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Abstract

In this thesis I will show that, by leveraging efficient data structures and algorithms
for indexing and secure computation, we can create practical systems for anonymous
and private search, communication, and content distribution. I will improve and
extend existing work in private search, which only addresses the problem where a
client stores his own data encrypted on a server and wishes to be able to search his
records remotely without revealing the their content. I do so by addressing a broader
scenario, in which one or more servers store their own data, and a number of users
wish to be able to issue queries across these records, without the server learning
about the types of queries users are running, and without users learning anything
about the remote databases besides the results of their searches. I also improve
upon the field of anonymous communication systems, where prior systems focused
on addressed communication in a unicast setting. I will discuss how we can create
anonymous communication systems that work on a publish-subscribe basis, allowing
communication to reach many people while solving the issue of how to establish
communication without prior relationships.

Next, I will discuss anonymous credential systems, and how to make them feasible
for real-world scenarios. These systems can be useful for anonymously enforcing poli-
cies and managing privileges on a per-user basis. Our final challenge is to provide a
scalable anonymous communication system that can deliver our queries while main-
taining our privacy requirements. I will do this using a publish-subscribe architecture.

I will show how all of these advancements can be accomlished by leveraging Bloom
Filters, Onion Routing, Re-routable Encryption, and Yao Garbled Circuits to create
anonymity preserving systems that operate in real time.
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Chapter 1

Introduction

In this thesis, we focus generally on the problem of private content sharing systems.

Specifically, we will examine systems for anonymous and/or private search, communi-

cation, and authentication. We will extend the envelope of what can be accomplished

functionally by these systems while still protecting user identities, and in doing so

create the tools we need to create a new system that enable private, distributed, and

searchable content providers. These systems allow users to make data publicly avail-

able, while protecting personal information. This can cover a range of possible things:

the identity of the providers, the identities of recipients receiving the content, the na-

ture of the content being requested or that of the remaining available content. We

aim to develop a private content sharing systems that also support complex anony-

mous queries broadcast to the network so that users can find content that they are

interested in. To accomplish this, we design various new systems for private search,

anonymous communication, and anonymous credentials.

Chapter 2 will formally lay out the problem we are aiming to solve and concretely

define our goals and requirements.

Chapter 3 will discuss related works.

Chapter 4 will discuss existing systems and algorithms that we will use as building

blocks to build our own solutions.

Chapter 5 describes approaches for anonymous database search. These cover

scenarios wherein a single server has data it wishes to make available for search to
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users, while preventing them from learning information other than the results of their

searches, and also preventing the server from learning the content of their queries.

Such systems form the basis for anonymously locating and retrieving data of interest.

Chapter 6 describes systems for anonymous publish-subscribe. These allow mul-

ticast routing of messages based on topic rather than individual addressing. They

work on a push basis and prevent users from determining the publishers of messages

they receive, or the subscribers who receive the messages they publish. Such systems

provide new and more flexible means for anonymously communicating with unknown

recipients, and can be used to route messages for many different kinds of applications

Chapter 7 describes a system for providing anonymous and revocable credentials.

While many such systems existed prior, we will discuss how to achieve properties that

are necessary to make them practical for real world applications.

Finally, chapter 8 describes how we will use the previously described systems to

create search systems that support multi-user and multi-content-provider scenarios.

1.1 Motivations for private content sharing systems

With increasing amounts of censorship and privacy concerns on the internet there is a

growing need for identity anonymization and protected communication. This applies

to general communication, content sharing, identity management, and search of pri-

vate data. Anonymous content sharing systems can be used to replace newsgroups or

article databases for sensitive topics such as medical issues or political sensitive topics

like Falun Gong published materials which are often censored by their government.

For example, users with sensitive illnesses such as the HIV positive may wish to

reach out to others, or talk about their experiences, without revealing their status to

others in their personal life or on a public forum. Similarly, those reading their content

may also wish to protect their identities and hide their interest in these subjects.

There are existing systems for anonymous publishing. One well known system

for widescale document distribution is the Free Haven project [35], a peer-to-peer

file-sharing system. In this system, users can publish documents, making them freely
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available without revealing their identities. It is based on a community of servers

that distribute storage of split shares of published documents. Recipients broad-

cast requests throughout the storage space, and those with pieces of interest return

them encrypted. The documents are associated with private key encryption pairs to

maintain ownership through updates and deletions. This system only protects the

publisher, and not those searching or receiving the published material.

Another similar system is FreeNet [28], also a peer-to-peer file-sharing system,

but one with routed document requests rather than universally broadcast ones. Doc-

uments are associated with hashes of descriptive keyword strings, and migrated over

time so that similar documents tend to migrate to geographically close servers on the

network topology. Queries are then sent on a hill-climbing search over these lexical

hashes. It is more scalable, and has more flexible document retrieval (keyword search

rather than simple unique-name lookup) than FreeHaven, however it does not protect

recipient identity, only that of the document owners.

We will aim to provide a system with more comprehensive privacy guarantees,

protecting the identities of both publisher and recipient, and also the nature of content

being searched for.

1.2 Improvements of existing systems and new build-

ing blocks

Private search systems enable a user to search a database that resides remotely with-

out revealing the content of his query to the remote server. We will further aim to

protect the identity of the querier from the server. While many existing scenarios

assume the querier is searching his own data that he has encrypted and stored re-

motely, we will address the scenario where the data is owned by the remote entity,

who wishes to make it available for public search. This can be considered the atomic

part of our system which we will then try to scale to large numbers of queriers issuing

searches to large numbers of servers. We will improve these with anonymous creden-
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tial systems that allow users to obtain credentials that they can later anonymously

prove ownership of to enforce per-user policies.

An anonymous publish-subscribe communication network allows users to anony-

mously route messages, while addressing them by topic rather than identity. In other

words, instead of senders choosing the recipients of their transmissions, recipients can

instead subscribe to topics of interest that senders publish messages to. Because of

this paradigm, it is not necessary for publishers and subscribers to have any prior

relationship, or indeed to even know of each other’s existence. This is a natural fit

for anonymous communications.

1.3 Design of private content sharing systems

By combining these building blocks, we will construct a distributed, anonymous con-

tent sharing network. This network will allow users to publish content, make it

searchable so that consumers can find content of interest to them, and control the

incoming searches, all while protecting the identities of both parties. We will aim

to provide both query functionality and content retrieval in such a way that both

the identities of the consumers and providers are protected from each other and from

other parties. We will also protect the nature of the queries, the nature of remaining

content unrelated to the queries, and the specifics of the resulting documents them-

selves. We will also aim to enable providers to enforce policies on the types of queries

they will allow in order to protect their content in the face of an anonymous querier

who could otherwise potentially be asking for any or all of his data. Although there

are numerous anonymous publishing systems, there are none that provide all of the

protections we will aim to, as well as supporting anything but the most simple of

queries.

