

this. We adopt the following technique in order to enable the parties to detect misbehavior

on the server’s side: each party computes t copies of each of his inputs of the form x|i
for 1 i t, and submits the PRF evaluations on the resulting values in a randomly

permuted order. The server then computes the set intersection based on these PRF values

and returns the answer. Now, we require that the set intersection contains all t copies for

each element in the intersection. If it does not, then the parties will detect misbehavior on

server’s side and will abort. Thus in order to cheat without being detected, the server will

need to guess what values correspond to the copies of the same element. The probability

for this is negligible except in the following two cases (1) the server returns empty intersec-

tion (does not need to return any value) or (2) claims to each party that all elements from

his/her input set are in the intersection (returns all PRF values provided by that party). To

address these last issues we need to guarantee that the set intersection is neither empty nor

contains all submitted elements. We achieve this in the following way: the parties agree on

three elements d, e
1

and e
2

outside the range of possible input values. Then, the first party

adds d and e
1

to his/her input set and the second party adds d and e
2

to his/her input set.

Now the set intersection has to be non-empty since d will be in it, and at the same time

cannot consist of all submitted input elements for either party since both e
1

and e
2

are not

in the intersection. The protocol in Figure 6.5 presents the details of the the approach that

we just outlined. We also note that for the purposes of the simulation, we need to use a

pseudorandom permutation rather than any pseudorandom function.

Theorem 14. The protocol in Figure 6.5 securely computes the 2-party set intersection

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 165

Server-Aided Set Intersection

Let m and n be the sizes of the inputs sets for parties P
1

and P
2

with elements in the domain

R. Let F be a pseudo-random permutation. Let t be a security parameter.

Inputs: P
1

has input set X; P
2

has input set Y

Outputs: P
1

and P
2

receive X
T
Y

Protocol:

1. P
1

and P
2

run a coin tossing protocol to choose a PRP key K.

2. P
1

and P
2

choose three elements d, e
1

, e
2

/2 R. P
1

adds d and e
1

to his set X. P
2

adds d and e
2

to his set Y .

3. For each xi 2 X, P
1

computes ai,j = FK(xi|j) for 1 j t. P
1

sends the set

A = {ai,j}1im,1jt in a randomly permuted order to S.

4. For each yi 2 Y , P
2

computes bi,j = FK(yi|j) for 1 j t. P
2

sends the set

B = {bi,j}1in,1jt in a randomly permuted order to S.

5. S computes the set A
T

B and sends it to P
1

and P
2

.

6. P
1

checks that the PRP values corresponding to d are present in A
T
B and those

corresponding to e
1

are not. He also checks that if FK(xi|j) 2 A
T

B for some

j 2 [1, t], then FK(xi|j) 2 A
T
B for all j 2 [1, t]. If either of these checks fails, P

1

aborts the protocol. P
2

runs a similar check.

7. Using K, P
1

and P
2

recover the values in X \ Y .

Figure 6.5: Security against malicious server

functionality in the FCT-hybrid model for the adversary structure Adv
5

defined as follows:

Adv
5

=

⇢✓
AS [sh],A1

[sh],A
2

[sh]

◆
,

✓
AS [m],A

1

[h],A
2

[h]

◆
,

✓
AS [nc1, nc2],A1

[sh],A
2

[sh]

◆�
.

We refer the reader to Appendix D.3 for proof of the theorem.

Protecting against malicious parties. While the above protocol allows the two parties

to detect a malicious server, it introduces a way for a malicious party to submit incorrectly

processed input that would cause the other party to abort after receiving an invalid set

intersection result, while the misbehaving party will learns the real output. Furthermore,

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 166

the fact that the honest party aborts can itself leak additional information about his inputs.

In order to enable detection of misbehavior on the side of either party, we augment the

protocol again. If we did not want to provide privacy of the input data from the server but

still wanted to guarantee the correctness of the output result, we could solve this problem as

follows: the server commits to the intersection set that he computes from the PRF values,

then the parties reveal the key for the PRF to him so that he can verify the correctness of the

submitted input sets and notify the two parties while not being able to change the computed

output because of the commitment. In order to maintain the privacy for the input sets we

can introduce an additional layer of PRF invocation where the first layer will account for

the privacy guarantee and the second layer will allow for detection of the correctness of the

input sets submitted by each party. We provide the details of the construction in Figure 6.6.

Theorem 15. The protocol in Figure 6.5 securely computes the 2-party set intersection

functionality in the FCT-hybrid model for the adversary structure Adv
6

defined as follows:

Adv
6

= Adv
5

[⇢✓
AS [h],A1

[m],A
2

[h]

◆
,

✓
AS [sh],A1

[ncS],A2

[sh]

◆
,

✓
AS [h],A1

[h],A
2

[m]

◆
,

✓
AS [sh],A1

[sh],A
2

[ncS , nc1]

◆�
.

We refer the reader to Appendix D.3 for proof of the theorem.

Multiparty Set Intersection. We observe that both of our protocols can be generalized

to setting where multiple parties want to find the intersection of their input sets. In this case

the parties agree on common PRF key and then submit the PRF evaluations on their input

sets to the server who computes the final intersection. We can apply the same techniques

in order to protect against malicious server and malicious parties.

E�ciency. Our set intersection protocol requires that each party performs as many PRF

evaluations as the size of his input set. The only works that give two party solutions to

the set intersection problem with linear computation complexity in the total size of the

input sets are [Cristofaro et al., 2010] and [Jarecki and Liu, 2009], however, the former

is in the random oracle model (ROM) and the latter works for input sets of limited size,

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 167

Server-Aided Set Intersection

Let m and n be the sizes of the inputs sets for parties P
1

and P
2

with elements in the domain

R. Let G and F be pseudo-random permutation. Let t be a security parameter. Let com

be a commitment scheme.

Inputs: P
1

has input set X; P
2

has input set Y

Outputs: P
1

and P
2

receive X
T
Y

Protocol:

1. P
1

and P
2

run a coin tossing protocol to choose two key K
1

and K
2

.

2. P
1

and P
2

choose three elements d, e
1

, e
2

/2 R. P
1

adds d and e
1

to his set X. P
2

adds d and e
2

to his set Y .

3. P
1

computes X 0 = {GK
1

(x) | x 2 X}.
4. P

1

computes Y 0 = {GK
1

(y) | y 2 Y }.
5. For each x0

i 2 X 0, 1 i m P
1

computes ai,j = FK
2

(xi|j) for 1 j t. P
1

sends

the set A = {ai,j} to S.

6. For each y0i 2 Y 0, 1 i n P
2

computes bi,j = FK
2

(yi|j) for 1 j t. P
2

sends the

set B = {bi,j} to S.

7. S computes the set A
T

B and sends a commitment com(A
T
B) to both P

1

and P
2

.

8. P
1

sends the set X 0 and K
2

to S and P
2

sends Y 0 and K
2

to S.

9. S verified that he received the same key from both parties and that the sets A and

B have been computed correctly, namely contain exactly t PRF values for each input

element. If the verification fails, S aborts the protocol.

10. S opens the the commitment com(A
T

B) and sends the intersection set A
T

B to P
1

and P
2

.

11. Both P
1

and P
2

verify the open commitment. If the verification fails, they abort the

protocol.

12. P
1

checks that the PRP values corresponding to d are present in A
T
B and e

1

is not.

He also checks that A
T
B contains t corresponding PRP values for each element of

X 0 in the intersection A
T

B. If either of these checks fails, P
1

aborts the protocol.

13. Using K
1

and K
2

P
1

and P
2

recover the values in X \ Y .

Figure 6.6: Security against any one malicious party.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 168

polynomial in the security parameter and requiring a common random string (CRS). The

computation work in both of these solutions includes a linear number of exponentiations

equivalent to public key operations. The solution of [Hazay and Nissim, 2010] has the

best computational complexity while achieving security against malicious adversaries and

it requires O(m + n(log logm + p)) exponentiations where m and n are the sizes of the

input sets and p is the bit length of each input element, which is logarithmic in the input

domain range. In the multiparty case computation complexity for each party remains the

same which improves the computation cost of O(Nd2 log d) in the case of N parties with

input sets of size d of the most e�cient existing solution [Dachman-Soled et al., 2011].

6.9 E�ciency in the Server-Aided Setting

Having introduced the server-aided model for secure computation, it is natural to ask:

Is it possible to gain e�ciency in this setting? and if so how can one quantify

such a gain in e�ciency?

In this section we discuss these issues, informally. Formalizing these discussions accompa-

nied with feasibility and impossibility results is an interesting direction for future research.

6.9.1 Evaluating the E�ciency Gain

Our main motivation for considering MPC in the server-aided setting is to allow (possibly)

heterogeneous parties to outsource their computation to a server (that they do not neces-

sarily trust). Hence, a natural way of measuring the e�ciency of a server-aided protocol

⇧sac
f between n parties (P

1

, . . . , Pn) and a server Pn+1

that wish to compute a function

f , is to compare the work performed by these parties with the work they would have to

do in the most e�cient “standard” MPC protocol ⇧mpc
f (where the server is not present).

Even if given a secure MPC protocol ⇧mpc
f as a point of reference, there are multiple ways

of quantifying the gain in the server-aided model each of which might be suitable for a

particular computing environment.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 169

Max/min e�ciency. In cases where one party has significantly lower computational

resources (e.g., a mobile phone executing a protocol with high-performance servers) we

would like the weakest device to outsource as much of its computation as possible. A

natural measure then is to consider only the maximum (over the parties) e�ciency achieved

by ⇧sac
f . Furthermore, when comparing to a standard MPC protocol, one should compare

the total work of the party Pi that does the least amount of work in ⇧mpc
f with the total

work of the party Pj that does the least amount of work in ⇧sac
f . If the gap is significant

enough, the weak device will see an improvement in e�ciency if it plays the role of Pj in

⇧sac
f

3. Similarly, one could consider the minimum e�ciency, i.e., the total work of the

party that does the most amount of work in ⇧sac
f .

We note that a sizable maximum e�ciency might mean a less impressive reduction in

the work of other players (or even an increase). For example, in the server-aided variant of

Yao’s garbled circuit protocol we design in Section 6.5, one player’s computation is reduced

significantly (the work is independent of the circuit size), while the second player has to do

work proportional to the circuit size (though his work is still less than than what it would

be in Yao’s original protocol).

Average e�ciency. Alternatively, one might be interested in a noticeable gain in the

total work required by the players (excluding the server) regardless of the way this work is

divided between the players. In this case one should try to optimize the average e�ciency

over by all the parties. To ensure some level of fairness, one can additionally enforce a

limit on the variance in the e�ciency of di↵erent parties. One example of a protocol with

better average e�ciency compared to standard two-party computation is briefly mentioned

in Section 6.6. This protocol provides security against a malicious circuit garbler by utiliz-

ing the honest server for verification. In the resulting protocol, both players still have to

compute a garbled circuit once, but can avoid the cut-and-choose and/or zero-knowledge

proof techniques which would add a significant overhead.

3We note that in the case of special-purpose protocols, the roles that a party can play may be restricted.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 170

Combined e�ciency. Finally, there may be cases where a combination of di↵erent ef-

ficiency measures may be appropriate. Consider, for example, a computation that occurs

between a mobile device and a server running “in the cloud”. As discussed above, the maxi-

mum e�ciency of ⇧sac
f is an important consideration for the weakest device (i.e., the mobile

device). But the minimum e�ciency of ⇧sac
f may be important as well since computation

“in the cloud” has an economic cost and the client may have a limited budget.

More generally, taking extra costs into account (e.g., the cost of a cloud service) for

some players it may only make sense (economically) to take part in a server-aided protocol

if the gain in e�ciency is greater than a threshold while other players may be happy with

more modest gains. In such cases a combination of the maximum, minimum and average

e�ciency might be appropriate.

6.9.2 Comparison with Secure Delegated Computation

An alternative way of measuring e�ciency is to compare the work the parties have to

perform in the server-aided protocol to their work if they were to take part in an insecure

protocol for evaluating the same function. This measure of e�ciency is closely related to

those considered for secure delegated computation (see Appendix D.2). In fact, it is not hard

to show that any server-aided protocol for computing a function f that achieves reasonable

e�ciency compared to an insecure protocol for the same task can easily be turned into an

e�cient and secure delegated computation.

For example, consider our server-aided variant of Yao’s protocol from Section 6.5. As

mentioned above, this protocol reduces P
2

’s work significantly, making it independent of

the circuit size for f while P
1

’s work is still linear in the circuit size. Now consider a

construction that would improve our protocol by making P
1

’s work sublinear in the circuit

size. One could then transform P
1

and P
2

into a single client, and let the server be the

worker in a securely delegated computation scheme. This would yield a scheme that is more

e�cient than existing general-purpose secure delegation schemes in the literature [Gennaro

et al., 2010; Chung et al., 2010] since they all take advantage of heavy machinery (e.g.,

fully homomorphic encryption) and only provide amortized improvements over insecure

protocols.

CHAPTER 6. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 171

This connection with secure delegated computation schemes is bi-directional. In fact in

Section 6.7, we formally show how to transform any secure delegated computation scheme

into an e�cient server-aided secure computation protocol.

6.9.3 Why Non-Collusion Helps

Our last note on e�ciency is an intuitive explanation of why non-collusion helps. In par-

ticular, consider a security definition for server-aided computation where a player (e.g., P
1

)

could collude with the server S. In that case, we could combine P
1

and S into a single

party P
1S and our security definitions would reduce to the standard definitions for secure

two-party computation between P
1S and P

2

. Then, any general-purpose protocol for server-

aided computation where P
2

’s work is sublinear in the circuit size, would automatically yield

a general-purpose secure two-party computation where one of the parties performs sublinear

work in the size of circuit. To the best of our knowledge, the only known way of achieving

this goal (even in the case of semi-honest adversaries) is via use of a fully-homomorphic

encryption scheme.

On the other hand, our non-collusion assumption between P
1

and S allows us to design

a general-purpose protocol where the work of P
2

is independent of the circuit size.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 172

Chapter 7

Privacy Enhanced Access Control

for Outsourced Data Sharing

7.1 Motivation and Contributions

The emerging trend of outsourcing of data storage at third parties – “cloud storage” –

has recently attracted tremendous amount of attention from both research and industry

communities. Outsourced storage makes shared data and resources much more accessible as

users can retrieve them anywhere from personal computers to smart phones. This alleviates

data owner from the burden of data management and leaves this task to service providers

with dedicated resources and more advanced techniques.

Traditional access control models focus on mediating access requests and providing

confidentiality and availability guarantees for protected data and resources, often with an

implicit assumption that the entity enforcing access control policies is also the owner of

data. In this case the following two requirements su�ce to achieve the goal: a policy

specification that allows to define rules both syntactically and semantically that will govern

the requests of data and resources from di↵erent subjects; a mechanism that performs

request mediation based on defined rules. However, in many cases of distributed computing,

the aforementioned assumption no longer holds, and we need to facilitate access control

at points which should not have direct access to the data content itself, such as when

outsourcing data storage to an untrusted third party. Therefore we need to store data in

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 173

encrypted form and enforce access control over the encrypted data.

We would like to facilitate data sharing in the setting of outsourced storage at a third

party such as a cloud provider. The setting of cloud computing falls into the category of

distributed access control scenarios discussed above. The cloud servers are considered to be

honest but curious. They will follow our proposed protocol in general, but will try to find

out as much information as possible based on their inputs. Therefore data confidentiality

is not the only security concern in this scenario.1

First of all, given the fact that data storage provider (i.e., the cloud) does not own the

data, access control policies defined by the data owner that govern who can have access

to that date become also private information with respect to the cloud. For example, the

fact that certain users share some of their data with other users or that they stop the

sharing can be suggestive about their business relationships. This problem is mitigated by

the use of cryptography as an enforcement mechanism. This approach translates the access

control problem into the question of key management for the decryption keys. In this case,

a user could obtain any encrypted data from the storage provider but access requests are

answered implicitly by the fact a user can decrypt only the data that he is allowed to access

(i.e, the possession of the corresponding decryption keys). Such a setup often requires that

each encrypted resource is associated with an unique identifier and that the user knows the

identifiers of the resources to which he wants access.

Another issue relevant to data sharing in outsourced storage is information leakage

deduced from careful observations on data access patterns. Even though data is stored and

transferred in an encrypted format, tra�c analysis techniques can reveal privacy information

about the activities of users and the underlying data. For example, access history to multiple

data objects could reveal the access habits and privileges of a particular user; access to the

same data object from multiple users could suggest a common interest or collaborative

relationship; a ranking of data objects popularity can also be built upon access requests

that the cloud receives. A trivial solution to the access pattern problem is to return all

encrypted data upon any data request. While this solution may not cause any confidentiality

problem with respect to the stored data, if the cryptographic mechanism guarantees that

1Issues of data integrity and availability in access control models are beyond the scope of this paper.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 174

a user can decrypt only data that he has access to, it brings prohibitive costs in several

directions: the data stored at a cloud provider most likely exceeds the storage capacity of

any single user, the communication for transferring the data would incur enormous network

usage as drastically increased latency; additionally, the user would need to spend time on

cryptographic computations to find the appropriate piece of the data he needs. All these

concerns rule out this obvious solution.

The question of hiding access pattern is a challenging task to achieve while avoiding

work proportional to the total size of all stored files. There have been several cryptographic

solutions that realize the notion of oblivious RAM and manage to achieve improved amor-

tized complexity for queries while hiding access patterns [Goldreich and Ostrovsky, 1996;

Pinkas and Reinman, 2010; Damgard et al., 2010; Goodrich and Mitzenmacher, 2011]. How-

ever, such solutions are highly interactive and still require communication polylogarithmic

in the size of the database, which in the setting of large storage cloud providers, weak client

devices and expensive network communication will not be practical. Furthermore, they

assume that the user submitting the query is the owner of all data, which does not fit our

scenario where access control is enforced on data shared by multiple users, not limited to

the data owner.

An equally important, but often overlooked, aspect of access control for outsourced

data is to enforce the write access. Existing solutions often made an implicit assumption

that access to shard data and resources always refer to read requests only. However, an

inevitable requirement of data sharing is to allow authorized write access, such as in a

collaborative working environment, where co-workers are allowed to contribute to the same

project document. While data encryption naturally preserves authorization of the read

access through key management, it says little about the authorization on writing to that

data. That is the procession of a decryption key implies authorized read access but not

necessarily the write. Therefore, di↵erent cryptographic schemes are mandatory to manage

read and write accesses separately. On the other hand, similar to read access, access patterns

on write operations should be hidden from the cloud provider to achieve better privacy. In

addition, adding write operation into the current access control scheme complicates our

problem as we do not assume any implications between read and write access rules. Thus

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 175

a user may have both types of access (read and write) to a protected object or only one of

them (only read, only write).

We consider the scenario of a web-based data sharing service, like Dropbox, throughout

the discussion of this paper. In our scenario, users are allowed to upload data, such as

documents, pictures, video clips, etc., to a cloud storage provider. Parts of this data can

be shared with other users of the service and regulated by access control policies specified

by the data owner. For example, a user can upload vacation pictures to be viewed only by

family and friends; meanwhile she may also want to share read and write access to a project

document among collaborating co-workers.

We claim that a privacy enhanced access control solution for data sharing in outsourced

storage, such as the cloud, needs to meet the following requirements:

1. it provides data confidentiality by implementing a cryptographic mechanism to enforce

fine-grained access control, ensuring that a user can decrypt only the data that he has

access to;

2. it provides a more practical and flexible data sharing scheme by supporting both read

and write operations in the access control model;

3. it enhances data and user privacy by limiting the information leakage to the cloud

servers from the access control rules and access patterns of users.

7.1.1 Contributions

We address the privacy requirements for the policies and users’ access patterns in the setting

of outsourced data storage and propose a mechanism to achieve a flexible level of privacy

guarantee for the client. We introduce a two-level access control model that combines fine-

grained access control, which supports the precise granularity for access rules, and coarse-

grained access control, which allows the storage provider to manage access requests while

learning only limited information from its inputs. This is achieved by arranging outsourced

resources into units called access blocks and enforcing access control at the cloud only at the

granularity of blocks. The fine-grained access control within each access block is enforced

at the user’s site and remains oblivious to the cloud. The mapping between files and access

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 176

blocks is transparent to the users in the sense that they can submit file requests without

knowing in what blocks the files are contained. While most existing solutions [De Capitani

di Vimercati et al., 2011; Vimercati et al., 2010; Yu et al., 2010] focus on read request, we

present a solution that provides both read and write access control.

7.2 Two-level Access Control Model – Solution Overview

We consider the following scenario: a set of users outsource their data to a remote storage

(cloud) provider. These users further would like to be able to share selectively some of

their data among themselves. This data sharing should be enabled directly at the cloud

through appropriate access control rules that allow users to retrieve all data that they are

authorized to access (i.e. not involving the actual data owner). Further, the access control

rules governing the data sharing and the data that users access are private information of

the users and our goal will be to protect this information from the cloud provider.

We distinguish the following three roles in this access control model: the data owner who

creates data to be stored at the remote storage in an encrypted format and regulates who

has what access to each part of the data; the data user who may have read and write access

to the protected data; the cloud provider that stores the encrypted data and responds to

access requests. While a solution that enforces access control solely through encryption of

the data and appropriate decryption key distribution can achieve complete privacy for the

access patterns and access control rules by allowing users to retrieve the whole encrypted

database, such an approach will be completely impractical requiring an enormous amount

of communication. We suggest a hybrid solution that o↵ers a way to trade o↵ privacy and

e�ciency guarantees. The basic idea behind it is to provide two levels of access control:

coarse-grained and fine-grained. The coarse-grained level access control will be enforced

explicitly by the cloud provider and it would also represent the granularity at which he

will learn the access pattern of users. Even though the cloud provider will learn the access

pattern over all user requests, he will not be able to distinguish requests from di↵erent

users, which would come in the form of anonymous tokens. The fine-grained access control

will be enforced obliviously to the cloud through encryption and would prevent him from

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 177

di↵erentiating requests that result in the same coarse-grained access control decision but

have di↵erent fine-grained access pattern.

We realize the above two levels of access control by introducing division of the data

resources of the same owner into units called access blocks, which would represent the coarse-

level granularity in the system. Now the cloud provider would be able to map user requests

to the respective access blocks containing the relevant data only if the user has access to

the requested data and without learning which part of the block is accessed. The provider

would also not learn the reason for no match: missing data or no access authorization.

Our solution does not require users to know the exact access blocks that would contain the

data they are searching for. Files might be moved between di↵erent blocks, and the only

information that users would need in order to request them will be a unique file identifier

rather than the id of the current block where the file is residing. We will enable this oblivious

mapping of files to blocks using techniques from predicate encryption and some extensions

to the scheme [Katz et al., 2008]. Once a user retrieves the content of the matching block,

he would be able to decrypt only the part of the block, which he is authorized to access.

We use the ideas of [Vimercati et al., 2010] to minimize the decryption keys that need to

be distributed for fine-grained access control within access blocks.

While the above su�ces for read access control, handling write access control is a little

more subtle. The main issue there is that the cloud would need to allow users to submit

updates for di↵erent parts of an access block without learning which part are updated, and

at the same time prevent users authorized to write to one file in the block from writing to

another file. In order to facilitate this functionality the cloud provider would accept write

updates for blocks only from users that provide tokens granting them write access to some

part of the block (not revealing which part). These updates will be appended to the content

of the block but also the cloud would obliviously tag the updates with the id of the file for

which the user has been authorized, but without learning which this file is. We achieve

this functionality again through a modification of the searchable ciphertexts in a predicate

encryption scheme.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 178

7.3 Access Control Model

In our access control model, we consider a scenario with a set of users U that selectively

perform data sharing among themselves on a set of resources R using remote storage pro-

vided by the cloud. To discuss di↵erent activities an entity can perform, we distinguish the

following three di↵erent roles in the model: the data owner who creates data to be stored

at the remote storage in an encrypted format and regulates who determines the access rules

to each unit of the data; the data user who may have read and write access to the protected

data; the cloud provider that stores the encrypted data and responds to access requests en-

forcing the specified access rules. Note that a user can play the role of a data owner and a

data user at the same time. When a data owner o 2 U wants to share a resource r 2 R, the

management of r is outsourced to the cloud provider. The authorization policy is defined

by data owner o and enforced through cryptographic access control scheme (See details

in Section 7.4 and 7.5.). Also the cloud provider is considered to be honest-but-curious,

which can be trusted to perform the management protocol but will try to deduce as much

information as possible from its inputs, such as the access pattern.

An authorization policy Po is a set of tuples of form hu, r, pi (p 2 {r, w}), which states

a data user u 2 U is allowed access data resource r 2 R owned by o 2 U by performing

read (r) or write (w) operation. An access control list (ACL) of a resource r owned by o,

denoted as acl(r) is then defined as a set of data users u satisfying an authorization policy.

More specifically, we use acl read(r) and acl write(r) to represent ACL for read and write

access respectively.

To provide confidentiality through data encryption while preserving privacy, we propose

a two-leveled access control model illustrated in Figure 7.1. In our scheme the data resources

(files) will be divided into units that we call access blocks. These access blocks will constitute

the coarse-grained level view of the stored data. The cloud provider will be presented with

this view and he will be able to enforce access control rules at this granularity. He will be

able to match an authorized request to the access block that contains the file that is being

accessed. In the case of a read request the cloud would provide the content of the matching

block to the user. And in the case of a write request accept the cloud provider will accept

only authorized updates for the content of the access block and would also obliviously match

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 179

b9# b10# b11# b12#
b5# b6# b7# b8#

##b1# b2# b3# b4#

rk/2# rk/1# rk#

(a)  Coarse/grained#access#block#level# (b)#Fine/grained#resource#level#

r1# r2# r3#

Figure 7.1: Two-leveled access control model.

them to the files for which they are submitted.

At the fine-grained level, each access block bi consists of ki files owned by a single

party. Each data owner is responsible for distributing his resources into blocks. He would

further have fine-grained access policies that would specify each user’s access to the separate

files stored within an access block. The fine-grained access control will be enforced at the

user’s side as opposed to the coarse-grained access control which is enforced at the cloud

provider. For this purpose we will use encryption as implicit method for access control in the

case of read requests. For write fine-grained access control we will use again appropriate

encryption keys distribution together with tokens that would both authorize an update

request to the cloud provider but would also implicitly bind the submitted update to the

exact file within the access block. In Section 7.4 and Section 7.5 we present the exact

protocols that implement these ideas.

To facilitate our discussion on the access control scheme, we present a simple yet illus-

trative example as follows:

Example 1 : Consider a system with five users U = {A,B,C, D,E}. Let Ru denote the

set of resources owner by user u, and we have RA = {r
1

, r
2

, r
3

, r
4

}, RB = {r
5

, r
6

, r
7

} and

RC = RD = RE = ;. Authorization policies at the fine-grained level defined by each data

owner are:

• PA = {hA, r
1

, ri, hB, r
1

, ri, hC, r
1

, ri, hA, r
2

, ri, hB, r
2

, ri,
hC, r

2

, ri, hA, r
3

, ri, hE, r
3

, ri, hA, r
4

, ri, hB, r
4

, ri,

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 180

hC, r
4

, ri, hE, r
4

, ri, hA, r
1

, wi, hB, r
1

, wi, hC, r
1

, wi,
hA, r

2

, wi, hB, r
2

, wi, hC, r
2

, wi, hA, r
3

, wi, hA, r
4

, wi,
hD, r

4

, wi};
• PB = {hA, r

5

, ri, hB, r
5

, ri, hB, r
6

, ri, hC, r
6

, ri, hD, r
6

, ri,
hA, r

7

, ri, hB, r
7

, ri, hC, r
7

, ri, hD, r
7

, ri, hE, r
7

, ri,
hA, r

5

, wi, hB, r
5

, wi, hC, r
5

, wi, hB, r
6

, wi, hD, r
6

, wi,
hE, r

6

, wi, hA, r
7

, wi, hB, r
7

, wi, hC, r
7

, wi, hD, r
7

, wi,
hE, r

7

, wi}.