Applying this idea to our earlier example of discussion groups for sensitive medical

conditions, we can imagine what kinds of issues we would need to address and what

kinds of attackers we would need to defend against. On the one hand, we have

legitimate users, those who are trying to either share articles of interest, or those
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receiving them or searching for them. On the other we have those who are trying

to interfere with this operation; denial of service would be one obvious example of

this, but a less obvious one may be simply antagonizing a community with false or

disruptive articles, which may prompt us to want some form of accountability or

blacklistability. We also have those who wish to de-anonymize, to either identify

queriers or data owners, or to examine some of the queries or content they should not

be privy to.
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Chapter 2

Problem Statement

The hypothesis of this research is as follows: a system can be created that enables

users to share content in a distributed and anonymous fashion, with certification

authority-regulated search capability. This will be made possible by creating and

combining new systems for secure database search, anonymous credentials, and anony-

mous publish-subscribe routing.

We will discuss the following types of private content sharing systems:

• A private search system that allows a server to host an index that queriers can

issue queries to remotely. The queriers identities should not be revealed to the

server in doing so, and the content of the queries should be protected from the

server. The system should allow the server to enforce policies, which themselves

are not revealed to the querier.

• An anonymous publish-subscribe network. Users should be able to subscribe

to topics of interest, thus receiving messages which are published to matching

topics. Both senders and receivers should remain anonymous through these

interactions.

• A system that allows users to anonymously obtain and demonstrate ownership

of credentials. The system should support multiple organizations that can assign

credentials to individuals they trust, while protecting the anonymity of those

owners from others.

11



• A distributed private search system that supports multiple hosts in a network.

Users will be able to issue queries anonymously into the system and fetch results

from matching hosts with neither party learning the identity of the other.

2.1 Private Search requirements

The general scenario that we consider includes multiple parties who possess private

sensitive data, which they are willing to share under certain very specific circum-

stances. In particular, they will permit secure, anonymous search between two parties

which we call the querier (or user) and the server. Specifically, it must be possible

for a party to submit keywords and find out which documents in the database of

another party contain these keywords. The security and privacy guarantees of the

functionality should be that the server does not learn the query nor does the user

learn anything more about the database than the relevant search results. In addi-

tion, only authorized users are allowed to search a particular server’s database; at

the same time the server should not find out the identity of the querying party. Both

new authorizations and revocations should be possible in the system.

In order to handle the conflicting needs of user anonymity and authorization, we

add a third party who is trusted to serve as an intermediary in the communication

path between the two parties. The trusted party is to be trusted to know and protect

the identities of the participants and enforce correct authorization before allowing

queries to reach the server. However, we still aim to protect the content of the

queries and results from the trusted party, which does not need this information to

carry out its responsibilities.

As a searchable database system we thus need to support the following functions:

• Create(R, d): Database d is instantiated with a list of records R.

• Insert(r, d): Record r is added to database d.

• Delete(i, d): The record at index i is removed from database d.

• Update(i, r, d): The record at index i in database d is replaced with r.
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• Query(u, q, d): User u issues query q against d

And as a private search system, we must guarantee certain properties:

Definition 1. Querier anonymity: Let d be the owner of a database, and c be a client

issuing a query q. Let H be the set of h honest clients in the system (including c). Let

A be any collaboration of entities not in H, including other clients, d, entities related

to the operation of the system, and outside observers. These entities may issue any

number and type of queries, and observe the results. A cannot then identify p given

m with probability greater than 1
h
.

This captures the idea that agents outside of a querier against the database should

be able to gain an advantage in identifying them beyond what they would be able to

do via random guessing.

Definition 2. Querier privacy: Let d be the owner of a database, and c be a client

issuing a query q. Let H be the set of h honest clients in the system (including c). Let

A be any collaboration of entities not in H, including other clients, d, entities related

to the operation of the system, and outside observers. These entities may issue any

number and type of queries, and observe the results. A cannot then determine the

contents of q.

This captures the idea that a query’s contents should not be revealed to anyone

in the system beyond the querier themselves.

Definition 3. Database privacy: Let d be the owner of a database, and c be a client

issuing a set of queries Q. Let A be any collaboration of entities including all clients

of the system, entities related to the operation of the system, and outside observers.

These entities observe the results of Q. A then learns exactly the content of the

database that answers Q and nothing else.

This captures the idea that queries do not expose more of the content of a database

than is appropriate.

Our system will improve over existing systems by accomplishing this within sub-

linear search times.
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2.2 Anonymous Publish-Subscribe requirements

The anonymous publish-subscribe building block of our system will serve to route

queries from interested users to content providers. To do this, it will aim to provide

publish-subscribe functionality while protecting sender and receiver identities. This

means that in terms of functionality, it will allow users to subscribe and unsubscribe

to topics, and publish to topics, ensuring that published messages on a topic are

delivered to all of its subscribers. More concretely, the system provides the following

functions to its users:

• Subscribe(u, t): User u specifies interest in topic t. The system maintains an

internal, protected subscription of the tuple (u, t). u listens for messages sent

with the topic t.

• Unsubscribe(u, t): The system removes any subscription of (u, t) if present,

and u ceases to listen for relevant messages.

• Publish(m, t): A message m is sent into the system under topic t. For every

subscription tuple (ui, ti) s.t. t matches ti, m will be sent to ui.

In the above functions, the nature of a topic and what constitutes a match between

publication and subscription topics are left undefined. A variety of different matching

types can be supported by a publish-subscribe system depending on what it is trying

to accomplish. The most basic of these is exact string matching; in other words

users subscribe specifically to a unique topic, and receive messages that are published

exactly to that topic string. This is useful for establishing communication between

defined clusters of users, such as newsgroups.

We will also deal with less concrete groupings, and allow users to instead define

communication on one or more dimensions of ranges so that we can define geometric

shapes of users. In such a case, a topic would consist of one or more labels, each

being associated with an integer value within some pre-defined and limited range. A

subscription would then be a list of label-range pairs indicating what range of values

to accept along each axis. This can be useful for applications such as geographically
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based communication, or alert systems that are notified of values in certain ranges

generated from physical sensor networks. Thus we have matching types on strings,

integer ranges, and ranges across multiple dimensions:

• Labels: Each topic is a human-readable string. A publication and subscription

are deemed to match if their topics are identical.

• Ranges: A publication topic is a numerical value v (either integer or float). A

subscription consists of a tuple (l, h) s.t. l ≤ h. A publication and subscription

are deemed to match if l ≤ v ≤ h.

• Multi-attribute ranges: A publication topic is a list of tuples (t, v). A subscrip-

tion topic is a list of tuples (t, l, h). A publication and subscription are deemed

to match if for every tuple in the subscription (ts, ls, vs), there exists at least

one tuple in the publication (tp, vp) s.t. ts = tp and ls ≤ vp ≤ hs.

Our system will be able to make guarantees that messages will be successfully

delivered. It should also make guarantees in regards to the amount of excess delivery

that occurs. Delivery of messages that were not subscribed to is acceptable to an

extent, since the receiver can simply ignore them himself. By default, these systems

are not designed to prevent users from subscribing to any topic of their choosing, so it

is not considered a leakage for them to receive extra messages. If it were desirable to

prevent such leakages, that could be achieved independently using encryption systems

for each topic. Hence, for the underlying message delivery system, excessive message

receipt is an efficiency issue, not a security one. To be called anonymous, the sys-

tem should ensure that using the basic publish and subscribe functionality does not

compromise one’s identity. In other words, we aim to prevent interactors and third

parties from identifying two parties: the publishers and the subscribers. The specifics

of this protection, which parties are prevented from identifying the participants and

under what circumstances, are dependent on the implementing system.