Therefore, we have the following set of ACLs:

• acl read(r
1

) = {A,B,C}, acl write(r
1

) = {A,B,C};

• acl read(r
2

) = {A,B,C}, acl write(r
2

) = {A,B,C};

• acl read(r
3

) = {A,E}, acl write(r
3

) = {A};

• acl read(r
4

) = {A,B,C,E}, acl write(r
4

) = {A,D};

• acl read(r
5

) = {A,B}, acl write(r
5

) = {A,B,C};

• acl read(r
6

) = {B,C,D}, acl write(r
6

) = {B,D,E};

• acl read(r
7

) = {A,B,C,D,E}, acl write(r
7

) = {A,B,C,D,E}.

Note that for each resource r owned by user o, we have acl read(r) \ acl write(r) ◆ {o}.
That is the owner of a resource automatically entails both read and write access privilege.

At the coarse-grained level, user A maintains two blocks b
1

= {r
1

, r
2

} and b
2

= {r
3

, r
4

},
and user B maintains a single block b

3

= {r
5

, r
6

, r
7

}.

7.4 Read Access Control

In this section, we present in detail the two-level access control scheme for read access only

after describing the following techniques applied in our protocol.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 181

7.4.1 Techniques

7.4.1.1 Fine-Grained Access Control

Fine-grained access control is applied to files inside each access block to explicitly enforce

access control rules. While the cloud provider is able to determine whether a user submits

a legitimate request for some file within a block, he should remain oblivious to the access

control rules defined for that file. To guarantee this property the access control view pre-

sented to the cloud treats blocks as entities, and the cloud grants a read access by providing

the content of an entire block. Fine-grained access control is enforced by encrypting files

per block under di↵erent keys, and the access control problem is mitigated to appropriate

key distribution. Even a user receives the encrypted content of a block, he is able to de-

crypt only the files that he has access to. Access revocation requires re-encryption of the

resource and re-distribution of the new key to the remaining authorized users. Our goal is

to minimize the amount of work and interaction between users and the system upon policy

updates.

The work of [Vimercati et al., 2010] proposes an encryption-based access control solution

for outsourced data. They introduce a key distribution technique that allows each user to

receive only one credential in the form of a public-private key pair and then later be able to

derive decryption keys for all resources he has access to using a public structure, only when

he needs to access these resources. This public structure helps avoid the need to explicitly

re-distribute keys to each user when access policy change.

The key distribution structure used in the scheme of [Vimercati et al., 2010] is a tree

with the following properties:

1. Each leaf of the tree is assigned a symmetric key. The leaf keys are the private keys

distributed to the users of the system when they join.

2. Each intermediate node in the tree is associated with a symmetric key, and contains

tokens with encryptions of this key under the keys of the children nodes. The internal

nodes’ keys are encryption keys for di↵erent resources. The tokens for each node con-

stitute the structure that is published and used by each user to derive the decryption

keys for the authorized resources.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 182

3. The tree graph contains directed edges from children nodes to their parent nodes that

satisfy the following property: there is a directed path from a leaf node to an internal

node if and only if the user who possesses the leaf node key has access to the resource

encrypted with the keys of the internal nodes. The edges of the graph represent the

access control rules for the system.

When a user wants to access a file, he derives the corresponding decryption key as

follows: starting from its leaf node decrypting its content with his private key credential

and then using the key obtained from the node to try to decrypt the content of the parent

node. He continues this process of decryption at nodes and deriving new keys to obtain all

decryption keys for the documents he can access.

We use the approach of [Vimercati et al., 2010] to implement fine-grained access control

in our scheme since it does not require direct interaction between data owner and users for

key distribution. This property is important since we want to enable the work of our system

without making any assumptions about the time when any other party except the cloud

provider will be online. Since the structure that contains the encrypted keys does not need

to be private, it can be stored at the cloud provider. Thus we can achieve key distribution

without requiring any direct interaction between data owner and users beyond some initial

set-up stage when the user establishes a private key with the data owner. We include the

key distribution tree for the files in a block in the contents of the block, which the user

will retrieve and then derive the appropriate decryption keys. We also need to make some

modifications to the way the tree is constructed. In out case the tree structure itself can

reveal certain sensitive information to the cloud. For example, a user having access to one

file will have access to all the files along a directed path. So the content of each node, a

pointer to next node and the token to derive next key are all protected under the current

encryption key.

For the purposes of our protocols we will assume an instantiation of the scheme from

[Vimercati et al., 2010] that provides the following functions: Publish, Access Read,

Find Chain, Compute Key, Find Resources, the use of which we summarize in Fig-

ure 7.2. We also extend the functionality of the underlying scheme with a protocol that

allows updates in the access policies. An update in the access rules translates into a change

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 183

of the edges in the graph. If there are any internal nodes in the graph that become discon-

nected from any leaf node after the update, this necessitates change of the keys associated

with those nodes as well as re-encryption of the corresponding resources. We describe how

we instantiate the Update function also in Figure 7.2. Given this structure a user can

obtain the keys of the internal nodes to which it is connected with a directed path, and by

definition these are exactly the decryption keys for the files that he can access.

• Publish(r, o, eo, acl): adds a resource r owned by o with a secret eo and an access

control list acl = acl read(r) for read access.

• Access Read(u, r, o): returns the encryption key for a resource r owned by o, if u is

an authorized user.

• Find Chain(u, r): finds the shortest chain of tokens from the secret key of user u to

derive the decryption key for resource r.

• Compute Key(u, chain): derives the secret key for a user u given a chain of transi-

tion tokens.

• Find Resources(u, r): finds the set of nodes that lie on any path from the user u to

the node corresponding to resource r.

• Update(r, acl): if there is another resource with the same access control list acl, i.e.,

there is a node in the tree accessable exactly by a subset of users in acl, then encrypt

r with the key contained in that node. Otherwise, encrypt r with a new key, add a

new node containing this key to the tree and add appropriate edges to connect the

new node to the users who have access to r. (Note that certain subgroups of the users

in acl might already have a shared key through another node in tree, and in that case

we connect to that node rather than all the users’ nodes separately.)

Figure 7.2: Algorithms for key distribution and management for fine-grained AC.

7.4.1.2 Coarse-Grained Access Control

The main goal to achieve at the level of coarse-grained access control is to enable the cloud

provider to obliviously match a user’s request to an access block without learning which

part of the block the user is authorized to access. In addition we provide unlinkability

among multiple requests for the same resource even if coming from the same user, which

further protects users’ access patterns from the cloud provider. In order to achieve these

goals we apply the predicate encryption scheme of [Katz et al., 2008]. Observing that in

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 184

this scheme ciphertext can be re-randomized even without knowledge of the secret key, we

define a re-randomization algorithm in Definition 22.

Definition 22. A re-randomizable predicate encryption scheme consists of the following

algorithms:

• Setup(1n): produces a master secret key SK and public parameters;

• EncSK(x): encrypts an attribute x using key SK;

• GenKeySK(f): generate a decryption key SKf associated with a function f ;

• DecSKf
(c): outputs 1 if the attribute encrypted in c = EncSK(x) satisfies f , i.e. f(x) =

1, and output a random value, otherwise;

• Rand(c): computes a new encryption c0 of the value encrypted in c but with di↵erent

randomness without the secret key.

We present the predicate encryption scheme of [Katz et al., 2008] and the instantia-

tion of the function Rand(c) for that scheme in Appendix E.1. This scheme handles a

class of functions f , which includes polynomials of bounded degree. We use polynomial

functions of the type f(x) = (x � id
1

) · · · (x � idn), to implement coarse-grained access

control. Figure 7.3 present a list of algorithms to enforce access control on the block level

granularity without revealing the exact files that are being accessed insider a block. The

algorithm File Access Check grants access if the submitted access token matches any of

the files in the block without revealing the file identity. The request token produced by

File Access Request is an encryption that does not leak information about the file id it

contains.

7.4.2 Read Access Control

We present a read access control solution consisting of the following algorithms. Unless

explicitly stated, all the actions are performed by individual data owners.

• System Setup: At the fine-grained level, files are distributed into access blocks.

Generate a tree graph per block by running Publish(r, o, eo, acl) for each resource r

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 185

• Block Access Setup: data owner runs Setup(1n), publishes the public parameters

and keeps the master secret key SK. For files id
1

, . . . , idn in each block, he computes

SKf = GenKeySK(f) for f(x) = (x � id
1

) · · · (x � idn) and sends SKf to the cloud

provider.

• File Access Authorization: data owner provides access to a file id by sending

cid = EncSK(id) to an authorized user.

• File Access Request: user generates a token tid = Rand(cid) for file id.

• File Access Check: upon receiving a request token t, the cloud computes DecSKf
(t)

for each block, and returns those blocks that compute to 1.

Figure 7.3: Algorithms for enforcing coarse-grained AC at the access block level.

owned by o with initial ACLs, and encrypt resources using keys from the tree graph.

At the coarse-grained level, each data owner computes parameters for a predicate

encryption scheme. Then he constructs a separate tree graph over all resources he

owns to distribute authorization tokens of the form cid = EncPK(id) (i.e., now tree

nodes contain authorizations tokens rather than file decryption keys). Finally, data

owner computes a key SKf = GenKeySK(f) per block where f is the polynomial

derived from the ids of the files contained in that block as described above, and gives

this key to the cloud provider, which will use it to obliviously check read access on

authorization tokens.

• Access Authorization: At the fine-grained level, add a leaf node containing the

new user’s public key to the corresponding tree graph with encryption keys. Update

the graph by adding new internal nodes and appropriate edges if necessary. Update

file encryptions if new internal nodes were added previously. At the coarse-grained

level, perform similar operations with respect to the tree graph containing read access

tokens.

• Access Request: First, at the coarse-grained level, the user u derives from the tree

graph with access tokens the authorization token cid = EncSK(id) for the requested file

id. For this he uses the functions Find Chain(u, id), Find Resources (u, id) and

Compute Key(u, chain). Once he has the access token, he submit a randomization

of it tid =
$ (cid) to the cloud.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 186

Once the user receives the content of the matching block for his request, at the fine-

grained level, he derives the decryption key for the specific resource he is looking for

the tree graph included in the block content.

• Access Check: Access control is enforced as follows. At the fine-grained level, only

authorized users can derive the correct decryption key for any file using the public tree

structure. At the coarse-grained level, the users can obtain only tokens for the files

they are authorized to access. Also the cloud provider executes File Access Check

to identify the block that contains the requested file and return only that blcok.

• Access Rule Update: At the fine-grained level, changes are applied immediately

upon policy updates. If the policy update involves access revocation, the data owner

changes the encryption of the corresponding files. The data owner identifies the blocks

a↵ected by those files and updates their tree graphs with decryption keys. The changes

at the coarse-grained level happen at longer intervals of time, the length of which would

depend on the resources of the data owner. They involve updating of the tree graph

with access tokens.

A" B" C" D" E"

V1
11"[A]"

b1"="{r1,"r2}" A" B" C" D" E"

V2
11"[A]"

b2"="{r3,"r4}"

(a)"Encryp;on"policy"graph"for"block"b1"owned"by"A"

V2
31"[ABCE]"

(b)"Encryp;on"policy"graph"for"block"b2"owned"by"A"

V1
21"[ABC]"

r"" node" key"
r1" v121" k121"
r2" v121" k121"

r"" node" key"
r3" v221" k221"
r4" v231" k231"

V1
12"[B]" V1

13"[C]"
V2

12"[E]" V2
13"[B]" V2

14"[C]"

V2
21"[AE]"

A" B" C" D" E"

V3
11"[A]" V3

13"[C]"

b3"="{r5,"r6,"r7}"

V3
12"[B]"

V3
22"[BCD]"

(c)"Encryp<on"policy"graph"for"block"b3"owned"by"B"

V3
15"[E]"

V3
31"[ABCDE]"

r"" node" key"
r5" v321" k321"
r6" v322" k322"
r7" v331" k331"

V3
14"[D]"

V3
21"[AB]"

Figure 7.4: Tree graphs of encryption policy for fine-grained AC on read access.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 187

r" "node" "token"
r5" "vB21" "EncSK(r5)"
r6" "vB22" "EncSK(r6)"
r7" "vB31" "EncSK(r7)"

A" B" C" D" E"

VB
11"[A]" VB

13"[C]"VB
12"[B]"

VB
22"[BCD]"

VB
15"[E]"

VB
31"[ABCDE]"

VB
14"[D]"

VB
21"[AB]"

A" B" C" D" E"

VA
11"[A]"

VA
21"[ABC]"

VA
12"[B]" VA

13"[C]" VA
14"[E]"

VA
23"[AE]"

VA
31"[ABCE]"

(a)"Read"access"token"graph"for"owner"A" (a)"Read"access"token"graph"for"owner"B"

r" "node" "token"
r1" "vA21" "EncSK(r1)"
r2" "vA22" "EncSK(r2)"
r3" "vA23" "EncSK(r3)"
r4" "vA31" "EncSK(r4)"

VA
22"[ABC]"

Figure 7.5: Distribution of read access tokens EncSK(ri) for coarse-grained AC.

Example Given the example in Section 7.3, we construct one tree graph per block for file

encryption keys at the fine-grained level in Figure 7.4. Each block stores files owned by a

single user (shaded), and each file r is encrypted under a symmetric key. Leaf nodes, indexed

as vj
1n with block id j, store users’ initial public keys. Key derivation paths are denoted using

thick links connecting leaf nodes to internal ones. Each row in the table states resource ri in

block bj encrypted under key kjmn at vertex vjmn. The tree structure significantly reduces the

number keys that each user has to maintain, and enables encryption of di↵erent files with

the same ACL under the same key. For example, key k3
31

for encrypting r
7

can be derived by

all users, since there is a directed path from each user’s initial secret to vertex v3
31

; resources

r
1

and r
2

are encrypted under the same key k1
21

since acl read(r
1

) = acl read(r
2

) = {A,B}.
Figure 7.5 depicts a tree graph per data owner to distribute read access tokens at the

coarse-grained level. Each row in the table states resource ri is associated with access token

EncSK(ri) stored at vertex vomn. Unlike in Figure 7.4, each ri is associated with an unique

read access token encrypted on its id. For example, r
1

and r
2

are now given di↵erent access

tokens at vertexes vA
21

and vA
22

respectively.

7.5 Write Access Control

Enforcing write access control presents more challenges, mainly for the fact that access

control through data encryption does not apply to cases when data can be modified. At

coarse-grained level we can enforce access control similarly as in the case of reads. We can

have separate write access tokens for the user and those will allow them to submit updates

only to blocks in which there is at least one file they can write to. Within each block write

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 188

access to a file is granted through a public key used for the encryption of the file. These keys

can be distributed similarly to the decryption keys for reading through a tree structure.

Yet, the above is still not su�cient to guarantee correct write access control enforcement.

The remaining issue is related to the fact that we want to keep the fine-grained access rules

oblivious to the server, i.e. he should not understand what file a user is updating. If we

allow users to include encrypted identifier of the file they are updating, this opens a door

for a new attack where a user without write access to a file submits an update for that file

which contains garbage and just overwrites the content of the file. In order to prevent this

we device a way for the server to obliviously tag the submitted update with the appropriate

file identifier.

The authorization token for write that the user submits to gain access to the block

contains the file identifier in an encrypted form. So using this token as an identifier for

the update will provide the oblivious property. However, this solution would not be secure

since any other user, who has read access to the block, would be able to obtain this token

granting write access as well. To prevent this undesired situation, we take advantage of the

predicate encryption ciphertexts constituting access tokens, which allows us to use part of

the token as update identifier, which cannot be used as write access token.

7.5.1 Techniques

File Encryption. We use a public key rather than symmeric encryption scheme to handle

all possible combinations of read and write access to a file. Since such a scheme is compu-

tationally expensive for large size of data, file content is still encrypted using a symmetric

key (e.g., AES), which is further encrypted under the public key. Two trees are constructed

for key distribution per block – one for the public (encryption) keys and the other for the

private (decryption) keys. These two trees share the same set of internal nodes for a one-to-

one correspondence between public and private key pair. Only files readable and writable

by the same set of users can share the same public key pair.

Access Authorization Tokens. Two trees are constructed by each data owner for the

distribution of read and write access tokens respectively.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 189

File Identifiers for Write Updates. We observe that the write authorization token

is a valid encryption for a predicate encryption that provides polynomials evaluation,

and the structure of the encrypted plaintext for access to file id is a vector of the form

(1, id, id2, . . . , idn), where n is the number of files placed in a block. The structure of the

ciphertext allows it to be split into parts where one part is an encryption of the vector

(1, id, id2, . . . , idk) (k < n, n > 2), which is no longer a valid write access token for that file,

but can still be used identify file updates for users with read privilege. This can be achieved

using a decryption predicate for a polynomial of degree k that has id as a zero point. (See

Appendix E.1 for details.)

7.5.2 Integrated Read and Write Access Control

We realize the above proposal for the write access control enforcement to obtain an inte-

grated solution for both read and write access. Next we describe the functionality associated

with write access enforcement. The read access is the same as the construction in the pre-

vious section with the exception that once a client has retrieved a block he needs to identify

both the original encryption of the file as well as all updates for that file. The latter will

be achieved using an additional key (a new part in his authorization token) that will allow

him to identify the valid updates submitted for that file.

• Setup: At the fine-grained level, for each block construct two copies of the same

key distribution tree based on both the read and write access rules, i.e. two files can

be encrypted with the same key if and only if the same set of users have read and

write access to them. For each node in the tree, generate a public-private key pair

(skn, pkn). Store in the nodes of one of the above trees the secret keys and add edges

based on the read access tules. In the nodes of the other tree store the public keys

and add edges according to the write access rules. Construct another tree with the

same set of nodes to store the public key pkn, with edges determined by write access

rule. For each file id generate a AES key skaesid for encryption, and append to the

ciphertext Encpkn(sk
aes
id).

At the coarse-grained level, each data owner generates two sets of parameters (pk0, sk0)

and (pk”, sk”) for the predicate encryption. Then he constructs a tree graph, where

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 190

each node contains read access token Encpk0ra(id) (used by the cloud provider to check

the read access) and SKx�id = GenKeysk00
ra

(f) where f(x) = x � id (used by the

user to identify all updates to the file within the retrieved block). Similarly, construct

another tree to distribute write access tokens Encpkwa(id).

• Access Authorization: At the coarse-grained level, extend the trees with read and

write access tokens with new leaves for the new user and update the edges according to

his read and write permissions. This may involve splitting of nodes and re-encrypting

files with new keys if the user has read access only to a subset of files that have been

encrypted with the same key.

• Write Access Request: At the coarse-grained level, the user derives his write ac-

cess authorization token for the file he wants to access from the corresponding tree

structure and submits to the cloud a re-randomized copy of the token.

Once the user has the matching block, at the fine-grained level he obtain the encryp-

tion key pkn for the file to be updated from the write tree. Then he encrypts the new

content for that file with key pkn and submits it to the cloud server.

• Write Access Check: At the fine-grained level, a user can modify a file only if he

has the encryption key and the write authorization token. At the coarse-grained level,

the cloud finds if there is a block for which the authorization token grants write access.

The write access token is of the form (C
0

, {C
1,i, C2,i}ni=1

), and the cloud uses the first

components (C
0

, {C
1,i, C2,i}2i=1

) as an identifier for updates appended to a block.

• Write Access Rule Update: Update per-block trees for encryption keys and the

tree for distributing write access tokens accordingly.

Example Following the same example in Section 7.3, we draw tree graphs of encryption

policy for both read and write access at the fine-grained level within each access block in

Figure 7.6. Now for each access block bj , we construct two trees: one for read access and

the other one for write access. Instead of storing AES symmetric keys in the vertexes, a

public key pair (skr
i

, pkr
i

) is generated for each resource ri, where the private keys are

stored in nodes from the read tree (vRj
mn) and the public keys are stored in nodes from

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 191

b1#=#{r1,#r2}#

b2#=#{r3,#r4}#

(a)#Encryp4on#policy#graph#of#read=and=write#access#for#block#b1#

b3#=#{r5,#r6,#r7}#

r## node# key#
r1# vR121# sk(1,2)#
r2# vR121# sk(1,2)#

b1#=#{r1,#r2}#

r## node# key#
r1# vW1

21#pk(1,2)#
r2# vW1

21#pk(1,2)#

r## node# key#
r3# vR221# sk3#
r4# vR231# sk4#

b2#=#{r3,#r4}#

r## node# key#
r3# vW2

21# pk3#
r4# vW2

31# pk4#

(b)#Encryp4on#policy#graph#of#read=and=write#access#for#block#b2#

r## node# key#
r5# vR321# sk5#
r6# vR322# sk6#
r7# vR331# sk7#

b3#=#{r5,#r6,#r7}#

r## node# key#
r5# vW3

21# pk5#
r6# vW3

22# pk6#
r7# vW3

31# pk7#

(c)#Encryp4on#policy#graph#of#read=and=write#access#for#block#b3#

A# B# C# D# E#

VR1
11#[A]#

VR1
21#[ABC]#

VR1
12#[B]# VR1

13#[C]#

A# B# C# D# E#

VW1
11#[A]#

VW1
21#[ABC]#

VW1
12#[B]# VW1

13#[C]#

A# B# C# D# E#

VR2
11#[A]# VR2

12#[E]# VR2
13#[B]# VR2

14#[C]#

VR2
21#[AE]#

VR2
31#[ABCE]#

A# B# C# D# E#

VR3
11#[A]# VR3

13#[C]#VR3
12#[B]#

VR3
22#[BCD]#

VR3
15#[E]#VR3

14#[D]#
VR3

21#[AB]#

VR3
31#[ABCDE]#

A# B# C# D# E#

VW3
11#[A]# VW3

13#[C]#VW3
12#[B]#

VW3
22#[BDE]#

VW3
15#[E]#VW3

14#[D]#

VW3
31#[ABCDE]#

VW3
21#[ABC]#

A# B# C# D# E#

VW2
11#[A]# VW2

12#[E]# VW2
13#[B]# VW2

14#[C]#

VW2
21#[A]#

VW2
31#[AD]#

Figure 7.6: Tree graphs of encryption policy for read and write access at the fine-grained

level within each access block.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 192

r" "node" "token"
r1" "vA21" "Encpkwa(r1)"
r2" "vA22" "Encpkwa(r2)"
r3" "vA11" "Encpkwa"(r3)"
r4" "vA23" "Encpkwa"(r4)"

A" B" C" D" E"

VA
11"[A]" VA

12"[B]" VA
13"[C]" VA

14"[D]"

VA
21"[ABC]" VA

23"[AD]"

A" B" C" D" E"

VB
11"[A]" VB

13"[C]"

VB
12"[B]"

VB
22"[BDE]"

VB
15"[E]"

VB
14"[D]"

VB
31"[ABCDE]"

VB
21"[ABC]"

r" "node" "token"
r5" "vB21" "Encpkwa"(r5)"
r6" "vB22" "Encpkwa"(r6)"
r7" "vB31" "Encpkwa"(r7)"

(a)"Write"access"token"graph"for"owner"A" (a)"Write"access"token"graph"for"owner"B"

VA
22"[ABC]"

Figure 7.7: Distribution of write access tokens Encpk
wa

(ri) for each resource ri in coarse-

grained access control.

the write tree (vWj
mn). Every pair of read and write trees share the same set of vertexes,

although the set of edges may change. For example, vertex vR2

21

is labeled as [ABCE] since

acl read(r4) = {A,B,C,E}; whereas vertex vW2

21

is labeled as [AD] because acl write(r4) =

{A,D}. Thus di↵erent ACLs on read and write for the same resource entail di↵erent labels

of user list, but the one-to-one correspondence relationship between read node and write

node is naturally reflected by the indexing pattern. Note that in Figure 7.6(a), both the

read tree and the write tree share the same set of vertexes and edges. That is because

acl read(r
1

) = acl read(r
2

) = acl write(r
1

) = acl write(r
2

) = {A,B,C}.
Moreover, Figure 7.7 depicts a tree graph for distributing write access tokens Encpk

wa

(ri)

for each resource ri at the coarse-grained level. In addition, write access performed by

authorized users requires an additional update token SKx�r
i

for each resource ri. These set

of tokens are distributed the same way as read access tokens demonstrated in Figure 7.5.

7.6 Analysis

7.6.1 Security Guarantees

Our two-leveled access control scheme provides the following privacy guarantees for each

participant in the system:

Privacy against the cloud provider. The cloud provider does not learn any of the

content of the files that he stores. He learns the frequency of access to particular blocks

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 193

and the type of request: read or write. The provider does not learn the exact files that have

been accessed within a block either for reading or writing. In addition he can distinguish

write requests from the data owner a block that are removing the appended updates and

integrating them in the main content of the file. We formalize these guarantees in the

following way.

Definition 23. Let D be the data in the form of blocks that the cloud provider stores For

any two tuples of request,we define the equivalence relation (q0
1

, . . . , q0`) ⌘D (q1
1

, . . . , q1`) to

hold if

• q0i and q1i are the same type of requests (read or write), and if they are both write

requests, they are either both from the data owner of these files or both are from users

di↵erent from their data owner.

• q0i (D) = q1i (D) where q(D) denotes the matching block for a query, if any.

Theorem 16. Let (q0
1

, . . . , q0`) ⌘D (q1
1

, . . . , q1`) be two sequences of queries that are equiva-

lent according to Definition 23.The views of the cloud provider from the execution of these

two sequences are indistinguishable.

Privacy against the users. The coarse-grained access control provides that users will

be able to receive the encrypted content only of blocks in which they are authorized to read

at least one file. The fined-grained access control mechanism guarantees that users will be

able to decrypt only the parts of the block returned to them, which they are authorized

to read. Similarly, in the case of write access users would be able to submit updates only

the blocks in which they have write access at least to one file. And their updates will be

associated only with the files that they are authorized to update. Users learn which of the

files that they can read are allocated in the same block. This information is not revealed

during writing since the user does not learn to which block his update will be appended

(unless he already the location of the file from his read access).

Privacy against data owners. The data owner of a block does not learn which users

have accessed the block neither for reading nor for writing. The file identifiers for the

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 194

submitted file updates are not associated with the users that have submitted them. However,

he does learn the whole sequence of updates that have been submitted to a file as opposed

to just the most recent version.

7.6.2 Performance Analysis

The computational overhead required by each participant in the system is described as

follows:

Read Access

• Data Owner:

– Setup — computation of the authorization trees with decryption keys and access

tokens. The work is proportional to the number of files in the database and the

number of users.

– File access authorization of a user — update work for the tree with decryption

keys and the tree with access tokens: in the worst case proportional to the depth

of the trees.

– File access revocation of a user — update work for the tree with decryption

tokens: in the worst case proportional to the depth of the tree. The updates

for the tree with the access tokens can be executed at larger intervals of time to

achieve better amortized e�ciency for updates.

• User: retrieving access tokens and decryption keys can be proportional to the number

of files that the user is authorized to access. However, this work is enough to retrieve

the access credentials for all files. Once retrieved the use can store them locally and

use them directly for his requests. New credentials will have to be retrieved only

when there has been an update of the access trees that has involved change of the

credentials relevant for the particular user.

• Cloud provider: in order to map an access request to a particular block the cloud

provider will have to execute the File Access Check function for the submitted

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 195

token and each block. This cost can be reduced if after the first retrieval of a file

the user remembers the block id that contained the file, and the next time he need

to access the same file he also submits this id. In this case the cloud provider would

need to run a single check and verify that the block pointed in the access request does

really contain the file of interest. Applying this optimization for e�ciency reveals

some additional information to the cloud, namely allows him distinguish first time

access requests from repeated request, however, still without him being able to link

requests to the same file. Further the user can choose whether to submit the block

identifier that he has in repeated requests to weaken the additional leakage to the

cloud.

Write Access

• Data owner: The enforcement of write access control requires duplication of the tree

structures that were necessary for the read access control but this time with credential

necessary for the write access. This comes as an overhead in the setup phase when

these structures are computed by the data owner and also each update of the access

rules will necessitate update of both types of trees since the encryption and decryption

(relevant for write and read access) need to be synchronized. Also periodically the

data owner would need to process the blocks and compact the updates for each file

back in its initial memory location.

• User: The size of the blocks that the reader receives will increase depending on the

frequency of the updates for a block as well as the time period at which the data

owner processes the blocks and brings the updates back in place. At read access the

user would need to locate both the initial place of the file he is looking for as well

as all updates that have been submitted for that file, and then reconstruct the most

recent version of the file.

• Cloud provider: The cloud provided would need to transfer larger blocks including

both the original files as well as the updates. He would need to compute the identi-

fication tag for each authorized write update. This, however, would require constant

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 196

time.

We discuss further optimizations for the scheme that can improve the performance in certain

case in Appendix E.2.

7.6.3 Discussion

Choosing the granularity for the access blocks in the read and write access control schemes

a↵ects the privacy guarantees for the scheme as well as its e�ciency performance. The

right granularity for each specific usage scenario will depend on the privacy and e�ciency

requirements for it, the expected patterns of access to the files and the expected frequency

of access control rules’ updates. Next we discuss some points that should be taken into

consideration when choosing how to divide the files into access blocks:

• Each read access to a file entails a transfer of the content of the whole block containing

the requested file from the cloud to the user. Thus the size of the blocks should be

appropriate for the response delay that would be acceptable for the system. If we

expect that the users for the system will have fairly diverse types of devices, we can

create di↵erent levels of block granularity using di↵erent types of access tokens (as we

discussed in the optimization section) and each user can choose which access block

granularity fits best his privacy requirements as well as his communication limitations.

• If the database contains files that have ”complementary” information, i.e., a user is

likely to access only one of a these files (for example, if there are two files, one of

which is accessed when a user wants to sell stocks, and the other one is accessed if the

user wants to buy stocks), such files should be allocated to the same block. Thus even

if the cloud provider manages to obtain some external information for the purpose of

these two files, he still will not be able to figure out from the access block requests,

which file was actually used.

• Files that are expected to be updated often should be allocated to blocks containing

fewer files since the length of those blocks is expected to grow faster with the sub-

mitted updates. Alternatively the data owner should compact such blocks more often

removing the appended updates and incorporating them in the main file content.

CHAPTER 7. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 197

• In order to take maximal advantage of the optimization for caching read and write

tokens as well as decryption keys, files that are likely to have their access rules changed

often should be included in blocks with fewer files (these files might be with longer

content, if we want to have blocks of approximately equal size). Most of the time

the accesses to those files will require direct derivation of the decryption keys, which

would have been updated, and this will be a↵ected by the size of the tree for their

respective access block.

• Since the view of the cloud provider of the access requests amounts to the frequency at

which each access block is matched, files that are expected to have high access rates

should be distributed across di↵erent blocks. This should prevent a certain block

being accessed much more often than the rest, which might reveal information about

the content of the block to the cloud provider.

198

Part III

Secure Data Sharing through

Secure Search

CHAPTER 8. PRACTICAL SECURE SEARCH 199

Chapter 8

Practical Secure Search

8.1 Motivation and Contributions

Often, di↵erent parties possess data of mutual interest. They might wish to share portions

of this data for collaborative work, but consider the leak of unrelated portions to be a

privacy issue for themselves or their clients. Thus, methods that provide a well-defined

and secure sharing of the data between untrusting parties can be useful tools. One such

method that we introduce, is the ability for a client to search the information residing on

another server without revealing to the server his identity or the content of his query; at the

same time, it is desirable to guarantee that query capability is only granted to appropriate

clients and that they do not learn anything unrelated to the query. Such a tool is useful in

deciding and agreeing upon information-sharing between parties who do not initially know

if they have data worth sharing with each other, and do not want to share information until

they do. In addition the very fact that a client is interested in running certain queries is

considered sensitive, and thus both his identity and the query content must be protected

from the server.

The system we are proposing has many possible applications. For example, two intelli-

gence agencies might like to search each other’s data to discover if they have complementary

information about the same parties. Similarly, the police may need to search the databases

of di↵erent institutions, e.g., banks for information about people suspected of embezzlement.

Even outside of law enforcement, this type of search might be useful to a physician who

CHAPTER 8. PRACTICAL SECURE SEARCH 200

wants to find out about other patients with the same rare disease as a patient of his own,

along with treatment methods that have given good results. Or institutions might wish to

protect logs containing sensitive information about the activities of their members, and yet

allow restricted searches on information about suspicious behavior that, when correlated

across di↵erent domains, may help detect attacks. These scenarios all present a common

problem: a facility has data that legitimately could or should be shared with another party,

embedded within a large amount of data that should be held confidential. Further in cases

such as business acquisition research and law enforcement the identity of the querier needs to

be kept anonymous to avoid causing fluctuation in share prices or tipping o↵ investigation.

8.1.1 Our Contributions.

We address the above concerns by defining and implementing Secure Anonymous Database

Search (SADS) system. Our solution achieves search time e�ciency that is su�cient for real-

time search by considering relaxed adversarial models that still provide security guarantees

that adequately address the requirements of many practical scenarios. As in [M. Bellare

and O’Neill, 2007], we consider e�ciency to mean sub-linear search time in the total size

of the searchable data. Protocols such as [Song et al., 2000; Boneh et al., 2004; Waters

et al., 2004; cheng Chang and Mitzenmacher, 2005] achieve linear search time; to improve

this complexity, we may be willing to sacrifice strict definitions of privacy and security in

a limited and measurable manner. Thus, our goal is to guarantee practical performance

and achieve the maximum privacy, security and anonymity possible under the e�ciency

requirement. We design a security architecture that facilitates relaxed security definitions

and e�ciency guarantees, and at the same time corresponds to viable practical setups.

We propose secure search protocols that allow to identify and retrieve matching content.

In our system we decouple the questions of search of matching document and their retrieval,

and the document retrieval protocols that we introduce can be combined with any other

search protocol for for the proposed security architecture. The main search functionality

that we provide is keywords search.

We analyze the security properties of our protocols. In order to evaluate the practical

performance of our solution we implement the system and measure its performance with

CHAPTER 8. PRACTICAL SECURE SEARCH 201

realistic working load of databases of size 50 GB. The search time that we achieve improves

orders of magnitude existing solutions with stronger security guarantees and enters the

scope of practicality incurring only about 30 % overhead compared to SQL queries and

comparable to data transfer over SSL.

8.2 Security Architecture and Definitions

The general scenario we consider includes multiple parties who possess private sensitive data,

which they are willing to share under certain very specific circumstances. Each execution

of the scheme will involve a party who owns a set of documents he wishes to make available

for secure anonymous keyword search by authorized parties. Any other party may be

authorized to take the role of the querier, whose input is some keyword that he wishes to

search for in the database. We will interchangeably refer to the first party as data owner or

server, and the second party as querier or client. The goal is for the protocol to meet the

following requirements:

• Correctness: The querier’s output consists of all the matches, namely the indices

of all documents containing the keyword. A tolerated probability of expected error

(false positives or negatives) may be specified.

• Client Security: The data owner does not learn any information about the query

(keyword).

• Server Security: The querier learns nothing about the data except for the specified

output (matches) for his query.

• Server Access Control: Only parties authorized by the data owner can submit

queries and receive outputs for this data.

• Client Anonymity: The data owner learns no information about the identity of the

querier as chosen from amongst the pool of authorized parties. This also precludes

information about linkage of two queries coming from the same client.

• Practical e�ciency: This is a central requirement for our system, and we design

our model and protocol accordingly. In particular, high communication complexity,

CHAPTER 8. PRACTICAL SECURE SEARCH 202

or per-query computation complexity that scales linearly with the number of words

in a document will not be acceptable. This rules out the use of existing generic

cryptographic techniques from secure multiparty computation [Yao, 1982; Yao, 1986;

Goldreich et al., 1987] and PIR [Chor et al., 1998; Gertner et al., 2000].

It is not hard to show that the security, anonymity, and e�ciency requirements stipulated

above are conflicting, and cannot all be achieved simultaneously without adjusting the

model. For example, sublinear computation and constant communication conflict with

client privacy, as they allow the server to gain information on the answers to the query, and

thus on the query itself. Client anonymity seems to conflict with server access control, and

obviously anonymity cannot be achieved if the server and client are the only two parties

participating in the interaction. Trying to solve the latter problem by involving all parties in

the system for each search is not practical (both in terms of e�ciency, and since it requires

a fixed and known set of parties).

Instead, we will expand our model by adding two new parties that will participate in each

search, the Index Server (IS) and the Query Router (QR). These may be viewed as neutral

parties available to regulate the data sharing process without learning the participants’

private inputs. The security and anonymity requirements with respect to these new parties

will be reasonable, but weaker than those between the client and server; in return, they

allow us to achieve practical e�ciency.

Before elaborating on these requirements (which will complete our definition of SADS),

we overview the general architecture of our SADS protocol, demonstrating the roles of IS

and QR and their trust implications.

CHAPTER 8. PRACTICAL SECURE SEARCH 203

IS

QR

Client

Data Owner

Encrypted
query

Extract
Search
Indices

Search
indices

Search Index
Structures

Search

Encrypted
results

Transformed
encrypted

results

Transform
encrypted
results

Preprocessing

Search

Figure 8.1: General Setup: The data owner makes its data available for search providing IS with

search index structures, the client submits queries anonymously to IS via QR, IS sends back the

search result though QR

Figure 8.1 illustrates the search protocol. A database owner generates a search index

structure computed from (an encryption of) his data and gives it to the index server. This

structure enables IS to answer (encrypted) queries but does not reveal information about

the provided database. Outsourcing the search to IS prevents the data owner from finding

out the results to encrypted queries. The IS sees the results, but does not know what

documents they correspond to. At most, the IS will be able to tell when two submitted

queries have overlapping results. This is mitigated by preserving the anonymity of the

queriers with respect to the index server. However, providing such anonymity introduces a

new problem: how to guarantee that only authorized users are submitting queries. This is

addressed by the query router, who serves as an intermediary in the communication path

between querier and IS. QR is trusted to know and protect the identities of the participants,

while enforcing correct authorization before allowing queries to reach the IS. However, he

is not trusted to see the content of the queries or results. Thus a client will submit his

CHAPTER 8. PRACTICAL SECURE SEARCH 204

encrypted query to the QR, who checks the authorization of the user, transforms the query

and forwards it to the IS. The IS will send back search results to the QR, which will be able

to forward them to the respective user. The results are encrypted so that the QR does not

learn anything.

With this architecture in mind, we make the following requirements with respect to IS

and QR:

• Data Security Against IS and QR: Both IS and QR learn no information about

the data.

• Client Anonymity Against IS: IS learns no information about the identity of the

querier. This again includes unlinkability.

• Search Result Privacy Against IS: Given a sequence of queries (forwarded to IS

from QR, possibly by di↵erent clients), IS may learn which of the encrypted queries

result in the same set of matching documents. No other information about the queries

(or the client(s) who generated them) may be learned by IS.

• Query Privacy Against QR : Given a sequence of queries from a given client,

QR may learn nothing beyond which of the encrypted queries are the same.

Thus we define secure anonymous database search as follows:

Definition 24. A Secure Anonymous Database Search (SADS) system consists of proto-

cols for server, client, IS and QR, satisfying all the correctness, security, anonymity, and

e�ciency requirements defined above between client and server and for IS and QR.

In order to define formally the security notions behind the above properties we start

with the standard simulation security notion of Canetti [Canetti, 2000b]. It guarantees

that the queriers receive only the matching results, while none of the other parties in the

protocol learns anything. Intuitively, what the definition captures is that a protocol is

secure if the views of the participants in the real execution (namely their inputs, random

inputs, outputs, and messages they receive) are indistinguishable from their views in an

ideal execution where all parties send their inputs to a trusted party who computes the

CHAPTER 8. PRACTICAL SECURE SEARCH 205

results and sends them back to the receivers. We modify the definition to introduce the

notion of privacy leakage as follows.

Definition 25. A protocol ⇡ is a secure encrypted search protocol with privacy leakage L ,

if for every real world adversary, there exists a simulator such that the view of the adversary

in the real world execution, where he interacts with the honest parties, is indistinguishable

from his view in an ideal world execution where he interacts with a simulator that takes as

input L (and simulates the honest parties).

Now the above privacy properties can be translated as the following types of leakage L
in Definition 25

• False Positive Database Leak : a fraction of records that do not match the search

criterion. This is leakage that the client learns and thus needs to be be provided to

the client simulator in the security proof.

• Search Pattern: the equality pattern of the submitted queries. This is leakage to the

IS and needs to be provided to the IS simulator in the security proof.

• Results’ Pattern: the equality pattern among the results. This is leakage to the IS

and needs to be provided to the IS simulator in the security proof.

• Client queries linkability : what queries were submitted by the same client. This infor-

mation will be leaked to the QR and thus needs to be provided to the QR simulator

as well.

8.2.0.1 Building Blocks

In this section we introduce the building blocks that we would use for our search protocol.

8.2.1 DET-CCA Deterministic Private Key Encryption Scheme.

While the standard definitions of security (e.g., [Goldwasser and Micali, 1982]) require an

encryption scheme to be probabilistic, a deterministic scheme will allow us considerable

e�ciency gains, while still providing a level of security which is acceptable in our setting

CHAPTER 8. PRACTICAL SECURE SEARCH 206

(security-up-to-equality). This tradeo↵ follows the idea introduced by [M. Bellare and

O’Neill, 2007], who define deterministic encryption in the public-key setting, and show how

to convert a standard (probabilistic) PKE to a deterministic one. We follow the same

approach, adapting it to the secret key setting.

We start by defining chosen-ciphertext (CCA) security for deterministic encryption. The

adversary A = (A
1

, A
2

), defined as in [M. Bellare and O’Neill, 2007], is a pair of polynomial

time algorithms that share neither coins nor state and has high min-entropy !(log(k)) (this

is the case for any adversary if the underlying plaintext domain is dense).

Definition 26 (DET-CCA). Let ⇧det = (Gen,Enc, Dec) be a private key encryption scheme

and A = (A
1

, A
2

) be an adversary against it. We conduct the following two experiments:

DET-EXP0

⇡det,A(n) DET-EXP1

⇡det,A(n)

s Gen(1n) s Gen(1n)

(x
1

, t
1

) A
1

(1n) (x
0

, t
0

) A
1

(1n); (x
1

, t
1

) A
1

(1n)

c Encs(x1) c Encs(x0)

t0 AEncs
2

(1n, c) t0 AEncs
2

(1n, c)

output

8
><

>:

1 if t0 = t
1

0 else
output

8
><

>:

1 if t0 = t
1

0 else

We define the adversary advantage as AdvDET�CCA
⇡det,A =

Pr[DET-EXP0

⇧

det,A(n)=1]�Pr[DET-EXP1

⇧

det,A(n)=1]. We say that ⇧det is DET-CCA

secure if for all adversaries A the advantage AdvDET�CCA
⇡det,A is negligible.

Next we give a construction for converting any semantically secure private key encryption

scheme into a deterministic DET-CCA secure private key encryption scheme.

Construction 17 (Deterministic Private Key Enc). Let ⇧ = (Gen,Enc,Dec) be any proba-

bilistic private key encryption scheme and let H be a hash function, which we will model as a

random oracle. We define a deterministic private key encryption scheme ⇧det = (Gen0,Enc0,

Dec0) as follows:

• s = Gen0(1n) = Gen(1n)

CHAPTER 8. PRACTICAL SECURE SEARCH 207

• c = Enc0s(x) = Encs(x;H(s, x))

• x = Dec0s(c) = Decs(c), r = H(s, x); return x if Encs(x, r) = c and ? otherwise.

Theorem 18. Let ⇧ = (Gen,Enc,Dec) be any probabilistic private key encryption scheme

and ⇧det be the corresponding deterministic scheme according to Construction 17. Let

A = (A
1

, A
2

) be a DET-CCA adversary with min-enthropy µ against ⇧det that outputs

vectors of size v and makes at most qh queries to the hash oracle and qd queries to the

decryption oracle. Let ms and mc be the max secret key and the max-ciphertext probabilities

for ⇧. The there exists an IND-CPA adversary B against ⇧ such that

AdvDET�CCA
⇡det,A AdvIND�CPA

⇡,B +
2qhv

2µ
+ 2qhms+ 2qdmc,

where B makes at most v queries to its oracle and its running time is within O(qh(T✏+ qd))

and T✏ is the running time for the encryption algorithm.

This proof follows the proof of Theorem 5 in [M. Bellare and O’Neill, 2007], replacing

the (public key) encryptions with calls to an encryption oracle for the private key encryption

scheme.

We instantiate the above deterministic private key encryption scheme following the

construction of RSA-DOAEP in [M. Bellare and O’Neill, 2007] but with di↵erent primitives

that give more security and the group property that we need. We use the Pohlig-Hellman

(PH) permutation [Pohlig and Hellman, 1978] and the SAEP+ (short for Simple-OAEP)

padding construction introduced in [Boneh, 2001].

Definition 27 (Pohlig-Hellman(PH) Permutation). Let p = 2q + 1 be a safe prime, and

consider the prime order subgroup Gq of Zp. Let k 2 Zq (called a key). The Pohlig-Hellman

function is defined as follows:

PHk(x) = xk mod p

Note that the Pohlig-Hellman function has a commutative property for its keys:

PHk
1

(PHk
2

(x)) = PHk
1

k
2

(x).

As we shall see, this property will carry over to the deterministic encryption we construct,

and will be used in our construction of re-routable encryption.

CHAPTER 8. PRACTICAL SECURE SEARCH 208

The Pohlig-Hellman permutation (sometimes referred to as the exponentiation cipher)

was proposed over 30 years ago [Pohlig and Hellman, 1978], and is assumed to be hard

to invert, as we formalize below. Like plain RSA and other classical ciphers, PH does not

directly provide the standard definitions of security such as semantic security (nor does it

satisfy our definitions of deterministic security). We will use this as a basis for a construction

utilizing hashing, that will achieve CCA security, based on the following assumption.

Assumption 1 (The Pohlig-Hellman (PH) Assumption). Let A be a ppt, and H be a

random oracle, define AdvPH
A (n) = Pr[k Zq, x Gq, y = PHk(H(x)) : APH

k

(·)(y) = x].

The PH assumption is that for all ppt A, AdvPH
A (n) is negligible.

Intuitively, this assumption captures the fact that even with chosen message attack, it

is hard to recover the preimage of PH(x) for a random x. The work of [Gjøsteen, 2008]

and [Damgard et al., 2006] show that the above assumption is equivalent to the DDH

assumption. The PH assumption will su�ce for proving CCA security of our probabilistic

construction. Our resulting deterministic construction can be proven secure based on either

the PH assumption, or the DDH assumption (all of these are in the random oracle model).

The SAEP+ (short for Simple-OAEP) padding scheme was introduced by Boneh in

[Boneh, 2001], as a way to make trapdoor functions into CCA secure public key encryption

schemes (in the random oracle model). The padding is defined as follows.

Definition 28 (SAEP+ Padding[Boneh, 2001]). Let M 2 {0, 1}m be a message and r 2
{0, 1}s1 be a random string. Let

H : {0, 1}s1 ! {0, 1}m+s
0 and

G : {0, 1}m+s1 ! {0, 1}s0

be hash functions.We define SAEP+ as follows

SAEP+(M, r) = ((M || G(M ||r))�H(r)) || r.

Boneh [Boneh, 2001] proves that when combined as an input to trapdoor permutations

(such as RSA and Rabin functions), this yields CCA secure public key encryption schemes.

It is a simpler scheme than OAEP [Bellare and Rogaway, 1995] and provides better security

CHAPTER 8. PRACTICAL SECURE SEARCH 209

guarantees. We prove an analogous theorem in the private key setting, namely that when

SAEP+ is combined with a secret key function that is hard to invert, this yields a CCA

secure private key encryption. In order to define things properly, since in this setting the

private key function is even hard to evaluate without a secret key, we provide the adversary

access to an oracle evaluating the function. If the function remains hard to invert with

access to such an oracle (as in Assumption 1), we prove that combining it with SAEP+

padding yields a CCA-secure encryption scheme. We omit the general theorem and proof

here, but include the construction and theorem for the specific PH based scheme that we

use.

Definition 29 (PH-SAEP+ Encryption). We define PH-SAEP+ = (Gen,Enc,Dec) in the

following way

• Gen(1n) = (p, k, k0) where p is a prime that is publicly known and k is a secret key and

k0 is its inverse, which is e�ciently computable.

• c=Enck(x)=PHk(SAEP+(M, r))=PHk(((M || G(M||r)) �H(r)) || r) where r is chosen

at random.

• Dec(c):

1. Compute c0 = ck
0
mod p where c0 = c00 || r.

2. Extract r and compute H(r).

3. Compute x || g = c00 �H(r).

4. Verify that g = G(x||r) and return x.

Theorem 19. Assume that no algorithm with running time t can solve the discrete log

problem with probability more than ✏. Then PH-SAEP+ is chosen ciphertext secure scheme

in the random oracle model satisfying the following:

t0 t/2�O(qD + qG + q2H)

✏0 ✏1/2 + qD/2
s
0 + qD/2

s
1 ,

CHAPTER 8. PRACTICAL SECURE SEARCH 210

for an adversary with running time t0 and advantage ✏0 that issues qD decryption queries,

qG queries to G, qH queries to H where s
1

is the length of the randomness used and s
0

is

the length of the output of G.

Proof. In [Boneh, 2001] Boneh shows how to construct a CCA secure public key encryption

from a trapdoor permutation and the SAEP+ scheme. We modify this technique to obtain

a CCA secure private key encryption scheme.

The idea of public key scheme is captured in the functionality of a trapdoor permutation.

The definition of a trapdoor permutation is a function f which is easy to evaluate, hard

to invert on its own, but easy to invert with the knowledge of some trapdoor information.

Now we consider the Pohlig-Hellman function. The value PHk(x) is hard to invert without

knowledge of k because of the hardness assumption of the discrete logarithm problem. On

the other hand, given k and PHk(x) it is easy to compute the inverse k�1 and find m. The

only thing left to be able to view PHk(x) as a trapdoor permutation is to provide a way to

compute easily without knowing k. We can achieve this by queries to an oracle OPH
k that

implements the functionality of PHk(x).

Boneh ([Boneh, 2001]) defines the set partial one-wayness problem to find a set of values

that contains the inverse of a given value produced by a trapdoor function f and connects

the security of the f -SAEP+ to the hardness of solving the onewayness problem. We

translate this result to the case of the Pohlig-Hellman function.

Definition 30 (PH Set Partial One-wayness Problem). Let PHk(x) be the Pohlig-Hellman

function that is modeled as a random oracle OPH
k and k is secret. We say that an algorithm

A solves the set partial one-wayness problem (PHk(x), r) if given c = PHk(x) it produces

a set S = {x
1

, . . . , xr} such that c = PHk(xi) for some 1 i r.

Lemma 15. Let A be a (t, qD, qH , qG) chosen ciphertext attack algorithm in the random

oracle model where A runs in time t, makes qH queries to the oracle H, qG queries to the

oracle G and qD decryption queries of PH-SAEP+ and has an advantage ✏. Then there

exists an uniform algorithm B that solves the set partial one-wayness problem (PHk(x), qH)

CHAPTER 8. PRACTICAL SECURE SEARCH 211

with the following time and advantage:

time(B) time(A) +O(qH + qG + qD)

adv(B) adv(A)(1� qD/2
s
0 � qD/2

s
1)

The proof of the Lemma 15 is analogous to the proof of Theorem 5 in [Boneh, 2001]

where the evaluation of the trapdoor function f are substituted with calls to the random

oracle OPH
k implementing the Pohlig-Hellman function.

We now have all the necessary tools for the theorem proof. Let us assume that there

is a (t, qD, qH , qG) chosen ciphertext adversary A against PH-SAEP+ with advantage ✏.

By Lemma 15 we know that there is a t0-time adversary B that solves the PH set partial

one-wayness problem (PHk, qH) with advantage ✏0 for some t0 and ✏0. Fujisaki et al. in

[Fujisaki et al., 2004] demonstrate an algorithm that runs B twice on C⇤ and ↵C⇤ for some

↵ and uses the resulting sets S and S↵ to compute the k-th root of C⇤ in time O(q2H) and

hence breaks the PH with probability ✏02. The theorem now follows. And Corollary 20 also

follows.

Corollary 20 (PH-DSAEP+). Let PH-DSAEP+ be the deterministic private key encryp-

tion scheme derived by applying Construction 17 to PH-SAEP+. PH-DSAEP+ is DET-

CCA secure under the discrete log assumption and in the random oracle model.

8.2.2 Re-Routable Encryption.

Re-routable encryption is a new primitive we will use in our system to protect identities,

when routing (encrypted) queries from an authorized client to IS, and also when routing

the (encrypted) results back to the client. Informally, re-routable encryption is a protocol

to send an encrypted message, or some function of the message, from a sender to receiver

through a query router QR, such that two security requirements are satisfied. We require

first, security of the sender’s message with respect to QR, and second, anonymity of the

sender with respect to the receiver. The formal definitions of these properties are presented

below. We note that this primitive may be of independent interest, e.g., in cases where

the query router QR is an intermediary in a multiparty computation protocol that also has

anonymity requirements for some of the participants.

CHAPTER 8. PRACTICAL SECURE SEARCH 212

Definition 31. A re-routable encryption scheme consists of algorithms (Gen, Enc,Enc �
QR,Trans,Dec� R):

• Gen(1k, Sender,QR,Receiver) outputs three keys (sk, qrk{S,R}, rk) for the sender, the

QR, and the receiver.

• Enc(sk,m) = c encrypts m with the sender’s key.

• Trans(c, S, sti) = (R, sti+1) identifies the receiver of the message coming from S based

on the inner state sti of QR, and computes the new state of QR.

• Enc�QR(c, qrk{S,R}, sti) = (c, sti+1) transforms the ciphertext c to a message c for the

receiver R.

• Dec� R(c) = m extracts the information that was sent to the receiver from the query

router.

Definition 32 (Message Security). Let S be a security definition using an adversary A and

applicable to a general encryption scheme. Let R = (Gen,Enc,Enc�QR, Trans,Dec�R) be

a re-routable encryption scheme. We say that R provides S-message security with respect

to QR if (Gen,Enc,Dec� R � Enc� QR) meets S when A is supplemented with qrk{S,R}.

This definition is intentionally non-specific, and can be instantiated using di↵erent def-

initions of security for encryption. For our scheme, we will instantiate this definition both

with a standard semantic security notion, and with deterministic encryption security notion.

Definition 33 (Sender Anonymity W.r.t. Receiver). Let Q
0

and Q
1

be two users with keys

q
0

and q
1

respectively. We say that the re-routable encryption scheme (Gen,Enc, Enc�QR,

Trans, Dec�R) with a security parameter k preserves the anonymity of the the sender with

respect to the receiver if for any polynomial time adversary A that given Enc�QR(Encqb(m))

for b R {0, 1} outputs a guess b0, the following holds: |Pr[b = b0]� 1

2

| < negl(k).

A re-routable encryption scheme is secure if it meets both of the above definitions.

We will now show one method for constructing a re-routable encryption scheme from

an encryption scheme that possesses the following group property:

CHAPTER 8. PRACTICAL SECURE SEARCH 213

Definition 34 (Encryption Group Property). Let ⇧ = (Gen,Enc,Dec) be a deterministic

private key encryption scheme. We say that ⇧ has a group property if the keys for the

encryption scheme form a group and for any message m and any keys k1 and k2 the

following holds: Enck1(Enck2(m)) = Enck1·k2(m).

Construction 21 (Simple Re-reroutable Encryption). Let ⇧ = (Gen0,Enc0,Dec0) be an

encryption scheme with the group property from Definition 34. We construct a reroutable

encryption scheme (Gen,Enc,Enc� QR,Trans, Dec� R) as follows:

• Gen(1k): If there is a single Sender and multiple Receivers, we have the following

setup phase. The Sender runs Gen0 (1k) to obtain keys sk and tk. Each Receiver runs

Gen0 (1k) to create a key rk0. Sender, Receiver, and QR then run an MPC protocol

such that the Receiver learns rk = rk0 · tk�1 and the QR gets qrk = sk·tk
rk secure

multiparty computation with sk, tk as input from Sender, rk as input from Receiver,

and qrk = sk
rk as output for QR. In the case of single Receiver and multiple senders

the setup is similar except that the Receiver chooses tk.