We begin with correctness definitions:
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• Completeness: For every publication (mp, tp) and subscription (us, ts), if tp and

ts match, then mp will be delivered to us.

• Non-excessiveness: For every publication (mp, tp) and subscription (us, ts), if tp

and ts do not match, then mp will be delivered to us with probability Pr ≤ ǫ.

These capture the requirement that messages be delivered to those who are sub-

scribed to them, and that the system not produce undue load by delivering them

to a large amount of uninterested parties. More complicated are the security defini-

tions. First is publisher anonymity: we will guarantee that no adversary can learn

the identity of the publisher of any message.

Definition 4. Publisher anonymity: Let p be the publisher of message m, and let H

be the set of h honest users in the system. Let A be any collaboration of entities not

in H, including subscribers, entities related to the operation of the system, outside

observers, and other publishers. These entities may enter any number and type of

published messages as publishers,and observe the outputs as subscribers. A cannot

then identify p given m with probability greater than 1
h
.

We allow an adversary to collude with or compromise any number of other users

(both publishers and subscribers) in the system. They may then for any length of time

take any of the actions those entities might take: publishing messages, subscribing

to topics, and observing the messages received as a result of those subscriptions or

through the normal routing of other messages in the system. They may do so in an

adaptive fashion, choosing what types of publications or subscriptions to issue based

on observations from previous messages, including the one they are attempting to

de-anonymize. They may also attempt to subvert the system by refusing to forward

messages the protocol would otherwise require them to, and observe the results of such

actions in terms of additional traffic sent. We claim that our system will prevent such

an adversary from identifying the publisher of any given message with probability

any better than random guessing from amongst the pool of non-compromised users.

Next is subscriber anonymity, which encapsulates the protection of the identities

of users who are subscribed to a topic. There are two types of anonymity we wish to

16



protect:

Definition 5. Topic subscriber anonymity: Let t be a topic for which there are

s subscribers out of a group of S total participants in the system. Let A be any

collaboration of entities having As subscribers, and possibly including entities related

to the operation of the system, outside observers, and publishers. These entities may

enter any number and type of published messages as publishers,and observe the outputs

as subscribers. A cannot identify determine if user u is subscribed to t with probability

greater than s−As

S−As
.

This captures subscriber anonymity in the first direction, an adversary should

not be able to identify the subscribers of a given topic with probability greater than

random guessing. Again, we assume an adversary may compromise any number of

users in the system, and learn whatever information it can by taking all actions

normally available to those compromised users. It may again also learn adaptively,

using observations from previous messages to form new publications and subscriptions

to enter into the system. It may do so indefinitely over the lifetime of a subscription.

We claim our system will prevent such an adversary from identifying any subscriber

of a given topic with probability better than random guessing from amongst the pool

of non-compromised users.

Definition 6. Subscription anonymity: Let t be a topic and s be a user subscribed to

t. Let A be any collaboration of entities including those related to the operation of the

system, outside observers, other subscribers, and publishers. These entities may enter

any number and type of published messages as publishers,and observe the outputs as

subscribers. Given s, A cannot identify t with probability greater than 1
T

where T is

the total number of possible topics.

This captures the opposite direction: an adversary should not be able to, given a

user, determine what topics he is subscribed to. This will assume the same types of

powers for the adversary as with subscriber anonymity, and the adversary will attempt

to defeat our system by guessing from amongst the pool of possible subscriptions.
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These are a completely new type of anonymous communication system, and extend

the capability of existing anonymous communication systems by allowing publish-

subscribe addressing in a push architecture instead of specific destination addressing.

2.3 Anonymous Credential System Requirements

The credential systems we build support interactions between the following entities:

• Users: A user U will obtain and demonstrate credentials.

• Organizations: Organizations will grant credentials to Users.

• Registration Authority: A centrally trusted authority who will manage mem-

bership of Users and Organizations in the system.

Practical implementations may also have additional entities, subdividing Orga-

nizations into Banks and Employers that use credentials to manage finances or em-

ployment details. They may also support entities such as Tax Authorities who are

responsible for aggregating income for Users.

Between these identities, we need to support the following operations:

• Generate Master Identity, where Ugenerates his single master secret identity, i.e.,

MsU .

• Register, where U registers to RA and validates MsU .

• ShowMS, where U demonstrates knowledge of his RA-validated MsU ; in our sys-

tem, this procedure is extended to include ShowMSAttribute operations, where

U proves that his MsU has a particular attribute.

• ObtainMembership, where U and Organization org collaborate for U to become a

member of org. Depending on the type of org, ObtainMembership prerequisites

may vary.
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• UpdateMS, where U and RA collaborate for U to obtain a new MsU ; all past U’s

registrations through his ex-MsU are also be updated.

• RecoverMS, where the U-authorized people collaborate to recover MsU ; this

procedure only takes place in case of emergency.

Our system, as mentioned before, is privacy preserving. In the context of an

identity management system, privacy can be interpreted as the combination of un-

linkability and anonymity, namely no one should be able to link a particular system

activity to a different one as having originated by the same individual (unlinkabil-

ity) or to a particular identity (anonymity). It is critical that privacy provisions

are conditional: a misbehaving party will have both his identity and entire activity

revealed.

Another fundamental requirement of our system is deployability. Deployability

requires that we take in consideration the current settings of various organizations

realized in our protocols: (a) their functionality and how “misbehavior” is defined in

them, i.e., under what conditions should their members be considered as malicious,

(b) their participation, since we have to optimize our protocols’ efficiency accordingly.

Master secret credential unforgeability and forward secrecy are two more of our

requirements. In particular, we require that no credential can be created without

the participation of the authorized authorities, such that the MSShow operation ac-

cepts(unforgeability). Forward Secrecy requires that no past activities of a particular

individual are traced through the UpdateMS or RecoverMS procedures.

2.4 Private, Distributed, and Searchable Content Provider

Requirements

In total, we aim to support the following functionality:

• Register(u): A new user u enters the system.

• Create − Owner(o): A new organization o enters the system.
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• Provide(u, m, d): User u makes content m available under description d. The

system maintains an internal, protected entry of the tuple (u,m, d). u listens

for queries sent that could match the description d.

• Query(u, q): A user u sends a query q into the system. For every entry in the

system (ui, mi, di) s.t. di matches q, and there exists some tuple (up, cp, pp) and

some tuple (uq, cq) such that cp = cq, up = ui and q is accepted by policy pp,

and there exists a tuple (up, cq, n) s.t. n > 0, u receives a unique handle hi that

can be used to fetch mi and (up, cq, n) is replaced by (up, cq, n− 1)

• Retrieve(u, h) A user u who has received a handle h from a Query submits h

to the system. He is sent the corresponding content m.