• Enc(sk,m): Sender computes Enc0(sk,m) = c.

• Trans: QR chooses a Sender, Receiver pair.

• Enc� QR(qrk, c): QR computes Enc0(qrk, c) = c.

• Dec� R(rk, c): Receiver computes Dec0(rk, c) = m.

Theorem 22. Let ⇧ = (Gen0,Enc0,Dec0) be an encryption scheme with a group prop-

erty, satisfying a security definition S. The reroutable encryption (Gen,Enc,Enc � QR,

Trans,Dec � R) obtained from ⇧ using Construction 21 provides S-message security and

ensures Sender anonymity w.r.t the receiver.

Proof. First, we show that the obtained re-routable encryption provides S-message security.

We argue this in the case of a single sender and multiple receivers (the proof for multiple

senders and a single receiver is similar). Assume that (Gen, Enc,Dec� R � Enc� QR) does

not meet the security definition S. Therefore there exists an adversary A that can obtain

information t about a message m given Enc(m). We can construct an adversary A0 against

CHAPTER 8. PRACTICAL SECURE SEARCH 214

⇧ = (Gen0,Enc0,Dec0) that learns the same information t as follows: A0 acts as a challenger

for A. A0 chooses random keys sk, tk, rk0 for the sender and the receivers and computes the

corresponding keys rk for the receivers. He computes the transformation keys and sends

them to A. A0 receives encryption requests for sender and receivers from A forwards them

to his own challenger. He transforms the ciphertexts that he receives back using tk for

the sender or the corresponding rk for a receiver, and forwards the resulting ciphertexts to

A. The encryption scheme adversary receives the information t that A learns. The above

execution interacting with the simulator A0 will be indistinguishable from an execution

where A interacts with real sender and receivers. Thus A0 will have the same advantage of

breaking the S message security of the re-routable encryption as the advantage of A against

the underlying encryption scheme.

Second, we prove that the re-routable encryption ensures Sender anonymity w.r.t the

receiver. Let q
0

and q
1

be the keys of two senders and qr
0

= rk
q
0

and qr
1

= rk
q
1

be the

corresponding transformation keys at the third party. Let m be any message. Now using

the group property of ⇧ we have

Enc� QR(Encq0(m)) = Encqr0(Encq0(m)) =

= Enc0qr0(Enc
0
q0(m)) = Enc0qr0·q0(m) = Enc0rk(m)

Enc� QR(Encq1(m)) = Enctp1(Encq1(m)) =

= Enc0qr1(Enc
0
q1(m)) = Enc0qr1·q1(m) = Enc0rk(m)

Therefore the index server will always get the same ciphertext and cannot guess the user

identity with probability non-negligibly di↵erent from 1/2.

8.2.3 Bloom Filters.

The deterministic encryption scheme that we presented provides ciphertexts that are suit-

able to be used in e�cient search protocols according to [M. Bellare and O’Neill, 2007].

Bellare et al. in [M. Bellare and O’Neill, 2007] suggest that the search functionality over

encrypted data produced with a deterministic encryption should be realized by attaching

“tags” that will be easily searchable and easily computed by both the querying party and

CHAPTER 8. PRACTICAL SECURE SEARCH 215

the server. We realize the “tagging” idea with a Bloom filters. Bloom filters were introduced

in [Bloom, 1970]. They are structures that provide for e�cient storage of sets for member-

ship testing, which makes them ideal for term querying over document collections. Bloom

filter search has a false positive rate which depends on the parameters of the structure; it

can be made arbitrarily small by changing them. We are guaranteed there will be no false

negatives.

A Bloom filter (BF) (Figure 8.2) is an m-bit array B. Initially, all bits of the filter are

set to zero. There are n independent hash functions Hi where 1 i n. The output of

the hash functions is in the range [0,m� 1].

To add an entry W to the Bloom filter, we calculate the following values:

b
1

= H
1

(W), b
2

= H
2

(W), · · · , bn = Hn(W)

We add the entry W by setting B[bi] = 1 for each 1 i n.

To check whether W is present in the filter, we compute the indexes b
1

, . . . , bn as above.

If B[bi] = 1 for all 1 i n, the entry is present; if any of the bits are 0, W is not present.

Figure 8.2: Bloom filters: w
1

and w
2

are real entries of the BF and w
3

is a false positive

It is clear that Bloom filter query will not return false negatives; the indices checked are

the same as those set when the term was inserted. However, false positives are possible if

the term indices happened to be set by other terms due to hash collisions. For example,

if we have added entries with BF indexes {1, 2, 3} and {4, 5, 6}, the Bloom filter will also

CHAPTER 8. PRACTICAL SECURE SEARCH 216

indicate that entries with indexes {1, 4, 6} and {2, 3, 5} are present, even though they have

not been entered.

The size of the Bloom filter m and the number of hash functions used n depend on the

number of entries that we want the filter to hold and the upper bound on the false positive

rate that we are willing to accept. Let us have T entries that we insert in the Bloom filter.

We assume that the output of a hash function has a uniform distribution and consequently

the probability that a bit in the BF is not set to one by a hash functions is 1 � 1

m . Using

this assumption we can compute the false positive rate of the Bloom filter as the probability

of n query bits being set, which is

(1� (1� 1

m
)nT)n ⇡ (1� e�

nT

m)n. (8.1)

For a given m and n, the false positive rate obtained in Equation 8.1 is minimized when we

set the number of hash functions to

n =
m

T
ln 2. (8.2)

One limitation of Bloom Filters is the inability to remove elements once they are added.

We cannot simply zero the bits that are associated with the element, since they may have

also been set by other inserted elements.

Bloom filters have had a wide variety of applications — dictionaries, databases, dis-

tributed hashing, P2P/overlay networks, routing ([Broder and Mitzenmacher, 2002]). They

have been used in language modeling ([Talbot and Osborne, 2007]) and set intersection for

keyword searches ([Reynolds and Vahdat, 2003]). We use Bloom filters to perform encrypted

search on cipertexts produced by PH-DSAEP+.

The next two propositions formalize the information that is revealed by the Bloom filters

computed from the entries of the records in a database in the case when we use di↵erent

hash functions across di↵erent Bloom filters and when we use the same hash functions.

Proposition 1. Let A be a distinguishing algorithm and we define his distinguishing ad-

vantage through the following experiment:

1. A chooses two data sets D
0

and D
1

such that

CHAPTER 8. PRACTICAL SECURE SEARCH 217

(a) D
0

and D
1

have the same number of records N.

(b) There is a permutation ⇡ if N elements such that record i i D
0

has the same

number of entries as record ⇡(i) in D
1

and the same distribution of number of

entries in the records.

2. A key K and a bit b are chosen at random, and A is given the BFs computed from the

PH-DSAEP+K encryptions of the entries in the documents of Db using independent

set of hash functions for each document.

3. A outputs a bit b0.

The distinguishing advantage AdvA = |Pr[b0 = b]� 1

2

| is negligible.

Proof. Since the hash functions used for each Bloom filter are chosen independently, the BF

indices produces for any entry in one Bloom filter are indistinguishable from the BF indices

of any entry in any other Bloom filter. Hence the Bloom filters that are generated from

the same number of entries are indistinguishable. Since the records in the two database

have the same distribution entries the Bloom filters corresponding to the two database are

indistinguishable.

Proposition 2. Let A be a distinguishing algorithm and we define his distinguishing ad-

vantage through the following experiment:

1. A chooses two data sets D
0

and D
1

such that

(a) D
0

and D
1

have the same number of records N.

(b) There is a permutation ⇡ if N elements such that R0

i

T
R0

j = R1

⇡(i)

T
R1

⇡(j) for all

1 i, j N where R0

i , R
0

j 2 D
0

and R1

⇡(i), R
1

⇡(j) 2 D
1

.

2. A key K and a bit b are chosen at random, and A is given the BFs computed from

the PH-DSAEP+K encryptions of the entries in the documents of Db using the the

same set of hash functions for each Bloom filter.

The distinguishing advantage AdvA = |Pr[b0 = b]� 1

2

| is negligible.

CHAPTER 8. PRACTICAL SECURE SEARCH 218

Proof. From Corollary 20 we have that the PH-DSAEP+K(w
0

) and PH-DSAEP+K(w
1

) are

indistinguishable when w
0

6= w
1

. Therefore the BF indices computed from PH-DSAEP+K(w
0

)

and PH-DSAEP+K(w
1

) when w
0

6= w
1

will be also indistinguishable. It follows that the

Bloom filters of two records with the same number of entries computed under the same

hash functions are indistinguishable.

Let us assume that there is a distinguisher A that can distinguish the whether he is

given the Bloom filters of D
0

or D
1

. We construct D
0

= {R0

i }Ni=1

and D
1

= {R1

i }Ni=1

as

follows: we set R0

i and R1

i to have the same entries for 1 i N � 1 and R0

N and R1

N to

di↵er in only one entry w such that w 2 R0

N and w /2 R0

i for 1 i N � 1. Since the

Bloom filters for the files R0

i and R1

i , 1 i N � 1 are the same and A can distinguish

the BFs of D
0

and D
1

, it follows that A can distinguish the BFs of R0

N and R1

N , which is

a contradiction with the conclusion above.

8.3 Secure Anonymous Database Search Protocol

We proceed to describe our main protocol for secure anonymous database search. First we

give the intuition for the primitives of the search scheme, followed by a formal definition.

The search operations are also depicted in Figure 8.3.

IS

QR

Client

Data Owner

c = PH-SAEP+(query,
Client's key)

c' = Transform
(c,Client->Owner key)

c'

Document BFs
under
Owner's key {i1, ..., ik} = ExtractBFIndices(c')

BF_Search(i1, ..., ik)={r1, ..., rn} = res_v

res' = PH-SAEP+
(res_v,IS key)

 res"

res" = Transform
(res',IS->Client key)

Preprocessing

Search

Figure 8.3: System Architecture and Data Flow.

CHAPTER 8. PRACTICAL SECURE SEARCH 219

• Key Generation: The data owner chooses an encryption key. IS chooses an encryp-

tion key. The client generates two keys for query submission and return result. To

authorize the client to search the data owner, QR and the client run a key exchange

protocol to allow QR to obtain a ratio key between the S’s encryption key and C’s

query submission key. Also IS, the client and QR run a key exchange protocol so that

QR obtains a ratio key between IS’s encryption key and C’s return result key.

• Preprocessing: The data owner generates for each of its documents a Bloom filter

from the encryptions of its words under PH-DSAEP+ under his key. He sends the

resulting Bloom filters to IS.

• Query Submission: We instantiate the re-routable encryption protocol for query

submission as follows: the client encrypts his query with PH-DSAEP+ with his key

and sends it to QR, QR re-encrypts the ciphertext with its transformation key from

the client’s to the owner’s key.

• Search: IS extracts Bloom filter indexes from the encryption it receives from the QR

and the obtained indexes to execute BF search to get the result res.

• Query Return: The query result is returned with a di↵erent instantiation of the

re-routable encryption protocol: IS encrypts res with PH-SAEP+, sends it to QR,

QR re-encrypts the ciphertext with the return result transformation key from the IS’s

key to the client’s key and sends it to the client.

Construction 23 (Secure Anonymous Database Search). Let us have a data owner (S), a

client (C), a query router (QR) and an index server (IS). Let FP be the upper bound on

the false positive rate that we allow for search. Let h and m be parameters computed based

on the sizes of the documents in the database of S such that a Bloom filter of size 2m bits

using h hash functions with as many entries as the largest document in the database allows

at most false positive rate of FP .

Let us have the following schemes:

• (Genresult, Encresult,Transresult,Enc�QRresult,Dec�Rresult) — an instantiation of Simple

re-routable encryption (Definition 21) with the encryption scheme PH-SAEP+.

CHAPTER 8. PRACTICAL SECURE SEARCH 220

• (Genquery, Encquery,Transquery, Enc�QRquery,Dec�Rquery) — an instantiation of Simple

re-routable encryption (Construction 21) with the encryption scheme PH-DSAEP+,

where Transquery identifies the IS and and Dec � Rquery computes the BF indices cor-

responding from the query ciphertext for all documents.

Figure 8.4 presents the scheme for secure anonymous database search that enables the

client to search the database of the database owner with the help of the index server and the

query router.

We can insatiate the above protocol for secure anonymous search in two ways depending

on the way we construct the Bloom filters search indices for di↵erent documents. The first

option is to use di↵erent hash functions for the the di↵erent BF, we call this instantiation

SADSm. The second possibility, which we call SADS, is to use the same hash functions

across the Bloom filter of multiple documents. These two instantiations provide di↵erent

privacy guarantees as we discuss in Section 8.5 and they also allow for di↵erent types of

optimizations for the implementation and hence the e�ciency guarantees as we show in

Section 8.6.

8.4 Document Retrieval

There exist many systems for searching databases to privately identify items of interest.

An extension of obvious use is a system to then retrieve those items privately. One way to

do this is with private information retrieval techniques, however these are very expensive,

and can be even more expensive when fetching large numbers of records, or records of

individually great size. We present a system that is much more e�cient, at the cost of

requiring a trusted third party, and can be modularly implemented to extend any private

search system that returns handles representing matches.

Systems both with and without document retrieval have practical use. For example, a

user may simply wish to establish that a server does have documents of interest to him, or

may wish to determine how many are of interest, or learn about certain qualities concerning

the data held there (subject to the search permissions granted by the server). Furthermore,

even in systems that include document retrieval, separating this functionality from query

CHAPTER 8. PRACTICAL SECURE SEARCH 221

Preprocessing.

• For each of its documents S generates a set of hash functions that he uses

the compute a Bloom filter from the PH-DSAEP+ encryptions of the entries

(words) in the document.

• S sends the resulting Bloom filters to IS.

Key Generation. To authorize C for search

• S, QR and C run Genquery to obtain keys (skC , qrk{C,S}, rkS) for query sub-

mission, where rkS is the key S used in the previous step.

• IS, C and QR run Genresult to get (skIS , qrk{IS,C}, rkC) that will be used later

for the result return.

Query Submission. To submit an encrypted query for an entry (word) W :

• C computes c
1

= Encquery(skC,W) and sends it to QR.

• QR computes Transquery(c1,C, st0i) = (IS, st0i+1) and sends c
1

to IS.

Search.

• IS obtains the Bloom filter search indices from Dec� Rquery(c1) that extracts

the BF indices for the query for each

• IS does a BF search across the database Bloom filters. Let R be the set of

matching documents.

Query Return

• IS encrypts and sends c
2

= Encresult(skIS,R) to QR.

• QR transforms Transresult(c2, IS, st00i) = (C, st00i+1) and sends c = Enc �
QRresult(c2, rqk{IS,C}, st00i) to C.

• C decrypts Dec� Rresult(rkC, c) to obtain the result R.

Figure 8.4: Secure Anonymous Database Search Scheme

CHAPTER 8. PRACTICAL SECURE SEARCH 222

S

QR

IS

C
Client

Server

Encrypted
Documents

Search
Results

Storage Re-encryption

Document
Retrieval

Re-encryption
protocol

Encrypted result docs

Signed result IDs

Encrypted result docs

Signed
result IDs

Decryption
keys

Signed result IDs

Figure 8.5: SADS with Document Retrieval.

is worthwhile. For example, the server may be running a paid service, and allow the user

to operate in an initial stage wherein he determines what he wants, and a bargaining stage

wherein they negotiate pricing, before purchasing the actual content.

Document retrieval poses its own challenge, especially when the data is not owned by

the party retrieving it. In this scenario, returning additional data is a privacy leak for the

data owner; at the same time, revealing the matching documents to the owner is a privacy

leak for the retriever. Thus, the strongest security we would want to aim for would require

us to touch the contents of the entire database [Chor et al., 1997]. This is a prohibitively

expensive cost for applications that aim to work in “real time” over a large data set. One

way to avoid this cost is to relax our security definition and allow leakage of the matching

documents ids. In the case of data outsourcing, this amount of privacy leakage easily

su�ces, since the untrusted server just searches for and returns the encrypted files that

he stores to the owner who has the corresponding decryption keys [Boneh et al., 2004;

Curtmola et al., 2006; cheng Chang and Mitzenmacher, 2005]. This approach, however, is

not applicable to the case of data sharing, where leaking the matching documents to the

owner reveals more than the result pattern: he also knows the content of the documents,

from which he can infer information about the query.

CHAPTER 8. PRACTICAL SECURE SEARCH 223

This problem is similar to that addressed by private information retrieval protocols

(PIR) [Chor et al., 1998; Gertner et al., 2000; Olumofin and Goldberg, 2011], wherein

a server holds a set of items from which a user wishes to retrieve one without revealing

which item he is requesting. It di↵ers slightly in that we wish to retrieve multiple items

(corresponding to the search results). It also di↵ers in that we require that the selected

set be certified and that the user does not learn content of documents outside of it. There

are PIR schemes that address this [Gertner et al., 2000], but at additional cost. Thus,

our problem could be addressed by simply running an appropriate PIR scheme once for

each document result. However, PIR is already quite expensive for a single document, and

running them multiply would only aggravate this.

We address this by constructing a document retrieval scheme that can be used on top

of any other scheme that returns document IDs. Our scheme maintains e�ciency by intro-

ducing an intermediary party who stores the encrypted files of the database and provides

the matching ones to the querying party. This party is given limited trust to perform the

search, but he should not be able to decrypt the stored files. In this case we need to pro-

vide the querier with the decryption keys for the result documents; these are known to

the data owner, who must be able to provide the correct keys obliviously without learning

the search results. In Figure 16 we present a protocol that realizes the document retrieval

functionality between a data owner (S) and a client (C) with the help of an intermediary

party (P). For the purposed of this protocol we assume that there is a search functionality

EncSearch that returns the IDs of the documents matching a query from the client. For a

query Q we denote EncSearch(Q) the returned set of document IDs. The database of the

server that is used for the protocol consists of documents D
1

, . . . , Dn. Our protocol also

uses 1-out-of-n oblivious transfer (OT) functionality that allows two parties, one of which

has input an array and the other has input an index in the array, to execute a protocol

such that the latter party learns the array element at the position of his index and the

former learns nothing. There are many existing instantiations of OT protocols, we use the

protocol of [Gentry and Ramzan, 2005], which allows best e�ciency. The last tool for our

constructions is an encryption scheme with the group property from Definition 34.

Intuitively, the security of this protocol is based on the secrecy of the permutation ⇡,

CHAPTER 8. PRACTICAL SECURE SEARCH 224

Storage Reencryption (preprocessing phase)

Inputs:

S : D
1

, . . . , Dn, keys k1, . . . , kn and k0
1

, . . . , k0n;

P : permutation ⇡ of length n ;

S, P : (GEN,ENC,DEC) satisfying Definition 34

Outputs:

S : ?; P : ENCk0
⇡(i)

(Di) for 1 i n

Protocol:

1. S sends to P ci = ENCki(Di) for 1 i n.

2. For each 1 i n S and P execute 1-out-of-n OT protocol that allows P to obtain

k00i = k�1

i · k0⇡(i).
3. For each 1 i n P computes ENCk00

i
(ci) = ENCk�1

i ·k0
⇡(i)

(ENCki(Di)) =

ENCk0
⇡(i)

(Di).

Document Retrieval

Inputs:

S : keys k0
1

, . . . k0n;

P : permutation ⇡ of len n, ENCk0
⇡(i)

(Di), 1 i n;

C : query Q;

S, P,C : search scheme EncSearch that returns IDs of matched documents to P,C.

Outputs:

S : cardinality of the output set EncSearch(Q);

P : IDs of docs matching query Q from EncSearch;

C : the content of the docs matching Q from EncSearch.

Protocol:

1. S, P,C run EncSearch for query Q. Let i
1

, . . . , iL be the IDs of the matching docu-

ments.

2. P sends Sign(⇡(i
1

), . . . ,⇡(iL)) to C together with the encrypted documents

ENCk0
⇡(i

1

)

(Di
1

), . . . , ENCk0
⇡(iL)

(DiL).

3. C sends Sign(⇡(i
1

), . . . ,⇡(iL)) to S.

4. S verifies Sign(⇡(i
1

), . . . ,⇡(iL)) and returns k0⇡(i
1

)

, . . . , k0⇡(iL)

.

5. C decrypts ENCk0
⇡(i

1

)

(Di
1

), . . . , ENCk0
⇡(iL)

(DiL) to obtain the result documents.

Figure 8.6: Protocol for Document Retrieval

known only to P . Because it is not known to S, S cannot correlate the keys k0⇡
i

that are

requested by C with the original indices of the matching documents. He learns only the

CHAPTER 8. PRACTICAL SECURE SEARCH 225

search pattern of the querying party. We can take two approaches to mitigate this leakage.

The querying party may aggregate requests for decryption keys to the server for the search

results of several queries. Another solution is to extend the scheme to include additional

keys pertaining to no real documents, which P can add to the sets of requested keys so that

S cannot tell how many of the keys he returns correspond to query results. Step 2 of the

re-encryption can be implemented using protocols for oblivious transfer [Naor and Pinkas,

2001; Aiello et al., 2001; Crescenzo et al., 2000].

Lemma 16. The re-encryption protocol in secure in the semi-honest model.

The lemma follows from the properties of the oblivious transfer protocol.

8.5 Security Proof of the Protocol

In this section we provide proofs for the security properties of our system

8.5.1 Security Against Adversarial Client

The two instantiations SADSm and SADS provide two di↵erent security notions against a

semi-honest client. The reason for this is the fact that when we use the same hash functions

across di↵erent Bloom filters the false positive rates for those are no longer independent.

In the case of SADSm we do not have this. Since in both cases the client learns some false

positives along with the real results, we model this leakage formally through the definition

of the ideal functionality for the proof, which given a false positive rate � will return the

correct search results and it will also return any other record with probability �. A given

protocol is defined to be (t, ✏)-secure with false positive (FP) rate � if there is a simulator

in the ideal world with FP rate �, such that no adversary running in time t can distinguish

the real view from the simulated view, except with probability ✏.

Theorem 24. For every polynomial t there exists a negligible ✏, such that for every �:

our SADSm scheme instantiated with BF parameter �, provides (t, ✏) security with false-

positive rate � against a semi-honest client. (the ideal world trusted party provides each

non-matching record with independent probability �).

CHAPTER 8. PRACTICAL SECURE SEARCH 226

The proof follows immediately since the only thing the simulator needs to do is submit

the clients queries to the trusted party and return to the client the output he gets from the

TP. In the case of a malicious client we need to enable to simulator to extract the client’s

key in the key generation protocol so that he can decrypt the client’s queries. The key

generation protocol that we provide in Appendix F.1 has this property.

In the case of SADS the records returned as false positives should have the same set of

indices corresponding to the query set to one in their Bloom filters. Thus documents that

are similar and have greater overlap in their BFs are more likely to be returned together as

false positives. This is additional leakage to the client.

We point out that when using SADS (with a single hash function), although the false

positive rates across Bloom filters are not independent, the Server (who creates the BF) can

calculate the exact false positives for any search word, to make sure they are acceptable.

The advantage of this approach is that we can apply our slicing optimization from [Raykova

et al., 2009], which facilitates parallel search across multiple Bloom filters and improves the

e�ciency of the search protocol.

8.5.2 Security Against Adversarial Server

In our security definition we will use the equivalence relation (q
1

, . . . , q`) ⌘D (q0
1

, . . . , q0`)

defined as follows:

Definition 35. For any two tuples of queries,we define the equivalence relation (q0
1

, . . . , q0`) ⌘D

(q1
1

, . . . , q1`) to hold if and only if | [i q0i (D)| = | [i q1i (D)| where q(D) denotes the results

returned for a query q on database D.

Our basic search part (handle retrieval) trivially does not reveal any information what-

soever to the server, as the server is not involved (thus, for this part we may take any two

sequences to be equivalent). Taking our full scheme (together with the document retrieval

part), our scheme hides everything but total number of matches for all queries. This is

formalized as follows.

Definition 36. Let A be a distinguisher algorithm that runs the following experiment:

CHAPTER 8. PRACTICAL SECURE SEARCH 227

1. A outputs a database D and two tuples of queries q0
1

, . . . , q0` and q1
1

, . . . , q1` such that

(q0
1

, . . . , q0`) ⌘D (q1
1

, . . . , q1`).

2. A random bit b is chosen and A is given the viewS(qb
1

, . . . , qb` ;D).

3. A outputs bit b0.

The distinguishing advantage AdvA = |Pr[b0 = b] � 1

2

| for a polynomial time adversary A
is negligible.

Theorem 25. In the SADSm scheme the index server and the query router have negligible

distinguishing advantage according to Definition 36.

The proof follows from the fact that the server sees only the requests for decryption

keys and by Lemma 16 he cannot link those to the real documents that were retrieved.

The above proof holds for any value of l as long as the document retrieval for all

queries happens at the same time. If we want to allow that the results for each query

are retrieved before the next query is issued we need to define the equivalence relation ⌘D

to hold for tuples of queries that have the same search pattern, namely |q0i (D)
T
q0j (D)| =

|q1i (D)
T
q1j (D)| for all 1 i, j `.

8.5.3 Security Against Honest-but-Curious Index Server and Query Router

8.5.3.1 Privacy of the Database

The SADSm instantiation of our scheme reveals nothing about the documents to either

IS or QR. The SADS instantiation reveals some structural properties of the database to

IB, namely document similarity. This follows from Proposition 1 for the SADSm imple-

mentation (as each record has the same number of attributes), and from Proposition 2 for

SADS.

8.5.3.2 Privacy of the Client’s Queries from QR and IS

The privacy definition here is again defined through an equivalence relation ⌘D on sequences

of queries. It states that the scheme hides everything except “equality patterns” among

matches to di↵erent queries (e.g., whether one record returned in response to a query is the

CHAPTER 8. PRACTICAL SECURE SEARCH 228

same or di↵erent from a record returned in response to another query). The content of the

records should remain protected.

Definition 37. Fix a database D. Then (q0
1

, . . . , q0`) ⌘D (q1
1

, . . . , q1`) if and only if there

exists a permutation ⇡ on the records in D such that for all 1 i l it holds that ⇡(qi(D)) =

q0i(D).

We define the security for the search queries with respect to the index server and the

query router as follows:

Definition 38. Let A be a distinguisher algorithm that runs the following experiment:

1. A outputs a database D and two query sequences q0
1

, . . . , q0` and q1
1

, . . . , q1` such that

(q0
1

, . . . , q0`) ⌘D (q1
1

, . . . , q1`) (for the minimal equivalence relation ⌘D).

2. A random bit b is chosen and A is given the viewIB(qb
1

, . . . , qb` ;D).

3. A outputs bit b0.

The distinguishing advantage AdvA = |Pr[b0 = b] � 1

2

| for a polynomial time adversary A
is negligible.

Theorem 26. In the SASDm scheme both the index server and the query router have

negligible distinguishing advantage according to Definition 38.

Proof. The index server learns the matching records for each submitted query. The defini-

tion of ⌘D provides that the record identifiers for the matching results for q0
1

, . . . , q0` and

q1
1

, . . . , q1` are indistinguishable for the IS since they have the same search pattern.

Theorem 20 guarantees that the QR can learn only the equality pattern of the sequence of

submitted queries and he cannot distinguish PH-DSAEP+ encryptions of the two equivalent

sequences of queries. This holds in the random oracle model, and assuming either DDH or

PH assumption.

8.6 Performance Evaluation

To evaluate the practicality of our proposed system we implemented it (roughly 4 Klocs of

C++ code in total) and we performed a number of measurements using realistic datasets:

CHAPTER 8. PRACTICAL SECURE SEARCH 229

(i) the email dataset that was made public after the Enron scandal [Shetty and Adibi, 2004]

and (ii) a synthetic dataset with personal information for 100K persons. The Enron dataset

consists of about half a million emails with an average size of 900 bytes after stemming .

During the preprocessing phase of SADS, a distinct Bloom filter for each email was created.

Then, each of the email files was tokenized and the tokens where stored in the corresponding

Bloom filter, after they were properly encrypted. The format of the second dataset is more

close to a database than a collection of documents. Its schema consists of a single table

with 51 attributes of three types: strings (first name, last name, etc.), numbers (height,

SSN, etc.) and file links (fingerprint, private key, security image, etc.) and it is stored in

a flat CSV (Comma Separated Value) file. The total size of that dataset, along with the

files pointed in the records, is 51GB and the average size for a record is 512KB. During

the preprocessing phase we created a distinct Bloom filter for each record and each of the

attribute values was inserted after it was prefixed with the attribute name (“name value”)

and properly encrypted. In both cases, we configured the BF parameters so as the false

positive rate would be less than 10�6.

The experimental evaluation setup was comprised by two servers and a client laptop.

The servers had two four-quad Intel Xeon 2.5GHz CPUs, 16 GB of RAM, two 500 GB hard

disk drives, and a 1 Gbit ethernet interface. The laptop was equipped with an Intel Core2

Duo 2.20GHz CPU, 4 GB of RAM, a 220 GB hard disk drive, and a 100 Mbit ethernet

interface. All of them were connected through a Gigabit switch; they all ran a 64-bit flavor

of the Ubuntu operating system. QR and IS were running on each of the servers, the queries

were performed from the laptop. When Document Retrieval was enabled, the File Server

was running on the same host with the IS.

8.6.1 Memory Consumption

Along with the timing measurements, we also monitored the memory consumption of the

extended SADS system to determine scaling limits. We found out that the only significant

factor was the type of Bloom filter storage. Bloom filters are stored either sequentially in a

flat file or transposed using the slicing optimization. In the sequential storage case memory

usage was constant; it grew consistently with the dataset size in the slicing case, because

CHAPTER 8. PRACTICAL SECURE SEARCH 230

the structures are kept in memory and written to files at the end. During the search phase,

both the client and the QR used a small, constant amount of memory (⇠2MB). On the

other hand, the IS’s memory usage grew with the dataset size. In the sequential storage

case, the file was mmap’ed; the amount of memory used was the Bloom filter size in bytes

times the number of BFs (e.g. 1KB * 50K = 50MB). When the slicing optimization was

enabled, we saw higher memory usage, ⇠109MB for the same dataset. That was most likely

due to the extensive use of C++ vectors, which we can further optimize in the case of much

larger databases where the available RAM may become an issue.

8.6.2 Implementation Optimizations

We performed experiments using variable-sized subsets of both datasets while changing the

size of the cache. As for the Enron dataset, we show that a good cache size is 5K keywords.

This gives us a ⇠90% hit ratio, while reducing the preprocessing time for 50K emails from

2h to 10m. Performing the same experiments for the synthetic dataset yielded slightly worse

results, as some attribute values are unique. However, using a 10K keywords cache the hit

ratio was 50% on the full dataset, which still is a significant gain.

We measured the speedup of the preprocessing phase on the full datasets, while increas-

ing the number of threads. As we expected, the speedup grew linearly until the number of

threads reached the number of cores in our servers – that is eight. When the number of

threads was more than the CPU cores, the speedup slightly declined, most probably due

to thread scheduling overhead. Performance results for the parallelized search phase are

presented in the next section.

8.6.2.1 Slicing optimizations

In the SADS instantiation of the scheme where we use the same hash functions are used

across the Bloom filters for di↵erent documents we can apply a di↵erent type of optimization,

which we call bit slicing.

To minimize the number of bits that need to be read to satisfy queries across a large

number of Bloom filters, we store them in transposed order. First, they are divided into

blocks of filters; within each block, all bits from a single index across the filters are stored

CHAPTER 8. PRACTICAL SECURE SEARCH 231

Record 1 BF

Record 2 BF

Record 3 BF

Record n-2 BF

Record n-1 BF

Record n BF

BF index 1

BF index 2

BF index 3

BF index m-2

BF index m-1

BF index m

Figure 8.7: Multiple Bloom Filters Memory Storage

sequentially. Thus, each document is represented by a bit within multiple slices, one for

each index of its Bloom filter representation (Fig. 8.7). To run a query, we need only fetch

those slices which correspond to the indices of the query term, which is a large savings since

normally we would have to read the full contents of every Bloom filter for every document

for any query. This technique is referred to as bitslicing and has been studied as a method

for storing signature files in database indexes [Zobel and Mo↵at, 1998].

By storing the Bloom filters in blocked slices, we gain the ability to avoid reading a

large portion of the bits in the Bloom filter set when we run queries. We need only check

those slices which correspond to an index which is present in the query term(s). Since this

is very sparse, this is a large improvement over non-transposed storage; it would require us

to read the entirety of every Bloom filter in order to run a query.

To run a query, we construct a result vector, which is a bit vector equal in size to the

number of Bloom filters in the set. This is then “and”ed to each slice corresponding to a

query index. Over time, several block-sized portions of the result vector will become zeroed

out. Once this happens, as a further optimization we cease to read those portions of later

indices. Our block size is chosen as the disk page size, and our end goal is thus to read the

minimum number of pages necessary to answer a query. If multiple queries are being run,

we keep a cache of recently viewed bitslices with a LRU replacement policy.

Because we are storing the Bloom filters in transposed order, and each filter is repre-

CHAPTER 8. PRACTICAL SECURE SEARCH 232

 0

 50

 100

 150

 200

 250

 300

 350

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
 (

m
s)

Dataset Size (files)

Original
Multiple
Slicing

Parallel + Multiple

Figure 8.8: Average query time under di↵erent SADS configurations using the Enron

dataset.

sented by a single bit across various slices, deletion of filters would be expensive. Thus,

we implement this simply by zeroing out the indices of a filter so that it will not match

future queries. As a future addition, we may support a system of periodically cleaning the

slicebase by identifying ”deleted” filters and compacting the remaining ones.

8.6.3 Search Performance

In this section we explore in detail the e↵ects the performance of the two instantiations of

the scheme SADS and SADSm and also how parallel search could help amortize some of

the performance penalty.

Figure 8.8 shows the comparison for four di↵erent configurations of SADS: (i) same hash

functions across BFs, (ii) same hash functions across BFs with the slicing optimization

enabled, (iii) using multiple hash functions and (iv) using multiple hash functions and

parallel searching together. The search time reported in this figure is the total time elapsed

from the point when the client issues the query to the QR until it receives the set of matching

document IDs if any — no document retrieval. As expected, the average query time grows

CHAPTER 8. PRACTICAL SECURE SEARCH 233

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
T

im
e

 (
m

s)

Dataset Size (files)

Slicing
Original

Multiple

5000040000300002000010000

Figure 8.9: Average OR-query time under di↵erent SADS configurations using the Enron

dataset. Each cluster is for a di↵erent dataset size and each bar is for a di↵erent term count

(from 2 to 5).

linearly using the original SADS configuration, as the actual search is done linearly over

all the Bloom filters. Next, we can see that the slicing optimization greatly reduces search

time to a point that it seems almost constant across di↵erent dataset sizes. Using the

multiple hash functions feature we do get better privacy guarantees, but at the cost of

increased search time by another factor that is proportional to the dataset size. That is

because for each document we have to recalculate the hash functions and recompute the

Bloom filter indices. Finally, we see that taking advantage of the commonly used multicore

architectures does increase the performance of the search in the multiple hashing scheme.

More precisely, the speedup when we used 8 threads on our 8-core servers was from 1.3 to

almost 4 for the dataset sizes shown in the Figure 8.8. Thus, although the multiple hash

functions feature increases the computation factor, we can amortize a great part of it by

executing it in parallel. It is also worth noting that the multiple hash functions plus parallel

searching configuration provides better performance that the configuration with the same

hash functions, while on the same time it improves the privacy guarantees.

CHAPTER 8. PRACTICAL SECURE SEARCH 234

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 5 10 20 50 100 200 500 1000 2000 5000

Ti
m

e
(s

ec
on

ds
)

Dataset Size (files)

Doc. Ret. SSH

Figure 8.10: Average time for retrieving documents anonymously, compared to retrieving

them non-anonymously using ssh file transfer. Average size of files being transferred was

27.8 Mb

Next, we evaluate the performance overhead of the multiple hash functions in boolean

queries, and more precisely OR queries. To optimize the normal case – i.e., when the slicing

optimization is not enabled – we skip BFs that already contain one of the search terms. That

way we avoid searching over and over on Bloom Filters that already match the OR query

thus reducing the overall searching time, especially when the search terms are frequent.

Figure 8.9 shows the search time for OR queries under di↵erent SADS configurations. Each

cluster of bars is for a di↵erent dataset size; each bar is for a di↵erent term count in the

boolean OR query. The first bar is for two terms, the second for three, and the last two for

four and five, respectively. The fact that the search time in each cluster grows sub-linearly

to the number of terms clearly shows the performance gain.

8.6.4 Document Retrieval

We implemented document retrieval using PH-SAEP and standard RSA signatures to sign

query results. Using PH-SAEP puts a (likely over-restrictive) limit on the length of plaintext

CHAPTER 8. PRACTICAL SECURE SEARCH 235

values. To handle this, we encrypt larger files using AES private key encryption, and store

the key encrypted with PH-SAEP as a header in the encrypted file. The files can thus be

read by decrypting the header with the appropriate PH-SAEP key and using the result to

decrypt the content of the file. We preprocess the files in a way that provides an intermediate

party with AES encrypted files under di↵erent AES keys and encryptions of these AES keys

under some permutation of the keys k
1

”, . . . kn”. The client will receive as results from the

intermediary party the encrypted files, the encrypted AES keys, and the indices of the keys

k” used for their encryptions. When he receives the decryption keys k” from the server, the

client will first decrypt the AES keys and then use them to decrypt the remainder of the

files.

Figure 8.10 shows the average time to retrieve documents using our scheme versus the

number of documents being retrieved. This is shown in comparison to a non-privacy-

preserving SSH-based file transfer. As we can see, our scheme adds very little overhead

compared to the minimum baseline for encrypted transfer. The time also shows linear

growth, suggesting that it is dominated by file encryption and transfer, rather than for the

encryption and verification of the results vector itself.

As a point of comparison, Olumofin and Goldberg [Olumofin and Goldberg, 2011]

present some of the best implementation performance results currently published for multi-

selection single-server PIR. In their performance results, we see response times per retrieval

ranging from 100 to 1000 seconds for retrievals of 5-10 documents on database sizes ranging

from 1 to 28 GB. Our scheme scales strictly with number and size of documents retrieved,

and not with the total database size. They do not state the sizes of the blocks retrieved in

their scenario, but if we were to give a very high estimate of 1 MB per block, and assume

they fetched 10 blocks every time, one could expect in our system that each query would

take .7 seconds, still orders of magnitude short of the 100s fastest time they report for

a 1GB database, and it would not scale up with increasing database size as theirs does,

thus significantly beating the 1000s time they report for a 28GB database. Note that

their system is not designed to protect privacy of the database, only of the request. The

work of [De Cristofaro et al., 2009] presents a protocol for privacy-preserving policy-based

information transfer, which achieves privacy guarantees weaker than SPIR and similar to

CHAPTER 8. PRACTICAL SECURE SEARCH 236

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000

T
im

e
 (

se
cs

)

Number of Records Retrieved

MySQL
Extended SADS

Figure 8.11: Comparison between the extended SADS and MySQL.

ours. Direct comparison between our and their performance results is hard — they present

timings only for the computation time without communication, which grows linearly with

the size of their database. The maximum size of their database is 900 records with 2000 ms

computation per record retrieval, while for our scheme the entire record retrieval time (com-

putation plus communication) for a database with 25000 records is about 40ms (Figure 8.11,

described in the next section).

8.6.5 Overall Performance

Finally, we compare the performance of the extended SADS system with a real world DBMS,

MySQL. In order to do that, we implemented a SQL front-end for SADS that could parse

simple conjunctive and disjunctive queries. Then, we loaded the synthetic dataset to both

systems and we executed a number of queries of variable result set size. SADS was configured

to use multiple hash functions and document retrieval was enabled. Parallel searching was

also disabled, which means that we compared using the less e�cient version of the extended

SADS. Figure 8.11 shows the total duration of both the query and the retrieval of the data

CHAPTER 8. PRACTICAL SECURE SEARCH 237

for our system and MySQL. Our scheme performs just 30% slower on average than MySQL,

which is the price for the privacy guarantees it provides.

8.6.6 Case Study: Sharing of Health Records

We next examine, from a very high level, the suitability of our scheme for a hospital’s

admissions records database. (A database for full medical record storage is vastly more

complex and is not addressed here.) A patient’s health record is very sensitive information,

usually kept by the patient’s medical institution. There are cases, though, where such

information needs to be shared among di↵erent institutions. For example, a patient may

need to visit a di↵erent institution due to an emergency, or to get a second opinion. This

sharing may need to be done privately for several reasons. In an emergency, a doctor may

need to query all the institutions that share records with his without revealing the patient’s

identity, especially to the institutes that do not have information about him. If the querying

is not private in that case, some institutions would learn information about a patient that

has never visited them. Or, a patient may not want his institution to know which institution

he visits for specialized needs, such as drug rehabilitation, so again the query for his record

has to be performed privately.

A database of health records is similar to the synthetic dataset we used in our evaluation.

It contains some searchable fields like name, date of birth, height, etc.; each record may be

linked with several medical exam results like x-rays, electrocardiographs, magnetic tomo-

graphies, etc. In 1988, there were about ten routine tests during the hospital’s admission

process alone [Hubbell et al., 1988]; today, about thirty individual tests are done.1 Taking

into account that some of the results can be a few tens of Mbs — for example, a head CAT

scan is about 32 MB — each health record could be a couple of hundred megabytes. One

major hospital complex admits about 117K inpatients per year2; to a first approximation,

their database would thus have several hundred thousands rows and 30–40 columns.

We have already seen, though, that the extended SADS scheme we propose can success-

fully handle a database of this size. Our evaluation demonstrated that document retrieval

1Private communication with a physician.

2

http://nyp.org/about/facts-statistics.html

http://nyp.org/about/facts-statistics.html

CHAPTER 8. PRACTICAL SECURE SEARCH 238

adds only a small overhead compared to simple transfer, thus easily scaling with the size

of the document retrieved. Also, searching over 100K records with 51 searchable attributes

each takes less than half a second, thus meeting real-world requirements. Finally, the sup-

port for updates in health records is a requirement covered by our extended SADS scheme.

We conclude that our scheme is able to handle the requirements of this hospital, while

preserving patient privacy.

CHAPTER 9. CONCLUSIONS 239

Chapter 9

Conclusions

Every day people use various services that take some of their private data as input. The

computation underlying such services most often depends on the private data of multiple

parties. Although the results of such computation do reveal some information about the

private inputs of the parties, the benefits of such services outweigh the potential risk of the

privacy leakage from the result. While revealing the output may be acceptable, the actual

inputs needed for the computation are much more sensitive and need to be protected. In

such case the desirable privacy guarantees can be formulated as follows: the computation

should not reveal anything more about the inputs than what is inherently leaked by the

final result.

Constructing protocols with the above properties has been the subject of secure multi-

party computation. While there have been many results in the area showing how to con-

struct secure computation protocols for any functionality, these constructions come with

e�ciency overhead that is prohibitive for most practical applications. In this thesis we

claim that one of the reasons for the big gap between the e�ciency required for practical

purposes and the one provided by existing protocols is the fact that the underlying assump-

tions of such protocols often do not reflect closely the actual requirements of real scenarios.

Existing MPC techniques assume homogeneous environments where all participants have

the same computation and communication resources available. Further, the adversarial

models that they use assume that all corrupted parties will exhibit the same type of misbe-

havior and would collude and share their private information. On the other hand, practical

CHAPTER 9. CONCLUSIONS 240

setups that could benefit from MPC solution techniques often present quite heterogeneous

systems, where parties have di↵erent resources and di↵erent incentives to misbehave in the

execution. And if we are aiming for e�cient solutions, we need to take these facts into

consideration.

We explored several avenues that allow us to develop secure computation techniques

more closely tailored to the requirements of di↵erent heterogeneous systems. These ap-

proaches achieve improved e�ciency for the participants in a way that enables secure

computation in scenarios where existing protocols would not be usable. In particular our

contributions are in three main directions: we consider new computational models as rep-

resentation of the evaluated function in a secure computation, which allow us to overcome

inherent ine�ciencies in MPC approaches relying on Boolean and arithmetic circuits. Fur-

ther, we focus on the setting of outsourcing where we have one powerful party with large

computational and storage resources, which it provides as a service to computationally weak

and memory bounded clients. In this setting we propose solutions for verifiable delegation,

server-aided computation with non-colluding adversaries and privacy enhanced sharing of

outsourced data. The third perspective that we adopt has a di↵erent flavor. We start with

particular e�ciency requirements that we would like to achieve for a protocol for encrypted

search and data sharing, and explore how strong security guarantees we can achieve while

meeting these e�ciency constraints.

Contributions. Computation involving large databases often needs to access only a small

part of the data which is stored and the only acceptable solutions from e�ciency point of

view are those that use algorithms with sublinear complexity. Using generic solutions that

represent the evaluated functionality as a circuit inherently incurs computational overhead

linear in the size of the database. We construct a two party computation protocol that uses

RAM representation for the evaluated function and achieves only polylogarithmic amortized

overhead to the running time of the insecure version of the computation. We provide

both a generic construction that relies on any oblivious RAM scheme and any two party

computation protocol as well as an optimized construction that uses specific instantiations

of both schemes.

CHAPTER 9. CONCLUSIONS 241

Multivariate polynomials can be used to express the functionality of a large number

of problems from linear algebra, statistics, logic and set operations. At the same time

they provide a more succinct representation for these functionalities than circuits. We use

this representation to construct an MPC protocol for evaluation of multivariate polynomials

that improves the communication complexity of existing solutions and requires only a single

round interaction among all the parties. An instantiation of our general protocol provides

currently the most e�cient solution for the multiparty set intersection problem in the fully

malicious case.

In the setting of outsourcing we have a powerful party that provides services to weak

clients. Two main types of services that can be provided are data storage and computation.

When we consider computation outsourcing there are two properties that we may want

to provide: privacy and verifiability. We address these questions in a construction for

server-aided computation that allows o✏oading the works of most of the participants in an

MPC protocol to a computationally powerful party (server), which does not have inputs for

the protocol and just assists the execution of the computation. We also introduce a new

adversarial model where parties might be misbehaving but not necessarily colluding and

sharing their private information. This adversarial setting, though weaker than the case

of a monolithic malicious adversary, su�ces to model accurately the actual incentives for

deviating behavior of the participants in many practical scenarios. At the same it allows to

construct quite e�cient protocols that use entirely symmetric key primitive with the only

exception of a few public key operations for coin tossing.

If we restrict our requirements for delegated computation only to the verifiability prop-

erty, this provides room for further e�ciency improvements. At the same time such protocols

are still useful for settings where the service provider is trusted to store the data in plaintext

form (e.g., it is bound by legal contract not to reveal the information), but is not trusted

to do honestly all the necessary work for the computation. Such techniques will be also

relevant in the case where we want to be able to detect execution errors of the computation.

Verifiable computation schemes aim to provide an e�cient way to check the correctness of

the result of a large computation. We introduce a new paradigm for constructing verifiable

computation from attribute-based encryption. This construction avoids the use of expensive

CHAPTER 9. CONCLUSIONS 242

primitives such as FHE and PCPs underlying other VC solutions and additionally enjoys

two new useful properties: public delegation and public verification.

In the case of data outsourcing users store and access their data at a service provider.

In addition to that they may wish to share data among themselves. While one way to do

this is to first retrieve their own data from the provider and then send it to each other, such

an approach incurs a substantial communication overhead. A much more e�cient solution

would allow each user to retrieve directly from the server all data (both his own as well as

others’), which he is authorized to access. However, in this case access control rules that

determine what data is shared among users’ become private information for the users that

they may not want to reveal to the provider, who at the same time needs to serve as a point

of access enforcement. We propose a two level-access control solution for both reads and

writes that o↵ers tunable trade-o↵s between e�ciency overhead and hiding properties for

the access control rules and data access patterns from the storage provider.

Often when we implement a real system we are facing e�ciency requirements for prac-

tical uses and the goal is to maximize the security properties of the solution while meeting

these requirements. We explore such a setting in the case of encrypted search for secure data

sharing. We construct a protocol that allows one party to search the database of another

and retrieve matching records while providing privacy guarantees for the query and the non-

matching content of the database. We design and implement a system that handles query

searches on databases of size 50 GB achieving only 30% overhead compared to insecure

search provided by mySQL. We achieve this e�ciency performance under a relaxed security

model taking advantage of two intermediary parties, which act as semi-honest intermedi-

aries for the protocol but do not learn any of the private information of the participants

(e.g., database and queries). The only allowable leakage beyond what is inherent to the

results is the query pattern of the client, which is revealed to the intermediaries and the

data owner.

Future Work. In this thesis we have presented several avenues to approach the problem

of finding a meeting point between techniques for multiparty computation, which provide

strong security guarantees, and e�ciency requirements for practical application. Either of

CHAPTER 9. CONCLUSIONS 243

these directions brings potential for further research. With the advent of cloud computing

the question of outsourcing of computation becomes of bigger and bigger importance. We

proposed a solution that improves the e�ciency for most of the participants in an MPC

protocol using a server-aided model of computation. Solutions based on fully homomorphic

encryption improve the e�ciency for all participants, but such a primitive is still quite ex-

pensive and introduces overhead for the computation party prohibitive for most practical

purposes. Thus any construction that improves the e�ciency for all parties with smaller

overhead in the outsourced computation would be of great interest. The other desirable

property for outsourced computation is verifiability. Our solution can handle the same class

of functions as the class of functions that an attribute-based encryption with e�cient en-

cryption algorithm (linear in the size of the input) can admit as policies. Currently this class

includes Boolean formulas. While solutions for verifiable computation for general functions

exist, they employ expensive cryptographic techniques such as FHE and PCPs. Obtain-

ing more e�cient solutions for larger classes of functions as well as handling computation

that depends on the inputs of multiple parties present interesting open questions. While

constructions achieving privacy and verifiability separately have obvious applications in the

outsourced setting, an e�cient solution that provides both guarantees at the same time will

be of interest for many scenarios.

The MPC construction that we propose to obtain MPC with amortized e�ciency sub-

linear in the size of the input opens the door for applying MPC techniques to settings

where the inputs for the computation are parts of large databases and only algorithms with

sublinear complexity are of interest from a practical point of view. The main disadvantage

of the current instantiations of our construction is that they involve multiple interactions

for each memory access, which is due to the fact that all existing ORAM schemes require

multiple rounds of interaction. Achieving a single round ORAM construction would greatly

benefit the performance of the resulting MPC schemes.

E↵orts to identify scenarios where MPC techniques will be applicable, to determine the

realistic workloads for these settings as well as the acceptable e�ciency overhead, provide a

reference framework for the e�ciency that usable implementations need to achieve. Trying

to construct and implement protocols that manage to meet these requirements even at the

CHAPTER 9. CONCLUSIONS 244

price of relaxed security notions is the first step to bring MPC solutions to practical uses.

The setting of encrypted search that we explore in this work presents a good example of

this direction. Extending this scenario with more complicated search functionalities as well

as considering other setups of interest will be natural next steps.

245

Part IV

Appendices

APPENDIX A. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK246

Appendix A

Secure Computation with

Sublinear Amortized Work

A.1 Supporting Subprotocols

In this section we describe the Yao garbled circuits that we use for the implementation of

our protocol from Section 3.5.3. We use the following notation:

• vC and vS are shares from the virtual address vC � vS being sought;

• virC and virS are shares of virC � virS , which is either the real or the dummy address

searched in some level;

• doneC and doneS are shares of doneC � doneS , which indicates whether the virtual

address has already been found;

• dC and dS are shares of dC � dS , which stores the retrieved data when the the virtual

address has been found;

• F (r) denotes PRF value used for encryption.

• (cV , cD) are the ciphertexts (encryptions of the virtual address and the data) stored

in a physical position in the ORAM structure;

APPENDIX A. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK247

CheckData

Here we check whether a ciphertext (c
1

, c
2

) matches the input value v = vC � vS . If it

does, then we share the corresponding data between the client and the server as dC � dS .

If the virtual address was already found, i.e. doneC � doneS = 1, we ignore the check. If

the virtual address is just matched, we appropriately set the check bit done0C � done0S = 1,

re-encrypt the ciphertext as (c0
1

, c0
2

) to be stored at the server.

Inputs: Client: vC , rwC , dC , doneC , FK(r
1

), FK(r
2

), FK(r
3

), FK(r
4

)

Server: vS , rwS , dS , doneS , (c1, c2)

Protocol:

1. Decrypt the ciphertext (c
1

, c
2

) to recover the values v = c
1

� FK(r
1

) and d = c
2

�
FK(r

2

).

2. Check whether the data value needs to be retrieved:

• If doneC � doneS = 1, compute two shares done0S and done0C of 1, and two new

shares d0S and d0C of the data dS � dC .

• Else if doneC � doneS = 0 and v = vC � vS , compute two shares done0S and done0C
of 1. If rwC � rwS = read, compute two shares d0S and d0C of the retrieved data d.

• Else compute shares done0S and done0C of 0, and another set of shares of 0: d0S and

d0C .

3. Compute encryptions to be written back:

• If doneC � doneS = 0 and v = vC � vS , set c0 = (”dummy”�FK(r
3

), ”dummy”�
FK(r

4

)).

• Else c0 = (v � FK(r
3

), d� FK(r
4

)).

Outputs: Client: done0C , d
0
C

Server: done0S , d
0
S , c

0

Figure A.1: A functionality that enables the players to obliviously check whether a data

item matches the target.

APPENDIX A. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK248

GetHashInput

We compute the virtual address that will next be looked-up in a level: the real virtual

address, if there was no match so far, or a dummy address depending on the counter t, if

the item was already found.

Inputs: Client: doneC , virC , t

Server: doneS , virS

Protocol:

1. If doneC � doneS = 0, create a random secret sharing vS � vC = virC � virS .

2. If doneC � doneS 6= 0, create a random secret sharing vS � vC = (”dummy” � t).

Outputs: Client: vC

Server: vS

Figure A.2: A functionality that determines whether a real or a dummy look-up should be

performed

APPENDIX A. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK249

DataWrite

We check whether the matched item stored in virC � virS and dC � dS should be used to

over-write the current position in the top level, which currently stores ciphertext (c
1

, c
2

).

We overwrite if these are empty encryptions, or an older encryption of the same virtual

address.

Inputs: Client: doneC , virC , dC , doneC , FK(r
1

), FK(r
2

), FK(r
3

), FK(r
4

)

Server: doneS , virS , dS , doneS , (c1, c2)

Protocol:

1. Decrypt the ciphertext (c
1

, c
2

) to recover the values v = c
1

� FK(r
1

) and d = c
2

�
FK(r

2

).

2. Compute v0 = virC � virS and d0 = dC � dS .

3. Check whether this is the right place to write an encryption of (v0, d0):

• If doneC � doneS = 1, compute two random shares done0S and done0C of 1, and set

(c0
1

, c0
2

) = (v � FK(r
3

), d� FK(r
4

)).

• Else if v = virC � virS or v = 0, compute two random shares done0S and done0C of

1, and set (c0
1

, c0
2

) = (v0 � FK(r
3

), d0 � FK(r
4

)).

• Else, compute two random shares done0S and done0C of 0, and set (c0
1

, c0
2

) = (v �
FK(r

3

), d� FK(r
4

)).

Outputs: Client: doneC

Server: done0S , (c
0
1

, c0
2

)

Figure A.3: A functionality for determining whether a value should be written to a given

position in the top level.

APPENDIX A. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK250

Distributed Universal Hash Function

We compute a universal hash of a value shared between the client and the server as uC ·uS ,

and send the encrypted output c to the server. Let G be a prime order group. Let a and b

be parameters defining the universal hash function from [Mansour et al., 1993].

Inputs: Client: uC 2 G, F (r) 2 {0, 1}m
Server: uS 2 G, a 2 {0, 1}n+m�1, b 2 {0, 1}m

Protocol:

1. Set u = ucuS , and “cast” u as an integer.

2. For 1 i m compute the i-th bit of the hash as yi = (�n
j=1

(uj AND ai+j�1

))� bi.