In providing this functionality, we aim to protect the participants in various ways.

• Provider anonymity: For a provided tuple (u, c, d), it should be impossible to

identify u, either from the existence of the tuple in the system, ownership of

a handle h for that tuple’s content, or from queries issued or content retrieved

from a handle resulting from a query that matched d. In other words, so long as

there are h honest users in the system, an adversary consistent of any number

of other users, content providers, and other entities involved in the operation of

the system, and permitted to issue any number of queries and view the results

or monitor the communications that pass through them through the proper

execution of the system (i.e. honest but curious) should not be able to guess u

with probability greater than 1
h
.

• Querier anonymity: For a query (u, q) issued to the system, it should be impos-

sible for any other entities to identify u from the passage of the query through

the system. So long as there are h honest users in the system, an adversary

consistent of any number of other users, content providers, and other entities

involved in the operation of the system, and permitted to issue any number of

queries and view the results or monitor the communications that pass through

20



them through the proper execution of the system (i.e. honest but curious)

should not be able to guess u with probability greater than 1
h
.

• Query privacy: For a query (u, q) issued into the system, it should be impossible

for any other entities to learn anything about q. A collusion of entities involving

all other queriers and data owners should not be able to determine q from

handling its execution.

• Content privacy: For a provided tuple (u, c, d), it should be impossible for

anyone to learn anything about c, except by successfully obtaining a handle to

it through Query and fetching it with Retrieve. In other words, a collusion

of entities including all clients and other data owners, issuing any number of

queries unrelated to c into the system, and observing the results, should not be

able to learn any of the content of c.
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Chapter 3

Related Work

3.1 Private Search

The problem of secure search can be considered in general as a problem of secure

multiparty computation ([44, 75, 77]) and be solved with general techniques such as

[44]. Although this approach provides strong privacy guarantees for the participating

parties, limiting the amount of leaked information to what is inherently leaked by the

result of the computation, it has one significant drawback: the complexity of generic

secure multiparty computation schemes is very inefficient and unusable for practical

purposes.

Most of the papers that present encrypted search techniques that allow keyword

search address a different type of search scenario from private search, namely database

outsourcing [5,9–11,22,30,69,72,73]. In this setting one party possesses data but does

not have enough resources to store it. He keeps the data on an untrusted storage

server, but maintains the ability to search the data without leaking any information

to the server. As in our search scenario, the query must be protected from the server,

however in our system the data is owned by the server. Since in these systems, each

user’s data is encrypted and only readable by themselves, protecting anonymity and

handling authentication are relatively trivial matters.

The idea behind most encrypted search papers is to provide capability to the

querying party to decrypt cipher texts that encrypt the same word as the their query
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[9–11,69]. However, this approach necessitates computational complexity linear in the

number of searchable token, which introduces too high cost for practical applications.

In fact Bellare et al. [6] show that in order to achieve better than linear complexity

of search the underlying encryption scheme must be deterministic, which presents a

clear tradeoff between efficiency and the strong privacy guarantees that come with

non-deterministic encryption.

The problem of private database management can be solved by general purpose

secure computation schemes [45, 56, 76, 78]. These solutions, are generally at least

linear time in database size, and thus not useful for practical purposes for very large

databases. Oblivious RAM (ORAM) [46] can be used to completely hide the client’s

query pattern, and can also be used as a tool to achieve sublinear amortized time for

secure computation if we allow to leak the program running time[47,57]. Nonetheless,

computational costs are still prohibitively high, rendering these solutions impractical

for very large scale databases.

Private Information Retrieval protocols (PIR) [25] consider a scenario where the

client wishes to retrieve the ith record of the server’s data, keeping the server oblivious

of the index i. Symmetric PIR protocols [43] additionally require that client should

not learn anything more than the requested record. While most PIR and SPIR

protocols support record retrieval by index selection, Chor et al. [24] considered PIR

by keyword. Although these protocols have sublinear communication complexity,

their computation is polynomial in the number of records, and inefficient for practical

uses.

Another approach would be to use fully homomorphic encryption. In 2009, Gentry

[39] showed that is at least theoretically possible. Despite this breakthrough and many

follow up works, current constructions are too slow for practical use. For example, it

is possible to homomorphically compute 720 AES blocks in two and a half days [40].

Little work has appeared on practical, private search on a large data. In order to

achieve efficiency, weaker security (some small amount leakage) has been considered.

The work of [62, 65] supports single keyword search and conjunctions. However,

the solution does not scale well to databases with a large number of records (say
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millions); its running time is linear in the number of DB records. A more efficient

solution towards this end was proposed in [34]. However, they only considered single

keyword search.

Searchable encryption has also been studied in the public key setting [2,6,9,12,68].

Here, many users can use the server public key to encrypt their own data and send

it to the server.

The closest solution to the type of large scale efficient practical private search

we are interested in is a very recent extension [51] of the SSE solution [20], which

additionally (to the SSE requirements) addresses data privacy against the client.[51]

support the same class of functions as [20] (discussed above). In the worst case, such

as when the client has little a priori information about the DB and chooses a sub-

optimal term to appear first in the query term, the complexity of the [51] solution

can be linear in the DB size.

3.2 Anonymous Publish-Subscribe

Non-anonymous publish subscribe systems were developed a great deal by TIBCO,

who developed the Rendezvous system [70], which introduced wildcard topic match-

ing, used a de-centralized architecture which supported topic priority in routing.

The most currently used publish-subscribe system is PubSubHubbub [36]. Pub-

SubHubbub is an extension of the RSS web feed protocol, but improves upon it by

implementing the delivery of messages using a push mechanism. In other words, feed

updates are pushed from the sender immediately to the receivers rather than waiting

for them to poll the feed, making it a publish-subscribe protocol. Similarly, there

are cloud-based content distribution mechanisms designed to ensure secure, but not

identity-hidden, delivery of messages [15, 32, 74]. None of these systems, however,

provide any anonymity protection. They are intended to be used between openly

known clients.

There are numerous anonymous data distribution systems besides those that work

on a publish-subscribe basis. Tor provides a simple anonymous routing network that
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relays messages through a number of nodes with layered encryption, such that unless

an attacker can either compromise all nodes on the path or monitor both the beginning

and end, the sender cannot be identified [67]. Since messages are addressed, this is not

a publish-subscribe system of delivery. Also, the recipient’s identity is not protected.

One thing a publish-subscribe system handles well that an addressed system does not

is broadcast delivery of messages to a wide audience. There are anonymous systems

that do this, but not using a publish-subscribe model.

One well known system for widescale document distribution is the Free Haven

project [35], a peer-to-peer file-sharing system. In this system, users can publish

documents, making them freely available without revealing their identities. It is

based on a community of servers that distribute storage of split shares of published

documents. Recipients broadcast requests throughout the storage space, and those

with pieces of interest return them encrypted. The documents are associated with

private key encryption pairs to maintain ownership through updates and deletions.