3. Let y = y
1

||y
2

|| . . . ||ym and c = y � F (r).

Outputs: Client: no output

Server: c

Figure A.4: A functionality for the distributed computation of a universal hash function.

Oblivious Swap

We re-order two encrypted values (v
1

, d
1

) and (v
2

, d
2

) by their virtual address by decrypting,

comparing (according to some criteria, described in Section ??, swapping if necessary, and

re-encrypting.

Inputs: Client: FK(r
1

), FK(r
2

), FK(r
3

), FK(r
4

), FK(r0
1

), FK(r0
2

), FK(r0
3

), FK(r0
4

)

Server: (v
1

� FK(r
1

), d
1

� FK(r
2

)), (v
2

� FK(r
3

), d
2

� FK(r
4

))

Computation:

1. Decrypt the input ciphertexts to recover the values v
1

= (v
1

�FK(r
1

))�FK(r
1

) and

v
2

= (v
2

� FK(r
3

))� FK(r
3

).

2. Compare the values v
1

and v
2

:

• If v
1

 v
2

: set b = 0, (c0
1

, c0
2

) = (v
1

� FK(r0
1

), d
1

� FK(r0
2

)), and (c0
3

, c0
4

) =

(v
2

� FK(r0
3

), d
2

� FK(r0
4

)).

• If v
1

> v
2

: set b = 1, (c0
1

, c0
2

) = (v
2

� FK(r0
1

), d
2

� FK(r0
2

)), and (c0
3

, c0
4

) =

(v
1

� FK(r0
3

), d
1

� FK(r0
4

)).

Outputs: Client: no output

Server: (c0
1

, c0
2

) and (c0
3

, c0
4

)

Figure A.5: A Functionality that enables the players to obliviously compare and swap two

elements. This is used repeatedly for an oblivious sort.

APPENDIX A. SECURE COMPUTATION WITH SUBLINEAR AMORTIZED WORK251

Remove Excess Empties

Let count be an array of n counter variables ranging from 1 to m. Let index be a bucket

index from 1 to n. Let real be a boolean flag indicating whether index is associated with a

real item or an empty item.

Inputs: Server: index� FK(r
1

), count� FK(r
2

), real

Client: FK(r
1

), FK(r
2

), FK(r
3

), FK(r
4

)

Computation:

1. Recover the values of count and index by computing (index � FK(r
1

)) � FK(r
1

) and

(count� FK(r
2

))� FK(r
2

).

2. If (count[index] < m)

• count[index] ++;

• let (c
1

, c
2

) = (index� FK(r
3

), count� FK(r
4

))

3. Else if (count[index] == m and real == false)

• let (c
1

, c
2

) = (?� FK(r
3

), count� FK(r
4

))

4. Else if (count[index] == m and real == true)

• let (c
1

, c
2

) = (abort!, abort!)

Outputs: The output (c
1

, c
2

) is sent to the server.

Figure A.6: A functionality for counting m items in each bucket and removing excess empty

items.

APPENDIX B. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 252

Appendix B

Secure Multiparty Computation

for Multivariate Polynomials

B.1 Proof of HEPKPV Protocol

Lemma 8 Assume that E = (Gen,Enc,Dec) is a CPA-secure Vector Homomorphic encryp-

tion scheme. Then protocol ⇧POK is a zero knowledge proof of knowledge for L.

Proof. Completeness: Assume the Prover knows (x
1

, . . . , xu), (r1, . . . , ru) such that c
1

=

Encpk(x1; r1), . . . , cu = Encpk(xu; ru) and that (c
1

, . . . , cu) 2 L. Then the Prover can always

provide correct responses to the verification challenges requested by the Verifier. Therefore,

the Verifier will always accept.

Soundness: If the Prover does not know some xi, ri for some ci or (x
1

, . . . , xu) /2 L, the

probability that the Verifier will accept is at most 1/2k.

Zero Knowledge: Let AV be a non-uniform probabilistic polynomial-time real adversary

that controls the Verifier. We construct a non-uniform probabilistic expected polynomial

time simulator SV . The idea behind how SV works is that it chooses b
1

. . . bk ahead of time.

If bi = 0, the simulator chooses eij , rij for 1 j u and computes cij = Enc(eij; rij) such

that (ci1, . . . , ciu) 2 L. The simulator then sends these values on the broadcast channel.

Otherwise, if bi = 1, the simulator chooses sij and rsij for 1 j u and computes

c0ij = Enc(sij; rsij) such that c0i1, . . . , c
0
iu) 2 L. The simulator then sends cij = cj/c0ij for

APPENDIX B. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 253

1 j u over the broadcast channel.

SV uses rewinding to Step 4 to ensure that the bits chosen by the coin-tossing protocol

are equal to b
1

. . . bm. Thus, the Simulator is able to answer all challenges correctly without

knowing the witness w. The input used by AV is distributed identically with respect to

both a random b
1

. . . bm and the b
1

. . . bm chosen ahead of time. Therefore, the probability

that the verifying parties P
2

, . . . , Ps open their commitments correctly is identical both be-

fore and after rewinding. Therefore, the expected number of times the simulator needs to

rewind is 1 and so it runs in expected polynomial time.

Extraction: The idea behind how the Extractor works is that it plays the part of the

verifying parties P
2

, . . . Ps and runs the protocol honestly until after the Prover P
1

opens

the challenges corresponding to b
1

. . . bm. Thus it learns either (xj + eij , rj · rij) or (eij , rij)
for each 1 i k and each 1 j u. Now the Extractor rewinds and sends commitments

for P
2

, . . . , Ps to di↵erent random sequences of bits, the Prover P
1

sends a di↵erent sequence

of bits v00
1

. . . v00k and this results in a di↵erent set of challenge bits: v
1

. . . vk. With probability

at least 1 � 1/2k, there is some index a such that va 6= ba. In this case, the Extractor has

now seen both (xj + eaj , rj · raj) and (eaj , raj) for all 1 j n. Therefore he can now

calculate (xj , rj) for 1 j u, which is the witness for the language L.

B.2 Proof of Multiparty Coin Tossing

Lemma 9 If E = (Gen,Enc,Dec) is semantically secure homomorphic encryption scheme,

⇧coin is a secure multiparty protocol with no honest majority among the participating

parties.

Proof. Assume there is a fixed set B, |B| m, chosen at the outset of the protocol and

that a non-uniform probabilistic polynomial-time real adversary AB controls the parties Tj

such that j 2 B. We construct a non-uniform probabilistic expected polynomial-time ideal

model adversary simulator SB.

Assume party Ti is honest, i. e. Ti /2 B. For each honest party Tj , SB chooses random

APPENDIX B. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 254

Rj , rj and sends Cj = Enc(Rj, rj) as commitment for the input of Tj . SB uses the extractor

for the multiparty HEPKPV protocol to obtain the inputs of all malicious parties and sends

them to the trusted party. SB uses the value returned from the trusted party to reconstruct

R⇤
i . If i = s then SB continues to the last step of the protocol and uses the simulator for

the multiparty HEPKPV protocol to prove that the final value R was computed correctly.

If i 6= s then SB rewinds the protocol to the step where all the commitments have already

been sent but the parties have not yet opened the commitments and proved consistency.

Now, SB uses the simulator for the multiparty HEPKPV protocol to prove that the value

R⇤
i is consistent with the commitment sent by party Ti.

We now show that the view of AB is indistinguishable in the Ideal Model when interact-

ing with SB and its view in the Real model when interacting with the honest parties. The

first di↵erence between the view of AB in a real run of the protocol and in a simulated one

is that SB uses a simulated proof to prove that the commitment is consistent. However,

the simulator for the multiparty HEPKPV guarantees indistinguishability for the two cases.

The second di↵erence is that the simulator uses a dummy commitment as the commitment

of party Ti. Due to the hiding property of the commitment scheme, these two cases are also

indistinguishable.

B.3 Proofs of Input Preprocessing and Verification

Claim 1 Assume R was chosen randomly after T committed to its inputs through the

E�cient Preprocessing protocol. If the parties run the Preprocessing Verification protocol

and do not abort, then with all but negligible probability, the committed input shares of T

are valid encryptions of k + 1-sharing polynomials of the inputs x`, x2` , . . . , x
2

blogd
`

c
` .

Proof. Fix x`. We prove by induction that if the verification does not abort then with

probability 1� i/2k � .9k · i the sharing of x2
i

` is valid.

For the basis case, we have that the sharings of x` 2 XT are valid with probability 1

since the LIPEV protocol guarantees this.

Now, assume that the sharing of x2
i

` is valid with probability 1� i/2k� .9k · i . We show

that the sharing of x2
i+1

` is valid with probability 1� (i+ 1)/2k + .9k(i+ 1).

APPENDIX B. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 255

The probability that the sharing of x2
i+1

` is invalid can be upper bounded by the follow-

ing:

Pr[sharing of x2
i+1

` invalid] Pr[sharing of x2
i

` invalid] +

Pr[sharing of x2
i+1

` invalid | sharing of x2
i

` valid]

 i/2k + .9k · i+
Pr[sharing of x2

i+1

` invalid | sharing of x2
i

` valid]

To upper bound Pr[sharing of x2
i+1

` invalid | sharing of x2
i

` valid], we note that if at

least a .9-fraction of the shares of the intermediate polynomial (x2
i

)2` were computed cor-

rectly and the 0-shares of (x2
i

)2` , x
2

i+1

` are in L
=

, then it must be the case that the shares

of x2
i+1

` were all computed correctly.

Therefore, we can upper bound Pr[sharing of x2
i+1

` invalid | sharing of x2
i

` valid] by

the probabilities that Cut-and-choose passes on the shares of (x2
i

)2` but a .1-fraction were

computed incorrectly or HEPKPV passes on 0-shares of x2
i+1

` , (x2
i

)2` even though they are

not in L
=

.

By the soundness of HEPKPV and Lemma 9 above, this can be upper bounded by

1/2k + .9k.

Therefore, we have that Pr[the sharing of x2
i+1

` is invalid] (i+ 1)/2k + .9k(i+ 1).

By a union bound, we get that the probability that any of the sharings are invalid is at

most:

|X| · (blogLc)2 · (1/2k + .9k), which is negligible.

Lemma 10 For all sets X
1

, X
2

where |X
1

| = |X
2

| = poly(k), we have that the out-

put distributions of the Verifier in consecutive executions of the E�cient Preprocessing

protocol and Preprocessing Verification protocol with inputs X
1

and X
2

(respectively) are

computationally indistinguishable.

Proof. Intuitively, we need to show that the verifying party does not learn anything about

Px
`

(0) for x` 2 X when the E�cient Preprocessing and Preprocessing Verification protocol

APPENDIX B. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 256

are executed. Now, for the technical proof: assume there is a distinguisher A that distin-

guishes the output distribution of the verifier when using input X
1

versus X
2

for the fixed

sets X
1

, X
2

. Thus, A distinguishes between the output of the (malicious) Verifier in the

following two experiments: Expt1 and Expt2 in which the Input preprocessing verification

protocol is executed with commitments from the E�cient preprocessing protocol obtained

from X
1

and X
2

respectively and a verification set R 2 [|J |]. We now show that the view

of the verifiers in Expt1 and Expt2 are computationally indistinguishable.

Assume there is a polynomial-time adversarial verifier A that distinguishes between

the verifier’s output distribution in Expt1 and Expt2. Then we show that there is a

polynomial-time adversary ACPA that can break the semantic security of the encryption

scheme (Gen,Enc,Dec). Since the CPA security of (Gen,Enc,Dec) implies that (Gen,Enc,Dec)

is also many-message CPA secure when poly(k) ciphertexts are concatenated, it is su�cient

to show that there is a polynomial-time adversary ACPA that breaks the many-message

CPA security of (Gen,Enc,Dec) when
P

1js 2 · ↵j ciphertexts are concatenated.

We now describe the adversary ACPA: ACPA forwards the vectors V
1

and V
2

to the

CPA experiment where

V
1

= [xi`]x
`

2X
1

,1i↵
`

, [(xi`)
2]x

`

2X
1

,1i↵
`

�1

and

V
2

= [xi`]x
`

2X
2

,1i↵
`

, [(xi`)
2]x

`

2X
2

,1i↵
`

�1

.

ACPA then receives the encryptions of the values in either V
1

or V
2

encrypted under public

key pk and with independent randomness.

Let R
1

and R
2

are domains for plaintext and randomness for the encryption scheme

(Gen,Enc,Dec) . Let S 2 |J | such that JR \ JS = ;. ACPA constructs the following

encryptions:

• For each 1 j s, 1 ` ↵j , i 2 JR ACPA chooses uniformly at random x`,i,j
$ R

1

and r`,i,j
$ R

2

and computes the pair (i,Encpk(x`,i,j; r`,i,j)).

• For each 1 j s, 1 ` ↵j � 1, i 2 JR choose uniformly at random r0`,i,j
$ R

2

and compute the pair (i,Encpk((x`,i,j)2; r0`,i,j)).

APPENDIX B. SECURE MULTIPARTY COMPUTATION FOR MULTIVARIATE
POLYNOMIALS 257

• For each 1 j s, 1 ` ↵j � 1, i 2 JS choose uniformly at random x0`,i,j
$ R

1

and r0`,i,j
$ R

2

and computes the pair (i,Encpk(x0`,i,j; r
0
`,i,j)).

Now ACPA uses Lagrange interpolation over encrypted values with the corresponding pairs

computed above to fill in the rest of the values in the following vectors that represent

encryptions of shares of the challenge ciphertexts that ACPA receives.

• Input shares: Encpk(Px2
`+1

j

(i), rj,`,i)� = Encpk(� · P
x2

`+1
j

(i), r�j,`,i) and

• Intermediate shares: Encpk(P2

x2
`

j

(i), r0j,`,i)
� = Encpk(� · P2

x2
`

j

(i), (r0j,`,i)
�).

ACPA outputs these values as the commitments in the E�cient Preprocessing protocol

and then uses them as inputs to the Preprocessing Verification protocol. Note that ACPA

is able to answer the challenge in the Verification protocol since ACPA knows the plaintext

and randomness in the encryptions indexed by R. ACPA outputs whatever A outputs

given the (malicious) verifier’s output. Now we have that if the challenge ciphertext was

an encryption of X
1

then the output of A is distributed identically to its output in Expt1.

On the other hand, if the challenge ciphertext was an encryption of X
2

then the output of

A is distributed identically to its output in Expt2. Thus ACPA breaks the CPA security of

the encryption scheme with the same probability that A distinguishes between the verifier’s

output in Expt1 and Expt2.

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 258

Appendix C

How to Delegate and Verify in

Public: Verifiable Computation

from Attribute-based Encryption

C.1 Note on Terminology: Attribute-based Encryption ver-

sus Predicate Encryption

We consider attribute-based encryption (ABE) schemes to be ones in which each secret key

ABE.SKF is associated with a function F , and can decrypt ciphertexts that encrypt a mes-

sage m under an “attribute” x if and only if F (x) = 1. This formulation is implicit in the

early definitions of ABE introduced by Goyal, Pandey, Sahai and Waters [Sahai and Waters,

2005; Goyal et al., 2006]. However, their work refers to F as an access structure, and existing

ABE instantiations are restricted to functions (or access structures) that can be represented

as polynomial-size span programs (a generalization of Boolean formulas) [Goyal et al., 2006;

Ostrovsky et al., 2007; Lewko et al., 2010]. While such restrictions are not inherent in the

definition of ABE, the fully general formulation we use above was first explicitly introduced

by Katz, Sahai, and Waters, who dubbed it predicate encryption [Katz et al., 2008]. Note

that we do not require attribute-hiding or policy/function-hiding, properties often associ-

ated with predicate encryption schemes (there appears to be some confusion in the literature

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 259

as to whether attribute-hiding is inherent in the definition of predicate encryption [Katz et

al., 2008; Lewko et al., 2010; Boneh et al., 2011], but the original formulation [Katz et al.,

2008] does not seem to require it).

Thus, in a nutshell, our work can be seen as using ABE schemes for general functions,

or equivalently, predicate encryption schemes that do not hide the attributes or policy, in

order to construct verifiable computation protocols.

C.2 Attribute-based Encryption from Verifiable Computa-

tion

Given that we have shown how to construct a verifiable computation (VC) protocol from

an attribute-based encryption (ABE) scheme, it is natural to ask whether the reverse im-

plication holds. In other words, can we construct an ABE scheme, given a VC scheme? At

first sight, the key property of a VC scheme – namely, e�cient verification – does not seem

to have anything to do with attribute-based encryption.

Despite this apparent mismatch of functionality, we show how to transform a (very)

restricted class of (publicly) verifiable computation protocols – that we call weak “multi-

function verifiable computation” – into an attribute-based encryption scheme for the same

set of functions. Informally, a weak multi-function VC protocol has the following features:

• The output of ProbGen on an input x can be used to compute many di↵erent functions

on x. Thus, in some sense, ProbGen is agnostic of the function that will be computed

on the input.

In particular, we now have a setup algorithm that generates a pair of public and secret

parameters, a key generation algorithm KeyGen (as before) that generates a secret key

SKF for a function F given the secret parameters, and a ProbGen algorithm that (as

before) given an input x and the public parameters generates an encoding of x together

with a verification key. Thus, ProbGen does not know about F and KeyGen does not

know about x. Indeed, this is the crucial property that gives us ABE.

• The verification key for an input x consists of a pair (V K0

x, V K1

x), and the verification

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 260

algorithm consists of simply applying a collision-resistant hash function H to the

server’s response �y and checking if it equals V K0

x or V K1

x.

Indeed, the VC schemes we constructed from ABE can both be tweaked to have these

properties.

The high level idea for the construction of an ABE scheme from a multi-function VC

scheme is as follows: in order to encrypt a message under a particular attribute (in the

ABE scheme), we first generate a key that can be computed only if the output of the server

in the VC protocol verifies correctly. Now, decryption of the ciphertext will succeed only if

the decryptor correctly performs the evaluation of the key’s function on the attribute asso-

ciated with the ciphertext, and the output value of the computation satisfies the decryption

condition, in which case he will have the correct decryption key for the ciphertext.

Put another way, the security of a VC scheme implies it should be di�cult for an

adversary to produce an output that does not correspond to a legitimate computation of a

function on a particular input. If we make decryption of a ciphertext dependent on having

a particular output, then the computation possible given a key for the function and an

attribute/input either legitimately produces the expected output, allowing decryption of

the ciphertext, or produces some other output, and it is infeasible to produce the output

necessary to decrypt the ciphertext.

We define the notion of a weak multi-function VC protocol below. The “weakness”

in the definition comes from the fact that we only need a multi-function VC scheme that

verifies that a particular output is legitimate for some outsourced function (i.e., a function

given as input to KeyGen), rather than for a specific function.

Below, we combine these requirements in a single definition, demonstrate that both the

constructions from Section 5.3 and Section 5.4 satisfy this definition, and finally show how

to use such a definition to construct an ABE scheme.

Definition 39 (Weak Multi-Function Public Verifiable Computation). A VC scheme VC =

(Setup, KeyGen, ProbGen, Compute, Verify) is a weak multi-function public verifiable com-

putation scheme if it has the following properties:

• Setup(�)! (PKparam, SKparam): Produces the public and private parameters that do

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 261

not depend on the functions to be evaluated.

• KeyGenPK
param

,SK
param

(F) ! PKF : Produces a public key for evaluating a specific

function F .

• ProbGenPK
param

(x) ! (�x, V Kx = (V K0

x, V K1

x)): The algorithm requires only the

public parameters, which are independent of the function that will be computed. It

generates both the encoding �x for the input, and the public verification keys for each

possible bit of the output, in this case, simply V K0

x and V K1

x.

• ComputePK
param

,PK
F

(�x) ! �y: The computation algorithm uses both parts of the

public key to produce an encoding of the output y = F (x).

• VerifyV K
x

(�y) ! y [?: Using the public input-specific value V Kx, the verification

algorithm outputs 0 if V K0

x = H(�y), outputs 1 if V K1

x = H(�y), and outputs ?
otherwise, to indicate that �y does not represent a valid output of some function F ,

for which KeyGen(F) has been invoked, on x

Definition 40 (Weak Multi-Function Public Verifiable Computation Security). Let VC =

(Setup,KeyGen, ProbGen,Compute,Verify) be a weak multi-function public verifiable compu-

tation scheme. We define security via the following experiment.

Experiment ExpWeakMultV erif
A [VC,�]

(PKparam, SKparam)
R KeyGen(�);

x AOKeyGen(·)(PKparam);

(�x, V Kx) ProbGenPK
param

(x);

�̂y AOKeyGen(·)(PKparam,�x, V Kx);

ŷ VerifyV K
x

(�̂y)

If ŷ 6=? and 8F 2 R : ŷ 6= F (x), output ‘1’, else ‘0’;

We define the adversary’s advantage and the scheme’s security in the same fashion as

Definition 8.

In the experiment, the adversary has oracle access to OKeyGen(F), which calls

KeyGenPK
param

,SK
param

(F), returns PKF , and stores F in the list R. Eventually, the ad-

versary returns an encoding �̂y which purports to be an output of some outsourced function

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 262

applied to x. The challenger runs Verify with the corresponding values of V Kx, and the

adversary wins if this check passes, but the output does not correspond to the output of

one of the functions in list R.

Note that both the constructions from Section 5.3 and Section 5.4 satisfy this definition.

The ABE to VC construction (Section 5.3) does not include any function verification to

begin with, but it still verifies that the output, i.e., the message obtained after performing

a decryption, could not have been obtained without performing a legitimate computation

(decryption) with one of the keys generated by KeyGen. In contrast, Construction 1 is too

strong, since it verifies the specific function used. To weaken it, we can simply add the

private decryption key SKF to the computation key, which was previously TKF . This

removes the ability to verify which function was used, and hence fits within the definition

above.

Below, we describe our construction from VC to ABE in more detail.

Construction 2. Let VC = (Setup,KeyGen, ProbGen,Compute,Verify) be a weak multi-

function public verifiable computation scheme, and H be an injective one way function. We

construct the following key-policy attribute-based encryption scheme ABEV C .

• Setup(�, U) ! (PK,MSK): Run VC.Setup(�) ! (PKparam, SKparam) and output

PK = PKparam and MSK = SKparam.

• EncPK(M, �)! C where M 2 {0, 1}:

– Run (�x, V Kx = (V K0

x, V K1

x)) VC.ProbGenPK
params

(x).

– Let �ans be such that H(�ans) = V K1

x. Choose a random value r and compute

K = h�ans, ri where h·, ·i denotes the inner product of two bit-strings (mod 2).

Output ciphertext C = (�x, r,K �M).

• KeyGenMSK(F)! SKF : Run PKF VC.KeyGenPK
param

,SK
param

(F). Output SKF =

PKF .

• DecSKF
(C)! M [?: Parse C as (�x, r,D).

– Run �ans VC.ComputePK
params

,PK
F

(�x).

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 263

– Compute K h�ans, ri. Output K �D.

Correctness follows from the fact that if F (x) = 1, then the answer �ans produced by

the server (upon running VC.Compute) is such that H(�ans) = V K1

x. Since H is an injective

one-way function, h�ans, ri �D = M .

We now proceed to showing the security of the ABE scheme. First, we state the

Goldreich-Levin lemma [Goldreich and Levin, 1989].

Lemma 17 (Goldreich-Levin [Goldreich and Levin, 1989]). Let f : {0, 1}n ! {0, 1}n be a

bijection computable by a circuit of size t and suppose there is a circuit C of size s such that

Prx,r[C(f(x), r) = hx, ri] = 1

2
+ ✏.

Then there is a circuit C0 of size O((s+ t) · poly(n, 1/✏)) such that

Prx[C0(f(x)) = x] =
✏

4
.

Theorem 27. If VC = (Setup,KeyGen, ProbGen,Compute,Verify) is a secure weak multi-

function public VC scheme (see Definitions 40), then ABEV C , the ABE scheme obtained

with Construction 2, is IND-CPA secure (Definition 13).

Proof Sketch. Assume for the sake of contradiction that there exists an adversary AABE

that wins with non-negligible probability µ the security game from Definition 13. We use

this to break the soundness of the VC protocol in two steps, conceptually.

First, using Lemma 17, the existence of AABE means that there is an adversary that,

given a ciphertext of the form (�x, r,D), predicts an inverse of V K1

x under the function

H. Note that this transformation creates an adversary A0
ABE that asks polynomially many

more ABE secret key queries than AABE .

Since this adversary essentially predicts the message of the server, this can then be

used to construct an adversary AV C that breaks the soundness of the VC protocol (from

Definition 40) with non-negligible probability. For completeness, we describe both these

transformations as one algorithm AV C that uses AABE :

1. AV C receives PKparam, the output from VC.Setup(�) from his challenger. He forwards

PKparam to AABE .

APPENDIX C. HOW TO DELEGATE AND VERIFY IN PUBLIC: VERIFIABLE
COMPUTATION FROM ATTRIBUTE-BASED ENCRYPTION 264

2. On calls to OABE.KeyGen(F), AV C queries his own OV C.KeyGen(F) oracle and returns

the resulting PKF .

3. Given the challenge messages (M
0

,M
1

) and attributes �, AV C requests as his challenge

(�� , V K� = (V K0

� , V K1

�)) ProbGenPK
param

(�).

4. AV C runs the adversary Agl to obtain the next value r submitted to the oracle Ox(·).
AV C chooses a random bit d

R {0, 1} and returns the challenge ciphertext C =

(r,�� , d) to AABE .

5. Eventually, AABE will return his guess bit b̂. AV C computes d�M
ˆb and returns this

value as an answer to Agl.

6. When Agl makes a new oracle query, AV C rewinds the execution of AABE to Step 4.

7. When AV C receives an answer �̃
0

from Agl, he returns it as his output for the com-

putation on input (�� , V K� = (V K0

� , V K1

�)).

The probability that AV C succeeds in cheating is the same as the probability that Agl

succeeds in inverting V K0

� = H(�
0

). By assumption AABE wins the security game from

Definition 13 with non-negligible probability µ. Therefore AV C returns the correct value

for �
0

· r to Agl with probability µ. Then by Lemma 17 it follows that Agl will compute the

correct output �
0

with probability ✏
4

, which is non-negligible. Hence AV C wins the security

game from Definition 40 with non-negligible probability. Also AV C runs in polynomial time

since Agl is a polynomial-time algorithm.

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 265

Appendix D

Outsourcing Multi-Party

Computation with Non-Colluding

Adversaries

D.1 Garbled Circuits

Informally, Garb is considered secure if (G(C),G(x),G(y)) reveals no information about x

and y. An added property possessed by the construction is verifiability which, roughly

speaking, means that, given (G(C),G(x),G(y)), no adversary can output some G(o) such

that Translate(G(o),T) 6= f(x, y). Next we discuss these properties more formally.

We recall the properties of Yao’s garbled circuit construction which we make use of.

These include correctness, privacy and verifiability.

Definition 41 (Correctness). We say that Garb = (GarbCircuit,GarbIn,Compute,GarbOut,Translate)

is correct if for all functions f , for all circuits C computing f , for all coins r 2 {0, 1}�,
and for all x and y in the domain of f

Translate

✓
Eval

�
GarbCircuit(C; r),GarbIn(C, 1, x; r),GarbIn(C, 2, y; r)

�
,GarbOut(r)

◆
= f(x, y).

Informally, Garb is considered private if the garbled circuit and the garbled inputs reveal

no useful information about x and y.

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 266

Definition 42 (Privacy). We say that Garb = (GarbCircuit,GarbIn,Compute,GarbOut,Translate)

is private if for all functions f , for all circuits C computing f , for all inputs x, y, x0 and

y0 in the domain of f , the following distributions are computationally indistinguishable:

⇢
GarbCircuit

�
C; r

�
,GarbIn

�
C, 1, x; r

�
,GarbIn

�
C, 2, y; r

��

and ⇢
GarbCircuit

�
C; r0

�
,GarbIn

�
C, 1, x0; r0

�
,GarbIn

�
C, 2, y0; r0

��
,

where r and r0 are chosen uniformly at random.

Finally, we consider verifiability which, roughly speaking, means that, given a garbled

circuit and two garbled inputs, no adversary can find a garbled output that will result in

the translation algorithm returning an incorrect output.

Definition 43 (Verifiability). We say that Garb = (GarbCircuit,GarbIn,Compute,GarbOut,Translate)

is verifiable if for all functions f , for all circuits C computing f , for all inputs x and y in

the domain of f , for a uniformly random seed r 2 {0, 1}�, and for all ppt adversaries A,

the following probability is negligible in k:

Pr

Translate

�
o0,GarbOut(s)

� 6= f(x, y) : o0 A�GarbCircuit(C; r),GarbIn(C, 1, x; r),GarbIn(C, 2, y; r)
��

where the probability is over the coins of A.

D.2 Secure Delegated Computation

A delegated computation scheme consists of four polynomial-time algorithms Del = (Gen,

ProbGen, Compute, Verify) that work as follows. Gen is a probabilistic algorithm that takes

as input a security parameter k and a function f and outputs a public and secret key pair

(pk, sk) such that the public key encodes the target function f . ProbGen is a probabilistic

algorithm that takes as input a secret key sk and an input x in the domain of f and outputs

a public encoding �x and a secret state ⌧x. Compute is a deterministic algorithm that takes

as input a public key pk and a public encoding �x and outputs a public encoding �y. Verify

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 267

is a deterministic algorithm that takes as input a secret key sk, a secret state ⌧x and a public

encoding �y and outputs either an element y of f ’s range or the failure symbol ?.
We recall the formal definitions of correctness, verifiability and privacy for a delegated

computation scheme.

Definition 44 (Correctness). A delegated computation scheme Del = (Gen,ProbGen,Compute,Verify)

is correct if for all functions f , for all pk and sk output output by Gen(1k, f), for all x in the

domain of f , for all �x and ⌧x output by ProbGensk(x), for all �y output by Computepk(�x),

Verifysk(⌧x,�y) = f(x).

A delegated computation scheme is verifiable if a malicious worker cannot convince the

client to accept an incorrect output. In other words, for a given function f and input x,

a malicious worker should not be able to find some �0 such that the verification algorithm

outputs y0 6= f(x). This intuition is formalized in the following definition.

Definition 45 (Verifiability). Let Del = (Gen,ProbGen,Compute,Verify) be a delegated com-

putation scheme, A be an adversary and consider the following probabilistic experiment

VerDel,A(k):

1. the challenger computes (pk, sk) Gen(1k, f),

2. let O(sk, ·) be a probabilistic oracle that takes as input an element x in the domain of

f , computes (�, ⌧) ProbGensk(x) and outputs �,

3. given pk and oracle access to O(sk, ·), A outputs an input x,

4. the challenger computes (�x, ⌧x) ProbGensk(x),

5. given �x, the adversary A outputs an encoding �0,

6. if Verifysk(⌧,�
0) 62 {?, f(x)} then output 1 else output 0.

We say that Del is verifiable if for all ppt adversaries A,

Pr [VerDel,A(k) = 1] NEGL(k)

where the probability is over the coins of Gen, O, A and ProbGen.

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 268

Informally, a delegated computation scheme is private if its public encodings reveal no

useful information about the input x.

Definition 46 (Privacy). Let Del = (Gen,ProbGen,Compute,Verify) be a delegated compu-

tation scheme, A be a stateful adversary and consider the following probabilistic experiment

PrivDel,A(k):

1. the challenger computes (pk, sk) Gen(1k, f),

2. let O(sk, ·) be a probabilistic oracle that takes as input an element x in the domain of

f , computes (�, ⌧) ProbGensk(x) and outputs �,

3. given pk and oracle access to O(sk, ·), A outputs two inputs x
0

and x
1

,

4. the challenger samples a bit b at random and computes (�b, ⌧b) ProbGensk(xb),

5. given �b, the adversary A outputs a bit b0,

6. if b0 = b output 1 else output 0.

We say that Del is private if for all ppt adversaries A,

Pr [PrivDel,A(k) = 1] NEGL(k)

where the probability is over the coins of Gen, O, A and ProbGen.

D.3 Proof for Set Intersection Protocols

Theorem 14 The protocol in Figure 6.5 securely computes the 2-party set intersection func-

tionality in the FCT-hybrid model for the adversary structure Adv
5

defined as follows:

Adv
5

=

⇢✓
AS [sh],A1

[sh],A
2

[sh]

◆
,

✓
AS [m],A

1

[h],A
2

[h]

◆
,

✓
AS [nc1, nc2],A1

[sh],A
2

[sh]

◆�
.

Proof. We consider the di↵erent adversarial models in the following claims.

Claim 14. The protocol
�AS [sh],A1

[sh],A
2

[sh]
�
-securely computes the 2-party set inter-

section functionality in the FCT-hybrid model.

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 269

We describe three independent transformations SimS , Sim1

and Sim
2

. The simulator

Sim
1

simulates A
1

as follows:

1. Sim
1

queries FCT to receive the common random string r used to derive K
1

, K
2

and

d, e
1

, e
2

and answers A
1

’s queries to FCT correspondingly.

2. Sim
1

calls the trusted party submitting the input it has for the semi-honest A
1

and

obtains the output for A
1

3. The simulator computes the corresponding PRP values for the output and sends those

to A
1

.

We construct a simulator Sim
2

that simulates A
2

analogously to Sim
1

. The simulator

SimS that simulates AS as follows:

1. SimS generates two random sets X and Y of size m and n.

2. SimS chooses K
1

, K
2

and d, e
1

, e
2

, computes honestly the PRP values for X and Y

and submits them to AS .

The indistinguishability of the simulated and the real execution views follows easily from

the pseudorandom properties of the PRP.

2

Claim 15. The protocol
�AS [m],A

1

[h],A
2

[h]
�
-securely computes the 2-party set intersec-

tion functionality in the FCT-hybrid model.

We construct a simulator SimS that simulates the adversary AS as follows:

1. SimS generates two random sets X and Y of size m and n.

2. SimS chooses s
1

, s
2

and d, e
1

, e
2

, computes honestly the PRP values for X and Y and

submits them to AS .

3. SimS receives the output computed by AS . If the returned set is not the correct set

of intersection PRP vales, the simulator sends an abort message to the trusted party

and to AS .

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 270

The views of the adversary AS in the real and the ideal execution are indistinguishable

because of the properties of the PRP function and the fact that P
1

and P
2

are honest. In the

ideal execution P
1

and P
2

receive as output the set intersection of their inputs if and only

if AS has computed it correctly (i.e., SimS has not submitted abort to the trusted party).

Thus we need to show that in the real execution the probability that the parties will not

abort, when the set returned by AS is not the correct result, is negligible. A misbehavior

of AS will not be detected, if the intersection set that he returns contains all PRP values

for the element d, does not contain any of the PRP values for e
1

and e
2

, and for every PRP

value in the returned set all the other t � 1 PRP values that correspond to the respective

element are also in the claimed intersection set. Let r be size of the set intersection. The

probability that AS removes k r values from the set intersection without being detected

is (i.e., guesses the PRP values that correspond to the element d and then guesses kt PRP

values that correspond to k input elements):

✓
(r + 1)t

t

◆�1

✓
r

k

◆✓
rt

kt

◆�1

.

The probability that AS adds s m � r (s n � r) values from the set intersection

returned to P
1

(P
2

) without being detected is (i.e., guesses the t PRP values corresponding

to e
1

(e
2

) and then guesses st PRP values corresponding to s elements):

✓
(n� r + 1)t

t

◆�1

✓
(n� r)

s

◆✓
(n� r)t

st

◆�1

.

The value
�
(r+1)t

t

��1

is maximized when r = 1 (if r = 0, AS cannot remove intersection

values). Therefore,

✓
(r + 1)t

t

◆�1

✓
2t

t

◆�1

=
t!t!

(2t)!
=

1 · · · t
(t+ 1) · · · 2t <

1

2t
.

Since
�r
k

��rt
kt

��1

< 1, it follows that the probability that AS removes any values from the

set intersection without being detected is negligible. Similarly we get that the probability of

that AS adds any values from the set intersection without being detected is also negligible.

Therefore, the probability that the set intersection that a party accepts as answer is not

the correct result is negligible.

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 271

2

Claim 16. The protocol
�AS [nc1, nc2],A1

[sh],A
2

[sh]
�
-securely computes the 2-party set

intersection functionality in the FCT-hybrid model.

The proof of the claim follows from the above two claims and Lemma 12.

2

Theorem 15 The protocol in Figure 6.5 securely computes the 2-party set intersection

functionality in the FCT-hybrid model for the adversary structure Adv
6

defined as follows:

Adv
6

= Adv
5

[⇢✓
AS [h],A1

[m],A
2

[h]

◆
,

✓
AS [sh],A1

[ncS],A2

[sh]

◆
,

✓
AS [h],A1

[h],A
2

[m]

◆
,

✓
AS [sh],A1

[sh],A
2

[ncS , nc1]

◆�
.

Proof. We consider only the cases in the adversarial structure that were not covered in the

proof of Theorem 14.

Claim 17. The protocol
�AS [h],A1

[m],A
2

[h]
�
-securely computes the 2-party set intersec-

tion functionality in the FCT-hybrid model.

We construct a simulator Sim
1

that simulates the adversary A
1

as follows:

1. Sim
1

queries FCT to receive the common random string r used to derive K
1

, K
2

and

d, e
1

, e
2

and answers A
1

’s queries to FCT correspondingly.

2. Sim
1

receives from A
1

the PRP values that he submits, and uses K
1

and K
2

to

extract the inputs. If he fails to extract these values, Sim
1

submits abort to the TP.

Otherwise, Sim
1

submits the extracted values to the trusted party and receives back

the set intersection.

3. The simulator verifies that A
1

has submitted exactly t PRP values for each of his

inputs. If the verification fails, he instructs the TP to send abort to the P
2

.

APPENDIX D. OUTSOURCING MULTI-PARTY COMPUTATION WITH
NON-COLLUDING ADVERSARIES 272

4. Sim
1

sends to A
1

a commitment of the PRP values from the input set sent by A
1

corresponding to the elements in the set intersection.

5. Sim
1

and A
1

execute the verification where A
1

proves he has submitted exactly t PRP

values for each of his inputs. If the verification fails, the simulator aborts the protocol.

6. The simulator opens his commitment and sends the corresponding PRP values to A
1

.

The view of A
1

in the simulated and the real executions are identical. In both the real

and the simulated execution P
2

receives the correct output if the set submitted by A
1

was

formed correctly and otherwise aborts.

2

Claim 18. The protocol
�AS [sh],A1

[ncS],A2

[sh]
�
-securely computes the 2-party set inter-

section functionality in the FCT-hybrid model.

The proof of this claim follows from the previous claim and Lemma 12.

2

The proofs for the two remaining case when P
2

is malicious have analogous proofs.

APPENDIX E. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 273

Appendix E

Privacy Enhanced Access Control

for Outsourced Data Sharing

E.1 Predicate Encryption and Extensions

In this section we present the construction of predicate encryption of [Katz et al., 2008] and

our extension that allows re-randomization of ciphertexts. The scheme ({, }Enc,GenKey,Dec)

is defined through the following algorithms:

• {(} 1n):

1. Choose primes p, q and r and a groups Gp, Gq and Gr with generator gp, gq and

gr repectively. Let G = Gp ⇥Gq ⇥Gr.

2. Choose R
1,i, R2,i 2 Gr, h1,i, h2,i 2 Gp uniformly at random for 1 i n and

R
0

2 Gr.

3. The public parameters for the scheme are (N = pqr,G,GT , e). The public key

is defined as:

PK = (gp, gr, Q = gq ·R0

, {H
1,i = h

1,i ·R1,i, H2,i = h
2,i ·R2,i}ni=1

).

The master secret keys is

SK = (p, q, r, gq, {h1,i, h2,i}ni=1

).

APPENDIX E. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 274

• EncSK(x1, . . . , xn):

1. Choose random s,↵,� 2 ZN , R
3,i, R4,i 2 Gr for 1 i n.

2. Output the following ciphertext:

C =
�
C
0

= gsp, {C1,i = Hs
1,i ·Q↵·x

i ·R
3,i,

C
2,i = Hs

2,i ·Q�·x
i ·R

4,i}ni=1

�
.

• GenKeySK(v
1

, . . . , vn):

1. Choose random r
1,i, r2,i 2 Zp for 1 i n, a random R

5

2 Gr, f1, f2 2 Zq and

Q
6

2 Gq.

2. Output SK
v

that consists of

�
K = R

5

·Q
6

·
nY

i=1

h
�r

1,i

1,i · h�r
2,i

2,i ,

{K
1,i = g

r
1,i

p · gf1·viq ,K
2,i = g

r
2,i

p · gf2·viq }ni=1

�

• DecSKf
(c): The decryption algorithm outputs 1 if and only if

e(C
0

,K)
nY

i=1

e(C
1,i,K1,i) · e(C2,i,K2,i) = 1.

We further define an algorithm that re-randomizes any ciphertext produced by the

predicate encryption as follows:

• $ (C): The ciphertext is of the form (C
0

, {C
1,i, C2,i}ni=1

). Choose a random s0 2 ZN

and output

C 0 = C
0

· gs0p , {C1,i ·Hs0
1,i, C2,i ·Hs0

2,i}ni=1

.

The resulting ciphertext is the same a freshly generated ciphertext for the encrypted

value using random value s+ s0, if s was the value used in C.

APPENDIX E. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 275

Now we look closely at the instantiation of the predicate encryption scheme that handles

polynomial evaluation as its predicate. In this case the predicate (v
1

, . . . , vn) consists of

the coe�cients of the polynomial that is being evaluated and the attribute vector that

is used for an evaluation point x is of the form (1, x, x2, . . . , xn�1). The ciphertext for

the encryption of (1, x, x2, . . . , xn�1) has components (C
0

, {C
1,i, C2,i}ni=1

), where C
1,i, C2,i

correspond to the vector point xi�1. Thus we can view the first few components of the

ciphertext (C
0

, {C
1,i, C2,i}2i=1

) as an encryption of the vector (1, x) that can be used for

evaluation of predicates that are linear functions.

We use the above observation in the instantiation of the tags that the cloud derives for

each of the accepted write updates. He uses the token that the client has used to prove his

write access to a particular block, which a predicate encryption ciphertext (C
0

, {C
1,i, C2,i}ni=1

),

to derive identifier for the files with which the submitted update will be associated by taking

the first part of the ciphertext (C
0

, {C
1,i, C2,i}2i=1

). This identifier cannot be used as a write

access token since it is missing substantial part of the ciphertext, and no party without the

master secret key can extend an identifier to a valid write token. Also any party that has

read access to the file associated with the update will be given a key that would allow it

to recognize the updates for that file. This key will be the predicate corresponding to the

linear function that evaluates to zero at the file id.

E.2 Optimizations

We discuss several techniques to improve the performance of the two schemes that we

presented in the case of multiple accesses to the same files, or as a trade-o↵ for privacy

guarantees.

Multiple File Accesses When a user is accessing a file for the first time, he needs to

obtain first the access token for the file, which would allow him to obtain from the cloud

the access block that contains the file. Once he gets the block, he further needs to obtain

the decryption key for the file he is accessing. We can save the derivation time for the

tokens and the decryption keys for subsequent accesses to the same file, if the user stores

these credential. The credentials will be valid for the next request as long as no user has

APPENDIX E. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 276

been revoked access to the file in the meantime (in which case the access credentials would

have been changed). If this has happened, the user will be denied access, and he would

try to derive again the credential from the tree in order to obtain the updated tokens and

decryption keys if he is still authorized to access the file. This optimization applies to the

read and the write access tokens as well as the decryption key for read. The only exception

is the encryption key for write access — the user should always derive the current public

encryption key for the file, which he wants to update. Unlike the case of the decryption

keys for read access, where the client would detect that he does not have a valid key by

virtue of the fact that he will not be able to decrypt any of the files in the block, here the

user has no way to recognize whether a cached encryption key is still valid.

During a file access request the cloud provider tests each of the access blocks that he is

storing against the access token that the user provides in order to find the one that contains

the requested files, if the user is authorized. The reason for this is that initially the user

does not know in which access block the file is located. However, when the user receives

back a block during his first request for a file, he can also get a unique identifier for the

block. Thus the next time he needs to access the same file, he can directly point the cloud

provider to the relevant block and he will just need to verify that the token is valid for this

access block. If this verification fails, the cloud will also check all the other blocks in case

the data owner has updated the mapping of the files into blocks.

Communication vs. Access Privacy The schemes that we proposed provide access

pattern privacy for the users within each access block (in addition to the anonymity of

the credentials). This comes at the cost of transmitting the content of the whole matched

block to the user making a read request. However, there might be cases where the user’s

bandwidth is limited and he cannot a↵ord to receive all the block content, or simply he is

not concerned with revealing which part of the block he is accessing. In this case the client

can request directly the part of the block he needs. For this we need to enable the cloud to

find the requested file in the access block. However, we want to emphasize that this should

happen, only if the user specifies that he is ready to reveal his exact access in the block.

We should not enable the cloud provider to do this for every request since this way we will

APPENDIX E. PRIVACY ENHANCED ACCESS CONTROL FOR OUTSOURCED
DATA SHARING 277

lose the whole point of the access blocks. We can do this through an additional set of read

request tokens that are constructed in the same way as predicate encryption ciphertexts

with attribute the file id, however, under a di↵erent key. Now each file ciphertext would

also contain a decryption key that can decrypt only ciphertexts with attribute the identifier

for the file. The cloud provider can use these decryption keys to identify the exact file in

the block that matches the request. With this extension of the scheme the users will have

two sets of credential: access pattern hiding, just identifying a relevant block, and access

pattern revealing that point directly to the requested file within the block.

APPENDIX F. PRACTICAL SECURE SEARCH 278

Appendix F

Practical Secure Search

F.1 Key Generation for Our SADS Protocol

The key generation algorithm is not our main focus since general multiparty computation

techniques [Yao, 1982; Yao, 1986; Goldreich et al., 1987] can be applied to distribute the

appropriate keys. However, we give here an e�cient algorithm that allows the sender (S),

the receiver (R) and the query router (QR) to obtain their keys. The sender and the receiver

choose their keys kS and kR respectively. The sender chooses a random number rS and the

receiver chooses a random number rR; the following messages are exchanged between the

three parties using a public key encryption scheme (Gen,Enc,Dec) in which pkQR and pkS

are public encryption keys for the third party and the sender.

S ! QR : kS · rS
R! QR : kR · rR
R! S : rR

S ! QR : rS · r�1

R

At the end of the above message exchange the query router can compute: kQR = (kR · rR) ·
(kS · rS)�1 · rS · r�1

R = (kR) · (kS)�1.

In the above protocol a misbehaving party can cause at most invalid third party key but

it cannot learn any secret. Our adversarial model assumes no colluding parties during key

APPENDIX F. PRACTICAL SECURE SEARCH 279

generation. If the query router colludes with the sender or the receiver, they can compute

from their keys the key of the non-colluding party. Collusion between sender and receiver

is not possible since these parties want to protect their data from each other.

More formally we can construct a simulator AR which interacts with the receiver as

follows: it receives the values kR · rR and rR that receiver sends. From those AR recovers

kR and submits it to the trusted party. This execution is indistinguishable for the receiver

from the real execution.

Similarly, we construct a simulator AS , which interacts with the sender in the following

way: it receives the value kS · rS , chooses and sends a random rR to S, and then receives

rS · r�1

R . Now AS can compute the value kS and submit it to the trusted party.

280

Part V

Bibliography

BIBLIOGRAPHY 281

Bibliography

[Agrawal et al., 2003] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant.

Information sharing across private databases. In SIGMOD ’03: Proceedings of the 2003

ACM SIGMOD international conference on Management of data, pages 86–97, New York,

NY, USA, 2003. ACM.

[Aiello et al., 2001] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious trans-

fer: How to sell digital goods. In EUROCRYPT ’01: Proceedings of the International

Conference on the Theory and Application of Cryptographic Techniques, pages 119–135,

London, UK, 2001. Springer-Verlag.

[Ajtai, 2010] Miklós Ajtai. Oblivious rams without cryptogrpahic assumptions. In STOC

’10: Proceedings of the 42nd ACM symposium on Theory of computing, pages 181–190,

New York, NY, USA, 2010. ACM.

[Alwen et al., 2008] J. Alwen, a. Shelat, and I. Visconti. Collusion-free protocols in the

mediated model. In Advances in Cryptology - CRYPTO ’08, pages 497–514, 2008.

[Alwen et al., 2009] J. Alwen, J. Katz, Y. Lindell, G. Persiano, a. Shelat, and I. Visconti.

Collusion-free multiparty computation in the mediated model. In Advances in Cryptology

- CRYPTO ’09, pages 524–540, 2009.

[Applebaum et al., 2004] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptog-

raphy in NC0. In Proceedings of the IEEE Symposium on Foundations of Computer

Science (FOCS), 2004.

BIBLIOGRAPHY 282

[Applebaum et al., 2010] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to

soundness: E�cient verification via secure computation. In Proceedings of the Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), 2010.

[Asharov et al., 2012] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer,

Vinod Vaikuntanathan, and Daniel Wichs. Multiparty computation with low communi-

cation, computation and interaction via threshold fhe. In EUROCRYPT, pages 483–501,

2012.

[Aviv et al., 2007] Adam J. Aviv, Michael E. Locasto, Shaya Potter, and Angelos D.

Keromytis. Ssares: Secure searchable automated remote email storage. Computer Secu-

rity Applications Conference, Annual, 0:129–139, 2007.

[Barak and Lindell, 2002] Boaz Barak and Yehuda Lindell. Strict polynomial-time in sim-

ulation and extraction. In STOC ’02: Proceedings of the thiry-fourth annual ACM sym-

posium on Theory of computing, pages 484–493, 2002.

[Barbosa and Farshim, 2011] M. Barbosa and P. Farshim. Delegatable homomorphic en-

cryption with applications to secure outsourcing of computation. Cryptology ePrint

Archive, Report 2011/215, 2011.

[Beaver et al., 1990] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure

protocols. In STOC ’90: Proceedings of the twenty-second annual ACM symposium on

Theory of computing, pages 503–513, 1990.

[Beaver, 1992] D. Beaver. Foundations of secure interactive computing. In Advances in

Cryptology – CRYPTO ’91, pages 377–391. Springer-Verlag, 1992.

[Bellare and Rogaway, 1995] Mihir Bellare and Phillip Rogaway. Optimal asymmetric en-

cryption – how to encrypt with rsa. In Proceedings of EUROCRYPT’94, 1995.

[Bellovin and Cheswick, 2007] Steven M. Bellovin and William Cheswick. Privacy-

enhanced searches using encrypted bloom filters. Technical Report CUCS-034-07, De-

partment of Computer Science, Columbia University, September 2007.

BIBLIOGRAPHY 283

[Ben-David et al., 2008] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a

system for secure multi-party computation. In Proceedings of the 15th ACM conference

on Computer and communications security, CCS ’08, pages 257–266, 2008.

[Ben-Or et al., 1988] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. In Proceedings of the

Twentieth Annual ACM Symposium on Theory of Computing, 1988.

[Benabbas et al., 2011] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifi-

able delegation of computation over large datasets. In Proceedings of CRYPTO, 2011.

[Bitansky et al., 2011] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.

From extractable collision resistance to succinct non-interactive arguments of knowledge,

and back again. Cryptology ePrint Archive, Report 2011/443, 2011.

[Bloom, 1970] Burton H. Bloom. Space/time trade-o↵s in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[Blum et al., 1988] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-

knowledge and its applications (extended abstract). In Proceedings of the ACM Sympo-

sium on Theory of Computing (STOC), 1988.

[Boneh and Franklin, 2003] D. Boneh and M. Franklin. Identity-based encryption from the

Weil pairing. SIAM Journal of Computing, 32(3):586–615, 2003.

[Boneh and Waters, 2007] Dan Boneh and Brent Waters. Conjunctive, subset, and range

queries on encrypted data. In the Theory of Cryptography Conference (TCC, pages 535–

554. Springer, 2007.

[Boneh et al., 2004] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe

Persiano. Public key encryption with keyword search. In Proceedings of EUROCRYPT’04,

pages 506–522, 2004.

[Boneh et al., 2007] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith

III. Public key encryption that allows PIR queries. In Proceedings of CRYPTO’07, 2007.

BIBLIOGRAPHY 284

[Boneh et al., 2011] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:

Definitions and challenges. In Proceedings of the Theory of Cryptography Conference

(TCC), 2011.

[Boneh, 2001] Dan Boneh. Simplified OAEP for the RSA and Rabin functions. Lecture

Notes in Computer Science, 2139:275–291, 2001.

[Brakerski and Vaikuntanathan, 2011] Zvika Brakerski and Vinod Vaikuntanathan. Fully

homomorphic encryption from ring-lwe and security for key dependent messages. In

CRYPTO, pages 505–524, 2011.

[Brakerski et al., 2012] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-

eled) fully homomorphic encryption without bootstrapping. In ITCS, pages 309–325,

2012.

[Brassard et al., 1988] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum dis-

closure proofs of knowledge. Journal of Computer and System Sciences, 37(2), 1988.

[Broder and Mitzenmacher, 2002] Andrei Broder and Michael Mitzenmacher. Network ap-

plications of bloom filters: A survey. In Internet Mathematics, pages 636–646, 2002.

[Camenisch and Zaverucha, 2009] Jan Camenisch and Gregory Zaverucha. Private inter-

section of certified sets. In Proceedings of Financial Cryptography ’09, 2009.

[Canetti, 2000a] Ran Canetti. Security and composition of multiparty cryptographic pro-

tocols. JCrypto, 13(1):143–202, 2000.

[Canetti, 2000b] Ran Canetti. Security and composition of multiparty cryptographic pro-

tocols. Journal of Cryptology, 13:2000, 2000.

[Chase, 2007] Melissa Chase. Multi-authority attribute based encryption. In Proceedings

of the IACR Theory of Cryptography Conference (TCC), 2007.

[Chaum et al., 1988a] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally

secure protocols. In ACM symposium on Theory of computing (STOC ’88), pages 11–19,

1988.

BIBLIOGRAPHY 285

[Chaum et al., 1988b] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty un-

conditionally secure protocols. In STOC ’88: Proceedings of the twentieth annual ACM

symposium on Theory of computing, pages 11–19, New York, NY, USA, 1988. ACM.

[cheng Chang and Mitzenmacher, 2005] Yan cheng Chang and Michael Mitzenmacher. Pri-

vacy preserving keyword searches on remote encrypted data. In ACNS, volume 3531,

2005.

[Cheon et al., 2010] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party

privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint

Archive, Report 2010/512, 2010. http://eprint.iacr.org/.

[Choi et al., 2008] S. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Black-box con-

struction of a non-malleable encryption scheme from any semantically secure one. In

Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC, 2008.

[Chor et al., 1997] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval

by keywords. Technical Report TR-CS0917, Dept. of Computer Science, Technion, 1997.

[Chor et al., 1998] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-

vate information retrieval. J. ACM, 45(6):965–981, 1998.

[Chung et al., 2010] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of

computation using fully homomorphic encryption. In Proceedings of CRYPTO, 2010.

[Chung et al., 2011] Kai-Min Chung, Yael Kalai, Feng-Hao Liu, and Ran Raz. Memory

delegation. In Proceedings of CRYPTO, 2011.

[Cramer et al., 1999] Ronald Cramer, Ivan Damgard, Stefan Dziembowski, Martin Hirt,

and Tal Rabin. E�cient multiparty computations secure against an adaptive adversary.

In Proceedings of the 17th international conference on Theory and application of crypto-

graphic techniques, EUROCRYPT’99, pages 311–326, 1999.

[Cramer et al., 2000] Ronald Cramer, Ivan Damgard, and Ueli M. Maurer. General secure

multi-party computation from any linear secret-sharing scheme. In EUROCRYPT, pages

316–334, 2000.

http://eprint.iacr.org/

BIBLIOGRAPHY 286

[Crescenzo et al., 2000] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single

database private information retrieval implies oblivious transfer. In EUROCRYPT, pages

122–138, 2000.