Another similar system is FreeNet [28], also a peer-to-peer file-sharing system,

but one with routed document requests rather than universally broadcast ones. Doc-

uments are associated with hashes of descriptive keyword strings, and migrated over

time so that similar documents tend to migrate to geographically close servers on the

network topology. Queries are then sent on a hill-climbing search over these lexical

hashes. It is more scalable, and has more flexible document retrieval (keyword search

rather than simple unique-name lookup) than FreeHaven, however it does not protect

recipient identity, only that of the document owners.

Finally, another approach to anonymous distribution is TOR hidden services [67].

These allow a user to create a pseudonymous address through which they may be

reached anonymously through the TOR network. Other users can then initiate con-

nections through this address without revealing their own identities or knowing who

they are contacting behind the pseudonymous address. These are not inherently

multi-cast systems; each recipient must establish an individual connection, which

creates additional load on the server when many clients are involved.

In all of these anonymous distribution systems, since users must expressly request
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messages, they are not push systems and furthermore do not allow for continuous mes-

sages based upon a topic. They also are not generally intended for low-latency delivery

of messages; a distributor stores a message to the network whereupon they will be

fetched by an interested party at a later time. They are thus not publish-subscribe

systems. Document publishing systems such as these are suited to applications where

a sender wishes to send a limited amount of data in a short time to be made avail-

able over a much longer time period. Publish-subscribe systems, however, are better

suited to applications where there will be an ongoing stream of data relating to a

specific subject, and where messages have a shorter lifespan.

The only existing publish-subscribe system we are aware of that aims to provide

anonymity is by Datta et al. [4,33]. They propose a routing system based on main-

taining multiple layers of weakly connected directed acyclic graphs. In this system,

one or more sink nodes, which may change over time, become dissemination points

receiving all publications and forwarding them to subscribers. However, anonymity

is provided only by stating that the node a receiver gets a message from may not be

the original publisher. However, an adversary would still know that that node could

possibly be an original publisher. Without probabilistic analysis of this possibility,

it is difficult to say how well protected the publishers actually are. Also, no mention

is made as to how difficult it is to identify subscribers in the system. Further, the

system is neither analyzed for efficiency and scalability, nor implemented, so it is

unclear at what cost this protection comes. There is no guarantee that the shape of

the directed graphs that forms over very large networks scales in an efficient manner.

3.3 Identity Management

There has been some work addressing the problem of online privacy. Brands [14]

and Camenisch and Lysyanskaya [17] were the first to provide a general review of

privacy issues caused by the extended online use of PKI and provided a series of

constructions of privacy preserving credentials, tickets and certificates based on blind

signatures and zero knowledge proofs. There have also been several constructions to
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provide blacklistable anonymous credentials [18,59,63]. Although the aforementioned

systems are able to individually provide strong and well-defined privacy guarantees,

they do not refer to systems with multiple operations each requiring a different privacy

level.

Centralized identity management systems applying the primitives of [14,17] have

been suggested in the past. In Idemix [16] , Camenisch and Herreweghen developed

additional functionality for service providers and credential issuers to configure and

enforce resource access control and credential issuing decisions. Higgins [38], OpenID

[37] and the iCard [79] Foundation are examples of frameworks handling many iden-

tities of the same user across different websites.

The PRIME project [48] is a European initiative for privacy preserving identity

management for online commercial interactions. Although the existing work in the

field refers to multiple types of user-interactions, they do not provide accountability

when the user misbehaves, or consider real world issues deriving from master identity

compromise. For example, the complete recovery of a user’s online subscriptions,

automatic invalidation of the corresponding compromised credentials, and advanced

user-authentication to manage these operations.

3.4 Private Content Providers

There are several existing works in the area of anonymous document distribution. The

first of these is the Free Haven project [35], a peer-to-peer file sharing system. In this

system, users can publish documents, making them freely available without revealing

their identities. It is based on a community of servers that distribute storage of split

shares of published documents. Recipients broadcast requests throughout the storage

space, and those with pieces of interest return them encrypted. The documents are

associated with private key encryption pairs to maintain ownership through updates

and deletions. This system does not aim to protect the identities of the recipients,

only the content providers. Furthermore, it does not contain any type of search

functionality, users must already be aware of the documents they wish to receive.
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The universal broadcast nature of the system also limits its scalability.

Another similar system is FreeNet [28], also a peer-to-peer file sharing system,

but one with routed document requests rather than universally broadcast ones. Doc-

uments are associated with hashes of descriptive keyword strings, and migrated over

time so that similar documents tend to migrate to geographically close servers on the

network topology. Queries are then sent on a hill-climbing search over these lexical

hashes. It is more scalable, and has more flexible document retrieval (keyword search

rather than simple unique-name lookup) than FreeHaven, however it again does not

protect recipient identity, only that of the document owners. Query flexibility is still

limited to simple keyword search, there is no support for more complex queries such

as boolean operations or range or negation queries.

FreeNet’s search functionality also does not aim to hide the nature of the keywords

being queried. While neither anonymous nor distributed, there are existing search

systems that aim to protect query and result content. A common technique used in

encrypted search schemes [9, 69] is to use trapdoors derived from queries with the

ability to determine if a cipher text matches the trapdoor to provide search ability

over cipher texts. This capability is used to store private data at untrusted parties

and execute searches on it while revealing nothing about either the query or the data.

Both [9] and [69] concern the data outsourcing scenario, where a mail server is enabled

to search over the encrypted emails that it stores. This method requires that the

search structures produced during preprocessing be computed per searchable token

(i.e. to allow keyword search, we would need encryptions of all searchable words).

This implies the search complexity will be at best linear in the number of searchable

tokens. Searchable encryption can be either public key [9] (allowing anyone to add to

the searchable data) or private key [69] (limiting the querier himself to adding data).

Either way, only one who possesses the private key can produce trapdoors for search.

In the data sharing scenario, this would necessitate a trusted party to grant search

capability to others.

A different approach in the setting of database outsourcing is to use inverted

indices, where the search structures directly map all possible search terms to matches
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[22, 30]. Search then consists of finding the appropriate entry in the search structure

for a given query’s trapdoor. This suggests trade-offs between security and efficiency

based on the usage of randomized or deterministic encryption. Both [30] and [22] use

deterministic trapdoors and leak the search pattern to the search server. Their search

complexities, though, differ and [30] achieves linearity in the size of the matching set

of document while [22] is merely linear in the number of documents. Curtmola et al.

[30] also suggest a scheme that achieves security against adaptive adversaries at the

price of increased storage requirements; it is linear in the number of all searchable

tokens in all documents per query word stored, as well as communication complexity

linear in the maximal number of tokens in a document.
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Chapter 4

Building Blocks

In order to build our system, we build on several existing techniques. We will outline

and summarize them here before describing our novel contributions.

4.1 Bloom Filters

Bloom Filters are an efficient data structure for probabilistically testing set member-

ship [8]. They have a boundable false positive rate, with no chance for false negatives.

This false positive rate can be made arbitrarily small by increasing the size of the

Bloom Filter, and keeping it linear with the number of elements intended to be stored.

A Bloom Filter can store elements from a universe of infinite size, as long as every

element can be hashed into it.

A Bloom Filter is represented as a vector of bits. An empty filter is set to all

zeros. It is configured with a group of k hash functions that map elements from the

universe of elements into the range of indexes of the bit vector. To insert an element,

you hash it using each of the k hash functions, then set each of the corresponding

bits to 1. Multiple elements can set the same indexes to 1.

To test for membership for an element, hash it using each of the functions, and

check if the corresponding bit has been set. If the element has ever been added this

is guaranteed to return true, guaranteeing a zero false negative rate. However, it is

possible for the bits to have been set by another element that hashed the same, or
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by multiple other elements that have individually set the corresponding bits, thus

allowing for a false positive rate.

Figure 4-1: Bloom filters

The probability of having a false positive can be described by the following equa-

tion, where k is the number of hash functions, n is the number of elements inserted,

and m is the number of bits in the filter.

(1− e−kn/m)k

The optimal number of hash functions (that minimizes the required size of the

bloom filter for a given number of elements and desired false positive rate), can be

given by the following equation:

k =
m

n
ln 2

Thus, to instantiate a bloom filter, one should determine the greatest number of

elements that will be added to it, and decide what the maximum acceptable false

positive rate is, then use the aforementioned equations to determine the number of

distinct hash functions to use and the size of the bloom filter. It should be noted

that for a given false positive rate, m and n scale linearly. The required size of a

Bloom Filter is thus linear in the number of elements being stored (not the number

of potential elements being drawn from).
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4.1.1 Counting

In the standard Bloom Filter construction, there is no way to delete elements. This

is because there is no simple way to determine which of the bits that have been set

are unique to the element in question. Even if one were to use the hash functions to

identify the bits associated with that element, it is possible those same bits were set

by other elements that have been inserted as well.

The solution to this is to replace the bits with integers [13]. In a Counting Bloom

Filter, we have a vector of small integer values instead of a vector of bits. To insert an

element, compute all of its indices using the hash functions as before, and increment

the corresponding integer. To test for membership, all one has to do now is compute

the indices and check that all of the integers are greater than zero. Because they are

stored as integers and not bits anymore, one can implement deletion by calculating

the corresponding indices for an element to be deleted, and decrementing all of the

appropriate integers. The size of the integers should be chosen to make overflow

unlikely (a size of 3 or 4 bits is common). This thus makes the space requirements of

a counting bloom filter larger by a factor of the number of bits used per integer.

4.1.2 Bit-slicing

In many applications of Bloom Filters, it is common to keep large arrays of filters,

and to want to check a single element against all of them efficiently, to determine

which, if any, contain matches. In the common storage format, this would require

that we read the full size of all Bloom Filters for every query to check every index as

specified by the Bloom Filter membership test protocol. However, it is possible to do

much better than this.

To minimize the number of bits that need to be read to satisfy queries across a

large number of Bloom filters, we can store them in transposed order. First, they are

divided into blocks of filters; within each block, all bits from a single index across the

filters are stored sequentially. Thus, each document is represented by a bit within

multiple slices, one for each index of its Bloom filter representation. To run a query,
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we need only fetch those slices which correspond to the indices of the query term,

which is a large savings since normally we would have to read the full contents of

every Bloom filter for every document for any query. This technique is referred to

as bitslicing and has been studied as a method for storing signature files in database

indexes [80].

By storing the Bloom filters in blocked slices, we gain the ability to avoid reading

a large portion of the bits in the Bloom filter set when we run queries. We need only

check those slices which correspond to an index which is present in the query term(s).

Since this is very sparse, this is a large improvement over non-transposed storage; it

would require us to read the entirety of every Bloom filter in order to run a query.

To run a query, we construct a result vector, which is a bit vector equal in size to

the number of Bloom filters in the set. This is then “and”ed to each slice corresponding

to a query index. Over time, several block-sized portions of the result vector will

become zeroed out. Once this happens, as a further optimization we cease to read

those portions of later indices. Our block size is chosen as the disk page size, and our

end goal is thus to read the minimum number of pages necessary to answer a query.

If multiple queries are being run, we keep a cache of recently viewed bitslices with a

LRU replacement policy.

Because we are storing the Bloom filters in transposed order, and each filter is

represented by a single bit across various slices, deletion of filters would be expensive.

Thus, we implement this simply by zeroing out the indices of a filter so that it will not

match future queries. As a future addition, we may support a system of periodically

cleaning the slicebase by identifying ”deleted” filters and compacting the remaining

ones.

This format would also allow us to handle boolean queries where we check for

the existence of multiple elements combined with arbitrary boolean logic. Supporting

AND queries is trivial; the Bloom filter indices of the query terms can simply be

unioned before running the query indices across the set as if they were a single term.

Supporting OR queries is more difficult, since we must know the results of each

individual query before we can union them. There is no operation we can do on the
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Figure 4-2: Multiple Bloom Filters Memory Storage

query indices to achieve this with a single query.

However, there are still optimizations available to us. In order to run an OR query

with x terms, we must generate x result vectors and run them over the entire set.

Rather than run them individually, we run them in parallel. This not only improves

the cache behavior of our bitslice fetching, but also allows us to avoid reading blocks

from later slices once we see that the corresponding blocks of all x result vectors

have been zeroed out by earlier indices. In order to increase the likelihood of this

happening, we query the indices in order of the number of distinct query terms they

appear in.

This technique for running OR queries is sufficient to address any boolean query

which can be represented with a monotone disjunctive normal form. Disjunctive

normal form requires that the query be phrased as a disjunction (an OR clause) of

one or more conjunctions (an AND clause) of literals. We can represent conjunction

queries by unioning the indices that represent the literals within, and then pass the

disjunction of those conjunctions to our OR query method.

4.1.3 Trees

While the slicing optimization can greatly reduce the amount of bits read per filter,

it still scales linearly with the number of filters being read. Thus, with a low constant

34



overhead and a high asymptotic behavior, it is ideal for applications with limited

numbers of filters. However for applications with massive numbers of filters, it is

desirable to scale sub-linearly. For example, Bloom Filters could be used to index

extremely large databases with billions of records or more.

One architecture designed to address this is tree-based Bloom Filter search in-

dexes. In this format we choose a branching factor b, and create a tree of Bloom

Filters. The leaves of the tree each hold one of the Bloom Filters. Then for each b

leaves, we create a parent node filter that contains every element present in any of its

children. We repeat this going upwards until we have a single root filter that stores

all elements present anywhere in the structure. Now to quickly scan the entire set

of Bloom Filters and find all those that contain a particular element, we can simply

traverse the tree. If a parent node returns true, we can proceed to its children, but if

it does not then we know we can skip all of its children (since Bloom Filters have no

false negatives). This can be massively more efficient for queries where only a small

portion of the set contain matches, which is a common scenario for many types of

database applications.