[Cristofaro et al., 2010] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-

complexity private set intersection protocols secure in malicious model. In ASIACRYPT,

pages 213–231, 2010.

[Curtmola et al., 2006] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.

Searchable symmetric encryption: improved definitions and e�cient constructions. In

CCS ’06: Proceedings of the 13th ACM conference on Computer and communications

security, pages 79–88, New York, NY, USA, 2006. ACM.

[Dachman-Soled et al., 2009] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and

Moti Yung. E�cient robust private set intersection. In ACNS, pages 125–142, 2009.

[Dachman-Soled et al., 2011] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and

Moti Yung. Secure e�cient multiparty computing of multivariate polynomials and appli-

cations. In Proceedings of the 9th international conference on Applied cryptography and

network security, ACNS’11, pages 130–146, 2011.

[Damgard and Ishai, 2005] Ivan Damgard and Yuval Ishai. Constant-round multiparty

computation using a black-box pseudorandom generator. In In CRYPTO 2005, pages

378–394, 2005.

[Damgard and Ishai, 2006] Ivan Damgard and Yuval Ishai. Scalable secure multiparty com-

putation. In CRYPTO, pages 501–520, 2006.

[Damgard and Orlandi, 2010] Ivan Damgard and Claudio Orlandi. Multiparty computation

for dishonest majority: From passive to active security at low cost. In CRYPTO, pages

558–576, 2010.

[Damgard et al., 2006] Ivan Damgard, Kasper Dupont, and Michael Pedersen. Unclonable

group identification. In Advances in Cryptology - EUROCRYPT 2006, volume 4004,

pages 555–572, 2006.

BIBLIOGRAPHY 287

[Damgard et al., 2010] Ivan Damgard, Sigurd Meldgaard, and Jesper Buus Nielsen. Per-

fectly secure oblivious ram without random oracles. Cryptology ePrint Archive, Report

2010/108, 2010. http://eprint.iacr.org/.

[Dawn and Song, 2005] Lea Kissner Dawn and Dawn Song. Privacy-preserving set opera-

tions. In in Advances in Cryptology - CRYPTO 2005, LNCS, pages 241–257. Springer,

2005.

[De Capitani di Vimercati et al., 2011] S. De Capitani di Vimercati, S. Foresti, S. Para-

boschi, G. Pelosi, and P. Samarati. E�cient and private access to outsourced data. In

Proc. of the 31st International Conference on Distributed Computing Systems (ICDCS

2011), Minneapolis, Minnesota, USA, June 2011.

[De Cristofaro et al., 2009] Emiliano De Cristofaro, Stanislaw Jarecki, Jihye Kim, and Gene

Tsudik. Privacy-preserving policy-based information transfer. In Proceedings of PETS,

2009.

[Dodis et al., 2006] Yevgeniy Dodis, Aleksandr Yampolskiy, and Moti Yung. Threshold and

proactive pseudo-random permutations. In TCC, pages 542–560, 2006.

[ElGamal, 1985] Taher ElGamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages

10–18, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[Feige et al., 1994] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure

computation (extended abstract). In ACM symposium on Theory of Computing (STOC

’94), pages 554–563, 1994.

[Feldman, 1987] Paul Feldman. A practical scheme for non-interactive verifiable secret

sharing. In FOCS, pages 427–437, New York, NY, USA, 1987. ACM.

[Fortnow and Lund, 1991] Lance Fortnow and Carsten Lund. Interactive proof systems

and alternating time-space complexity. In STACS ’91: Selected papers of the 8th annual

symposium on Theoretical aspects of computer science, pages 55–73, 1991.

BIBLIOGRAPHY 288

[Fouque et al., 2001] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Shar-

ing decryption in the context of voting or lotteries. In FC ’00: Proceedings of the 4th

International Conference on Financial Cryptography, pages 90–104, London, UK, 2001.

Springer-Verlag.

[Franklin and Mohassel, 2010] Matthew Franklin and Payman Mohassel. E�cient and se-

cure evaluation of multivariate polynomials and applications. In Applied Cryptography

and Network Security, volume 6123, pages 236–254, 2010.

[Franklin and Yung, 1992] Matthew Franklin and Moti Yung. Communication complexity

of secure computation (extended abstract). In STOC ’92: Proceedings of the twenty-

fourth annual ACM symposium on Theory of computing, pages 699–710, 1992.

[Freedman et al., 2004] Michael Freedman, Kobbi Nissim, and Benny Pinkas. E�cient pri-

vate matching and set intersection. In Proceedings of EUROCRYPT’04, 2004.

[Freedman et al., 2005] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Rein-

gold. Keyword search and oblivious pseudorandom functions. In Theory of Cryptography

Conference (TCC 05, pages 303–324, 2005.

[Fujisaki et al., 2004] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques

Stern. Rsa-oaep is secure under the rsa assumption. J. Cryptol., 17(2):81–104, 2004.

[Gennaro et al., 2007] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Ra-

bin. Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol.,

20(1):51–83, 2007.

[Gennaro et al., 2010] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive

verifiable computation: Outsourcing computation to untrusted workers. In Proceedings

of CRYPTO, 2010.

[Gentry and Ramzan, 2005] Craig Gentry and Zulfikar Ramzan. Single-database private

information retrieval with constant communication rate. In Proceedings of the 32nd

International Colloquium on Automata, Languages and Programming, 2005.

BIBLIOGRAPHY 289

[Gentry, 2009] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM

Symposium on Theory of Computing (STOC ’09), pages 169–178. ACM Press, 2009.

[Gertner et al., 2000] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data

privacy in private information retrieval schemes. Journal of Computer and System Sci-

ences, 60(3):592–629, 2000.

[Gjøsteen, 2008] Kristian Gjøsteen. A latency-free election scheme. In CT-RSA’08: Pro-

ceedings of the 2008 The Cryptopgraphers’ Track at the RSA conference on Topics in

cryptology, pages 425–436, 2008.

[Goh, 2004] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216,

2004. http://eprint.iacr.org/2003/216/.

[Goldreich and Kahan, 1996] Oded Goldreich and Ariel Kahan. How to construct constant-

round zero-knowledge proof systems for np. Journal of Cryptology, 9:167–189, 1996.

[Goldreich and Levin, 1989] Oded Goldreich and L.A. Levin. A hard-core predicate for

all one-way functions. In Proceedings of the ACM Symposium on Theory of Computing

(STOC), 1989.

[Goldreich and Ostrovsky, 1996] O. Goldreich and R. Ostrovsky. Software protection and

simulation on oblivious RAMs. Journal of the ACM (JACM), 43(3):473, 1996.

[Goldreich et al., 1987] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental

game. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,

pages 218–229. ACM, 1987.

[Goldreich, 2001] Oded Goldreich. Foundations of Cryptography. Volume I: Basic Tools.

Cambridge University Press, Cambridge, England, 2001.

[Goldreich, 2004] O. Goldreich. The Foundations of Cryptography – Volume 2. Cambridge

University Press, 2004.

[Goldreich, 2005] Oded Goldreich. Foundations of cryptography: a primer. Found. Trends

Theor. Comput. Sci., 1(1):1–116, 2005.

BIBLIOGRAPHY 290

[Goldwasser and Levin, 1991] S. Goldwasser and L. Levin. Fair computation of general

functions in presence of immoral majority. In Advances in Cryptology – CRYPTO ’90,

pages 77–93. Springer-Verlag, 1991.

[Goldwasser and Lindell, 2002] S. Goldwasser and Y. Lindell. Secure computation without

agreement. In International Conference on Distributed Computing (DISC ’02), pages

17–32. Springer-Verlag, 2002.

[Goldwasser and Micali, 1982] Shafi Goldwasser and Silvio Micali. Probabilistic encryption

and how to play mental poker keeping secret all partial information. In STOC ’82:

Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages

365–377, New York, NY, USA, 1982. ACM.

[Goldwasser et al., 2008] S. Goldwasser, Y. Kalai, and G. Rothblum. Delegating computa-

tion: interactive proofs for muggles. In Proceedings of the 40th annual ACM symposium

on Theory of computing (STOC ’08), pages 113–122, New York, NY, USA, 2008.

[Goldwasser et al., 2011] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation

of computation without rejection problem from designated verifier CS-proofs. Cryptology

ePrint Archive, Report 2011/456, 2011.

[Goodrich and Mitzenmacher, 2011] Michael T. Goodrich and Michael Mitzenmacher.

Privacy-preserving access of outsourced data via oblivious ram simulation. In ICALP

(2), pages 576–587, 2011.

[Goodrich et al., 2011] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and

Roberto Tamassia. Privacy-preserving group data access via stateless oblivious ram sim-

ulation. CoRR, abs/1105.4125, 2011.

[Gordon et al., 2011] Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Tal Malkin, Mar-

iana Raykova, and Yevgeniy Vahlis. Secure computation with sublinear amortized work.

In submission, http://eprint.iacr.org/2011/482, 2011.

[Gordon et al., 2012] Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell,

Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in

BIBLIOGRAPHY 291

sublinear amortized time. In Proceedings of the 19th ACM Conference on Computer and

Communications Security, CCS ’12, 2012.

[Goyal et al., 2006] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters.

Attribute-based encryption for fine-grained access control of encrypted data. In Pro-

ceedings of the ACM Conference on Computer and Communications Security (CCS),

2006.

[Green et al., 2011] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing

the decryption of ABE ciphertexts. In Proceedings of the USENIX Security Symposium,

2011.

[Hazay and Lindell, 2008] Carmit Hazay and Yehuda Lindell. E�cient protocols for set

intersection and pattern matching with security against malicious and covert adversaries.

In TCC, pages 155–175, 2008.

[Hazay and Nissim, 2010] Carmit Hazay and Kobbi Nissim. E�cient set operations in the

presence of malicious adversaries. In Public Key Cryptography PKC 2010, pages 312–331,

2010.

[Henecka et al., 2010] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schnei-

der, and Immo Wehrenberg. Tasty: tool for automating secure two-party computations.

In Proceedings of the 17th ACM conference on Computer and communications security,

CCS ’10, pages 451–462, 2010.

[Huang et al., 2011] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster

secure two-party computation using garbled circuits. In Proceedings of the 20th USENIX

Security Symposium, Usenix ’11, 2011.

[Huang et al., 2012] Yan Huang, David Evans, and Jonathan Katz. Quid pro quo-tocols:

Strengthening semi-honest protocols with dual execution. In Proceedings of the 33rd

IEEE Symposium on Security and Privacy, 2012.

BIBLIOGRAPHY 292

[Hubbell et al., 1988] F. Allan Hubbell, Elizabeth B. Frye, Barbara V. Akin, and Lloyd

Rucker. Routine admission laboratory testing for general medical patients. Medical

Care, 26(6), 1988.

[Ishai et al., 2008] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptog-

raphy on oblivious transfer — e�ciently. In CRYPTO 2008: Proceedings of the 28th

Annual conference on Cryptology, pages 572–591, 2008.

[Ishai et al., 2009] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic

computation with no honest majority. In TCC ’09: Proceedings of the 6th Theory of

Cryptography Conference on Theory of Cryptography, pages 294–314, 2009.

[Jarecki and Liu, 2009] Stanislaw Jarecki and Xiaomin Liu. E�cient oblivious pseudoran-

dom function with applications to adaptive ot and secure computation of set intersection.

In TCC, pages 577–594, 2009.

[Kamara et al., 2011] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing

multi-party computation. In submission, 2011.

[Karatsuba and Ofman, 1962] A. Karatsuba and Y. Ofman. Multiplication of many-digital

numbers by automatic computers. Proceedings of the SSSR Academy of Sciences,

145:293–294, 1962.

[Katz et al., 2008] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption

supporting disjunctions, polynomial equations, and inner products. In Proceedings of

EuroCrypt, 2008.

[Kilian, 1992] Joe Kilian. A note on e�cient zero-knowledge proofs and arguments (ex-

tended abstract). In Proceedings of the ACM Symposium on Theory of Computing

(STOC), 1992.

[Kilian, 1995] Joe Kilian. Improved e�cient arguments (preliminary version). In Proceed-

ings of CRYPTO, 1995.

[Kissner and Song, 2005] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set

operations. In CRYPTO, pages 241–257, 2005.

BIBLIOGRAPHY 293

[Kushilevitz et al., 2011] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the

(in)security of hash-based oblivious ram and a new balancing scheme. Cryptology ePrint

Archive, Report 2011/327, 2011. http://eprint.iacr.org/2011/327.

[Kushilevitz et al., 2012] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the

(in)security of hash-based oblivious RAM and a new balancing scheme. In SODA’12,

SODA ’12, pages 143–156, 2012.

[Lepinksi et al., 2005] Matt Lepinksi, Silvio Micali, and abhi shelat. Collusion-free proto-

cols. In Proceedings of the thirty-seventh annual ACM symposium on Theory of comput-

ing, STOC ’05, pages 543–552, 2005.

[Lewko et al., 2010] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,

and Brent Waters. Fully secure functional encryption: Attribute-based encryption and

(hierarchical) inner product encryption. In Proceedings of EuroCrypt, 2010.

[Lindell and Pinkas, 2007] Yehuda Lindell and Benny Pinkas. An e�cient protocol for se-

cure two-party computation in the presence of malicious adversaries. In EUROCRYPT,

pages 52–78, 2007.

[Lindell, 2001] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party

computation. In Journal of Cryptology, pages 171–189, 2001.

[Lindell, 2008] Andrew Y. Lindell. E�cient fully-simulatable oblivious transfer. In CT-

RSA, pages 52–70, 2008.

[Lund et al., 1992] Carsten Lund, Lance Fortnow, and Howard Karlo↵. Algebraic methods

for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[M. Bellare and O’Neill, 2007] A. Boldyareva M. Bellare and A. O’Neill. Deterministic and

e�ciently searchable encryption. In Proceedings of CRYPTO’07, 2007.

[Malkhi et al., 2004] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay

a secure two-party computation system. In In Proc. 13th USENIX Security Symposium,

pages 287–302, 2004.

http://eprint.iacr.org/2011/327

BIBLIOGRAPHY 294

[Mansour et al., 1993] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The compu-

tational complexity of universal hashing. Theor. Comput. Sci., 107:121–133, January

1993.

[Micali and Rogaway, 1992] S. Micali and P. Rogaway. Secure computation (abstract). In

Advances in Cryptology - CRYPTO ’91, pages 392–404. Springer-Verlag, 1992.

[Micali, 1994] Silvio Micali. CS proofs (extended abstract). In Proceedings of the IEEE

Symposium on Foundations of Computer Science (FOCS), 1994.

[Mitzenmacher and Upfal, 2005] Michael Mitzenmacher and Eli Upfal. Probability and com-

puting - randomized algorithms and probabilistic analysis. Cambridge University Press,

2005.

[Mohassel and Franklin, 2006] P. Mohassel and M. Franklin. E�ciency tradeo↵s for mali-

cious two-party computation. In Conference on Theory and Practice of Public-Key Cryp-

tography (PKC ’06), volume 3958 of Lecture Notes in Computer Science, pages 458–473.

Springer, 2006.

[Myers et al., 2011] Steven Myers, Mona Sergi, and abhi shelat. Threshold fully homomor-

phic encryption and secure computation. Cryptology ePrint Archive, Report 2011/454,

2011. http://eprint.iacr.org/.

[Naor and Pinkas, 2001] Moni Naor and Benny Pinkas. E�cient oblivious transfer pro-

tocols. In SODA ’01: Proceedings of the Twelfth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 448–457, Philadelphia, PA, USA, 2001. Society for Industrial

and Applied Mathematics.

[Naor and Pinkas, 2006] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation.

SIAM J. Comput., 35(5):1254–1281, 2006.

[Naor and Reingold, 2004] Moni Naor and Omer Reingold. Number-theoretic constructions

of e�cient pseudo-random functions. J. ACM, 51:231–262, March 2004.

[Olumofin and Goldberg, 2011] Femi Olumofin and Ian Goldberg. Revisiting the computa-

tional practicality of private information retrieval. In Financial Cryptography, 2011.

http://eprint.iacr.org/

BIBLIOGRAPHY 295

[Ostrovsky and Shoup, 1997] Rafail Ostrovsky and Victor Shoup. Private information stor-

age (extended abstract). In STOC, pages 294–303, 1997.

[Ostrovsky et al., 2007] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based

encryption with non-monotonic access structures. In Proceedings of the ACM Conference

on Computer and Communications Security (CCS), 2007.

[Paillier, 1999] Pascal Paillier. Public-key cryptosystems based on composite degree resid-

uosity classes. In In Proceedings of EUROCRYPT 1999, pages 223–238. Springer-Verlag,

1999.

[Papamanthou et al., 2011] Charalampos Papamanthou, Roberto Tamassia, and Nikos

Triandopoulos. Optimal verification of operations on dynamic sets. In Proceedings of

CRYPTO, 2011.

[Pappas et al., 2011] Vasilis Pappas, Mariana Raykova, Binh Vo, Steven Bellovin, and Tal

Malkin. Private search in the real world. In Annual Computer Security Applications

Conference (ACSAC), 2011.

[Parno et al., 2012] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to

delegate and verify in public: Verifiable computation from attribute-based encryption.

In Theory of Cryptography Conference (TCC), to appear, 2012.

[Patra et al., 2009a] Arpita Patra, Ashish Choudhary, and C. Rangan. Information theo-

retically secure multi party set intersection re-visited. In Michael Jacobson, Vincent Ri-

jmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867

of Lecture Notes in Computer Science, pages 71–91. Springer Berlin / Heidelberg, 2009.

[Patra et al., 2009b] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Round e�-

cient unconditionally secure mpc and multiparty set intersection with optimal resilience.

In Proceedings of the 10th International Conference on Cryptology in India: Progress in

Cryptology, INDOCRYPT ’09, pages 398–417, 2009.

[Pinkas and Reinman, 2010] B. Pinkas and T. Reinman. Oblivious RAM Revisited. Ad-

vances in Cryptology–CRYPTO 2010, pages 502–519, 2010.

BIBLIOGRAPHY 296

[Pinkas et al., 2009] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.

Williams. Secure two-party computation is practical. In Proceedings of the 15th Interna-

tional Conference on the Theory and Application of Cryptology and Information Security:

Advances in Cryptology, ASIACRYPT ’09, pages 250–267, 2009.

[Pohlig and Hellman, 1978] Stephen Pohlig and Martin Hellman. An improved algorithm

for computing logarithms over GF(p)and its cryptographic significance. IEEE Transac-

tions on Information Theory, 24(1):106–110, 1978.

[Raykova et al., 2009] Mariana Raykova, Binh Vo, Steven Bellovin, and Tal Malkin. Secure

anonymous database search. In CCSW 2009., 2009.

[Raykova et al., 2012] Mariana Raykova, Hang Zhao, and Steven Bellovin. Privacy en-

hanced access control for outsourced data sharing. In Financial Crypto, to appear, 2012.

[Reynolds and Vahdat, 2003] Patrick Reynolds and Amin Vahdat. E�cient peer-to-peer

keyword searching. In Middleware 2003, pages 21–40, 2003.

[Sahai and Seyalioglu, 2010] Amit Sahai and Hakan Seyalioglu. Worry-free encryption:

functional encryption with public keys. In Proceedings of the ACM Conference on Com-

puter and Communications Security (CCS), 2010.

[Sahai and Waters, 2005] Amit Sahai and Brent Waters. Fuzzy identity-based encryption.

In Proceedings of EuroCrypt, 2005.

[Sang and Shen, 2009] Yingpeng Sang and Hong Shen. E�cient and secure protocols for

privacy-preserving set operations. ACM Trans. Inf. Syst. Secur., 13:9:1–9:35, November

2009.

[Shamir, 1979] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Shamir, 1992] Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, 1992.

[Shetty and Adibi, 2004] Jitesh Shetty and Jafar Adibi. The enron email dataset database

schema and brief statistical report. Technical report, USC, 2004.

BIBLIOGRAPHY 297

[Shi et al., 2007] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian

Perrig. Multi-dimensional range query over encrypted data. In SP ’07: Proceedings of

the 2007 IEEE Symposium on Security and Privacy, pages 350–364, Washington, DC,

USA, 2007. IEEE Computer Society.

[Shi et al., 2011] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious

RAM with o((log n)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[Song et al., 2000] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-

niques for searches on encrypted data. In SP ’00: Proceedings of the 2000 IEEE Sym-

posium on Security and Privacy, page 44, Washington, DC, USA, 2000. IEEE Computer

Society.

[Talbot and Osborne, 2007] David Talbot and Miles Osborne. Randomised language mod-

elling for statistical machine translation. In In Proceeding of 45th Annual Meeting of the

Association for Computational Linguistics, pages 512–519, 2007.

[Vimercati et al., 2010] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,

G. Pelosi, and P. Samarati. Encryption-based policy enforcement for cloud storage. In

Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing

Systems Workshops, ICDCSW ’10, pages 42–51, Washington, DC, USA, 2010. IEEE

Computer Society.

[Waters et al., 2004] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an en-

crypted and searchable audit log. In NDSS 2004., 2004.

[Williams and Sion, 2008] Peter Williams and Radu Sion. Usable PIR. In NDSS, 2008.

[Williams et al., 2008] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles

out of mud: practical access pattern privacy and correctness on untrusted storage. In

CCS ’08: Proceedings of the 15th ACM conference on Computer and communications

security, pages 139–148, New York, NY, USA, 2008. ACM.

[Yao, 1982] Andrew Chi-Chih Yao. Protocols for secure computations. In FOCS, pages

160–164, 1982.

BIBLIOGRAPHY 298

[Yao, 1986] Andrew Yao. How to generate and exchange secrets. In Proceedings of the

IEEE Symposium on Foundations of Computer Science, 1986.

[Yu et al., 2010] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure,

scalable, and fine-grained data access control in cloud computing. In Proceedings of the

29th conference on Information communications, INFOCOM’10, pages 534–542, Piscat-

away, NJ, USA, 2010. IEEE Press.

[Zobel and Mo↵at, 1998] Justin Zobel and Alistair Mo↵at. Inverted files versus signature

files for text indexing. ACM Transactions on Database Systems, 23:453–490, 1998.

	1 Introduction
	1.1 Contributions
	1.1.1 New Models for Secure Computation
	1.1.2 Outsourcing Computation
	1.1.3 Efficient Private Search in Practice

	2 Related Work
	2.0.4 Secure Multiparty Computation
	2.0.5 Delegation of Computation
	2.0.6 Secure Search
	2.0.7 Oblivious Random Access Memory (ORAM)

	I New Computational Models
	3 Secure Computation with Sublinear Amortized Work
	3.1 Motivation and Contributions
	3.2 Solution Overview
	3.3 Preliminaries
	3.3.1 Random Access Machines
	3.3.2 Oblivious RAM
	3.3.3 Secure Computation

	3.4 Generic Construction
	3.4.1 Proof of Security

	3.5 An Optimized Protocol
	3.5.1 Technical Overview
	3.5.2 Building Blocks
	3.5.3 Our Construction
	3.5.4 Discussion: Bucket Size

	3.6 Security Proof
	3.7 Performance

	4 Secure Multiparty Computation for Multivariate Polynomials
	4.1 Motivation and Contributions
	4.1.1 Our Contributions

	4.2 Solution Overview
	4.3 Definitions and Techniques
	4.3.1 Definitions
	4.3.2 Techniques

	4.4 Building Block Protocols
	4.4.1 Multiparty Homomorphic Encryption Proof of Knowledge and Plaintext Verification (HEPKPV)
	4.4.2 Multiparty Coin Tossing
	4.4.3 Input Preprocessing and Verification

	4.5 Main Protocol
	4.5.1 Security analysis

	4.6 Communication and Computation Complexity
	4.7 Multiparty Set Intersection and Other Applications
	4.7.1 Optimizations
	4.7.2 Multiparty Set Intersection as Polynomial Evaluation

	II Outsourced Computation
	5 How to Delegate and Verify in Public: Verifiable Computation from Attribute-based Encryption
	5.1 Motivation and Contributions
	5.1.1 Our Contributions

	5.2 Definitions
	5.2.1 Public Verifiable Computation
	5.2.2 Key-Policy Attribute-Based Encryption
	5.2.3 Multi-Function Verifiable Computation

	5.3 Verifiable Computation from Attribute-Based Encryption
	5.3.1 Main Construction
	5.3.2 Instantiations

	5.4 Multi-Function Verifiable Computation from KP-ABE With Outsourcing

	6 Outsourcing Multi-Party Computation with Non-Colluding Adversaries
	6.1 Motivation and Contributions
	6.1.1 Our Contributions

	6.2 Overview of Protocols
	6.3 Preliminaries and Standard Definitions
	6.4 Non-Collusion in Multi-Party Computation
	6.4.1 Formalizing Non-Collusion With Respect to Semi-Honest Adversaries
	6.4.2 Formalizing Non-Collusion With Respect to Deviating Adversaries

	6.5 An Efficient Protocol for Non-Colluding Semi-Honest Parties
	6.6 Protecting Against Deviating Circuit Garblers
	6.6.1 What goes wrong in the server-aided setting?
	6.6.2 Extending to Multiple Parties

	6.7 Server-Aided Computation From Delegated Computation
	6.8 Server-Aided Private Set Intersection
	6.9 Efficiency in the Server-Aided Setting
	6.9.1 Evaluating the Efficiency Gain
	6.9.2 Comparison with Secure Delegated Computation
	6.9.3 Why Non-Collusion Helps

	7 Privacy Enhanced Access Control for Outsourced Data Sharing
	7.1 Motivation and Contributions
	7.1.1 Contributions

	7.2 Two-level Access Control Model – Solution Overview
	7.3 Access Control Model
	7.4 Read Access Control
	7.4.1 Techniques
	7.4.2 Read Access Control

	7.5 Write Access Control
	7.5.1 Techniques
	7.5.2 Integrated Read and Write Access Control

	7.6 Analysis
	7.6.1 Security Guarantees
	7.6.2 Performance Analysis
	7.6.3 Discussion

	III Secure Data Sharing through Secure Search
	8 Practical Secure Search
	8.1 Motivation and Contributions
	8.1.1 Our Contributions.

	8.2 Security Architecture and Definitions
	8.2.1 DET-CCA Deterministic Private Key Encryption Scheme.
	8.2.2 Re-Routable Encryption.
	8.2.3 Bloom Filters.

	8.3 Secure Anonymous Database Search Protocol
	8.4 Document Retrieval
	8.5 Security Proof of the Protocol
	8.5.1 Security Against Adversarial Client
	8.5.2 Security Against Adversarial Server
	8.5.3 Security Against Honest-but-Curious Index Server and Query Router

	8.6 Performance Evaluation
	8.6.1 Memory Consumption
	8.6.2 Implementation Optimizations
	8.6.3 Search Performance
	8.6.4 Document Retrieval
	8.6.5 Overall Performance
	8.6.6 Case Study: Sharing of Health Records

	9 Conclusions

	IV Appendices
	A Secure Computation with Sublinear Amortized Work
	A.1 Supporting Subprotocols

	B Secure Multiparty Computation for Multivariate Polynomials
	B.1 Proof of HEPKPV Protocol
	B.2 Proof of Multiparty Coin Tossing
	B.3 Proofs of Input Preprocessing and Verification

	C How to Delegate and Verify in Public: Verifiable Computation from Attribute-based Encryption
	C.1 Note on Terminology: Attribute-based Encryption versus Predicate Encryption
	C.2 Attribute-based Encryption from Verifiable Computation

	D Outsourcing Multi-Party Computation with Non-Colluding Adversaries
	D.1 Garbled Circuits
	D.2 Secure Delegated Computation
	D.3 Proof for Set Intersection Protocols

	E Privacy Enhanced Access Control for Outsourced Data Sharing
	E.1 Predicate Encryption and Extensions
	E.2 Optimizations

	F Practical Secure Search
	F.1 Key Generation for Our SADS Protocol

	V Bibliography
	Bibliography