The maximum number of distinct elements that could be stored in a parent filter

is b times as many as each of its children. However, the number of parent filters is

equal to 1
b

the number of leaves. Since to maintain a consistent false positive rate,

the size of the Bloom Filter scales linearly with the number of elements, we can infer

that each level of the tree requires the same amount of space. Since the bottom level

of the tree is equal to the space of storing all the filters originally, we know that the

total space requirement is increased by a factor equal to the depth of the tree. The

space cost can then be summarized as

logb(n)

This gives us a tradeoff: with a greater branching factor we have a smaller space

cost but less benefit from tree search.
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Figure 4-3: Tree-based Bloom Filter Storage

4.1.4 Ranged

Standard Bloom Filters support only set membership of specific elements. However,

using this basic functionality, we can construct a system that allows ranged testing.

That is, specific integer values on a range can be inserted, and tests can be done on

subranges of that range. We now describe a system that enables multi-dimensional

range queries using any underlying blackbox set membership system that can support

boolean queries in conjunctive normal form. We will first describe our system as a

general construction then discuss how some of the costs interact with the efficiency

tradeoffs inherent in Bloom Filters, since we use Bloom Filters to match subjects in

our central server system. This system can be used on top of our system to provide

range-based topic matching.

General construction

Our general system introduces the following additional costs over its underlying search

system:

• For each inserted point, we will need to insert into the underlying search system

d lg r terms, where d is the number of dimensions we are supporting and r is

the size of the range of values supported per dimension.

• For each query, we will need to issue a boolean query using up to 2d lg( q
2
) query

terms to the underlying search system, where q is the size of the range being

queried.
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• The system presents repeatable unique identifiers for logarithmically cut sub-

regions across all documents in a single query, and across multiple queries.

If the underlying private search system does not guarantee full privacy of its

queries, these can increase the information leakage over what would normally

be incurred.

Figure 4-4: Terms used for inserting the value “11”

Our basic approach is to represent each ranged dimension as a binary value. Then,

for each one, we create a strata for each digit of the value, and for each strata, divide

the range into binary pieces according to the order of the digit, and assign each piece

of each strata of each dimension a globally unique identifier. To insert a term to

the search index, we insert the id of every piece that contains it (thus one term is

inserted per dimension per strata, with a number of strata logarithmic in the size of

the ranges). This is shown in Fig. 4-4.

Figure 4-5: Boolean query for range “7-14”

To issue a query, now, we create a boolean OR query for each dimension. At each

dimension, we start at the strata with the largest and least numerous pieces, and add
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to the query the largest piece that fits entirely within the query range. We iterate

to lower strata, adding pieces that fit entirely into the range without covering values

that are already covered by existing pieces in the query, and continue, if necessary,

to the lowest strata which contains every individual value in the full range. We then

create an AND query across all of the dimensions, resulting in a query in conjunctive

normal form. An example query on one dimension is shown in Fig. 4-5.

Since every single piece of every strata that contains the representative value has

been added to the index, this query will return true if and only if the range query

contains it. The worst case query, is for the query range to straddle the midway point

of the full range. This results in taking 2 lg( q
2
) query terms per dimension.

Theorem 7. A contiguous range query on a single dimension cannot require more

than 2 lg( q
2
) disjunctive terms.

Proof. We begin with an initial lemma: a contiguous query cannot require more than

two terms in a single strata, one in its lower half and one in its upper half. Let us

assume to the contrary that it did require two terms within a single bisection of its

range. Then, starting from the uppermost term, the range contains a subrange equal

to at least four times the size of the elements of the strata (two in each bisection).

Since the strata above uses elements of twice the size, and there is at least one term

within the range that is not one of the endpoints, that term is a subset of a range

from the upper strata that is contained entirely within this subrange. Thus, the term

representing that range could have been chosen instead to replace two or more terms

representing smaller ranges, a contradiction.

Given that each strata uses ranges twice the size of the strata beneath it, it is

trivial to show via summing that a query cannot require terms from more than lg(q)−1

strata. In conjunction with our lemma, we thus show that a contiguous range query

cannot require more than 2(lg(q)− 1) = 2 lg( q
2
) terms.
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Bloom filter construction

If the underlying system is based on Bloom filters, as with the SADS system, we can

describe the tradeoffs listed in the general construction in terms of increased Bloom

filter size according to the formulae associated with Bloom filter constructions.

The standard Bloom filter equation demands that in order to store n items with

a false positive rate of p, our filter needs to have size

m =
−n ln p

(ln 2)2

There are two factors that increase the necessary size of Bloom filters we must

choose in order to maintain the same false positive rate. First, for every value inserted,

there are now d lg r terms added, giving an increase in “effective” number of values

for purposes of calculating proper sizes. Second, for every query, there are 2d lg( q
2
)

queries in CNF, any of which could be a false positive. If we assume in the worst

case that a single false positive from a sub-query will cause a complete false positive,

then we can give an upper bound on the multiplicative increase of false positive rate

as 2d lg( q
2
).

Thus, the total size of the bloom filter to ensure that the false positive rate does

not exceed p is

m = d lg r
−n ln p

2d lg( q
2
)

(ln 2)2

For practical purposes, this is a very reasonable increase in size, considering that

most range query applications deal with orders of magnitude fewer values per record

than exact string match queries, which may be used to index every single word in a

tens-of-thousands-of-words long document.

An issue of greater concern is the magnification of existing privacy concerns, espe-

cially if we are using a system like SADS, which does not guarantee full protection of

the result patterns. Because our construction will query the same sub-regions across

multiple records in a query, and across multiple queries, if the result privacy is not

protected against the server, he may be able to learn about the values stored within
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over time. For example, if a server sees that during a range query, two records had the

same positive result for the same sub-region, it knows that they at the very least share

a value in the same half-region (the largest possible sub-region). If over the course

of multiple queries, it then sees those two documents match for a second sub-region,

it knows that they at the very least share a value in the same quarter-region. Over

time, and seeing a sufficiently varied number of queries, it may learn exactly which

documents share specific values.

This is partially mitigated in the multi-dimensional case, since sub-regions of

different dimensions cannot be differentiated, lending some additional obscurity. A

user can further delay this learning curve by choosing maximum value ranges that are

significantly larger than expected query ranges. However, this only slows the learning

process, it does not prevent it. A more effective deterrence would require periodically

refreshing the system by recreating new indexes.

4.2 Anonymous routing

Anonymous routing systems allow users to send addressed messages to single recip-

ients, and protect their own identities in doing so. Obviously since the messages

are addressed, the recipient’s identity is not protected (except in the case of Hid-

den Services, which we will discuss later). There are two main ways to do this, via

mixnets (which provide a stronger guarantee of anonymity, but at a cost in deliv-

ery latency) and onion routing (which provide a weaker guarantee of anonymity, but

achieve delivery times that are more practical for real-time applications).

4.2.1 Mixnets

Mixnets are anonymous routing systems that protect sender anonymity by sending

messages through several layers of a mixnet, a group of layered forwarding proxy

servers [42,49]. A mixnet is arranged into a set of n proxy servers. To send messages,

each user then encrypts his message under a public key tied to the recipient, and then

under a sequence of n public encryption keys, one associated with each proxy server

40



of the mix. Tied to this message,and buried under all layers of encryption, will also

be the address of the recipient and some randomness.

They then each send their message to the first node of the mixnet. Each proxy

node will decrypt using its private key, and then they will re-permute all of the

messages they have received and send them en masse to the next proxy server. This

repeats through all layers until the last one, which upon decryption will see the final

destinations of the messages and forward them accordingly. The recipients can then

decrypt the messages using their private keys.

Since each layer of the mixnet applies its own permutation to the messages, and

discards this information afterwards, then unless the nodes that a message traverses

across all layers collude, no adversary can determine who originally sent a particular

message. Since all messages traverse the same series of nodes, this system remains

secure against traffic analysis and global passive adversaries. However, since message

forwarding cannot begin until a full set of messages is ready to be permuted by the

network, this can result in very high latency, and is unsuitable for applications which

require realtime performance.

Figure 4-6: Mixnet architecture

4.2.2 Onion Routing

Onion-routing networks attempt to improve upon the efficiency of mixnets, but at

the cost of not aiming to protect against global passive adversaries, and thus exposing
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themselves to traffic analysis attacks [67]. The basic approach is the same, messages

will be encrypted under several layers of encryption using the public keys of forwarding

nodes. However, unlike with mixnets, messages will not be sent in batches, and the

sequence of proxy nodes will be unique per message, chosen by the sender. Thus, the

full method proceeds as follows:

1. The sender chooses a path of m nodes, from a global directory of all participat-

ing nodes in the system. These nodes will serve as forwarding proxies for the

message. The global directory will also list the public keys associated with each

of these nodes.

2. The sender contacts the first node in the path, sending it a message encrypted

under its public key, with a request to establish a connection, with a unique

circuit ID, and the first part of a Diffie-Hellman handshake to establish a shared

secret.

3. The first node will then respond and complete the Diffie-Hellman handshake.

4. These two nodes will now use their shared secret for all communications going

forward.

5. The sender can now send relay messages through their encrypted connection.

They will extend the communication to the next node in the chain by instructing

the initial node to go through the same last three steps with the next node in

the chain, establishing a shared secret between the two of them, and sending

messages that only that node (and not the node being relayed through) can

interpret by encrypting them using that node’s public key.

6. This procedure can be extended through all of the chosen relay nodes, and only

the originator will know the full sequence. Each node in the chain will only

know the identities of the nodes before and after it.

7. After the chain has been extended to the final node, that node can be instructed

to forward a message to the final destination through non-anonymous means
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Figure 4-7: Onion routing circuit construction

Because in onion routing users establish a persistent connection through all of the

nodes in their circuit, they can also provide Hidden Services, pseudonymous addresses

whereby they can be contacted anonymously. To do so, a user established an onion

circuit, associates an identifier with the endpoint and a public key for encryption,

and stores them in a public directory. Other users can than contact that endpoint to

initiate communication with the owner of the hidden service.

Because onion routing does not rely on batching messages, delivery latency is much

improved over mixnets. However, since all communication circuits are unique, the

system is vulnerable to global passive adversaries and traffic analysis. An adversary

who can see all traffic in the network can easily deanonymize the sender of a message.

4.3 Yao garbled circuits

Yao’s garbled circuits allow circuits to be evaluated obliviously by one party on hidden

inputs provided by another party. Let C be a Boolean circuit with n input wires,

m gates, and one output wire; let (1, . . . , n) be the indices to the input wires and

q = n + m + 1 be the index to the output wire. To generate a garbled circuit C̃,

a pair of random keys w0
i , w

1
i are associated with each wire i in the circuit; key w0

i

corresponds to the value ‘0’ on wire i, while w1
i corresponds to the value ‘1’. Then, for
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each gate g in the circuit, with its input wires i, j and its output wire k, a garbled gate

g̃ (consisting of four ciphertexts) is constructed so that it will enable one to recover

w
g(bi,bj)
k from wbii and w

bj
j (refer to [23,54,58,66] for more detail.) The garbled circuit C̃

is simply the collection of all the garbled gates. By recursively evaluating the garbled

gates, one can compute the garbled key wbq given the keys (wa11 , . . . , w
an
n ), where

b = C(a1, . . . , an). We will sometimes call wire keys corresponding to input/output

garbled input/output, and denote them by ã and b̃, i.e., ã = (wa11 , . . . , w
an
n ), b̃ = wbq.

We will also use the notation of garbled evaluation b̃ = C̃(ã).
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Chapter 5

Private Database Search

Often, different parties possess data of mutual interest. They might wish to share

portions of this data for collaborative work, but consider the leak of unrelated portions

to be a privacy issue for themselves or their clients. Thus, methods that provide a

well-defined and secure sharing of the data between untrusting parties can be powerful

tools. One such method is the ability for a client to search the information residing on

another server without revealing to the server his identity or the content of his query;

at the same time, it is desirable to guarantee that query capability is only granted to

appropriate clients and that they do not learn anything unrelated to the query. Such

a tool is useful in deciding and agreeing upon information-sharing between parties.

This kind of tool thus has many possible applications. For example, two in-

telligence agencies might like to search each other’s data to discover if they have

complementary information about the same parties. Similarly, the police may need

to search the databases of different institutions, i.e., banks for information about peo-

ple suspected of embezzlement. Even outside of law enforcement, this type of search

might be useful to a physician who wants to find out about other patients with the

same rare disease as a patient of his own, along with treatment methods that have

given good results. Or institutions might wish to protect logs containing sensitive

information about the activities of their members, and yet allow restricted searches

on information about attacks that may be detected when suspicious behavior is cor-

related across different domains. Automatic email filtering on encrypted email can be
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viewed as the capability of the filtering point to search for keywords such as “urgent”

on the data. These scenarios all present a common problem: a facility has data that

legitimately could or should be shared with another party, embedded within a large

amount of data that should be held confidential.

We will discuss two systems for achieving this functionality, Secure Anonymous

Database Search (SADS) and BlindSeer.

5.1 Secure Anonymous Database Search

Much of the existing work on encrypted search addresses scenarios for data storage

outsourcing, where a party stores its data encrypted on an untrusted machine ([9,10,

22, 31, 69]). The scenario that we consider differs from the above in that the querier

and the owner of the data in our case are different parties. There is thus a different

adversarial model: we must protect the database from the querier. Additionally,

in our model we require that only authorized users are allowed to submit queries;

furthermore, after authorization the users’ anonymity is preserved with respect to

the server. Schemes like PIR( [26]) and SPIR([43]) achieve such functionality but at

a high computational cost that makes them unusable and another major goal for us is

that the efficiency of the search algorithm should be usable for practical applications;

as in [6], this means sub-linear search time in the size of the database. Protocols

such as ([9,22,69,71]) achieve linear search time; to improve this complexity, we may

be willing to sacrifice strict definitions of privacy and security to a limited degree.

Thus, our goal is to achieve well-defined and optimal security, privacy and anonymity

guarantees, while still allowing efficient protocols. In order to accomplish this, we

introduce the notion of reroutable encryption, and use it in conjunction with Bloom

filter-based ([8]) search methods; these allow us to take advantage of known techniques

for database signature file indexes.

We instantiate the reroutable encryption scheme into different ways to obtain

an protocol for secure anonymous database search. As shown in [6], an efficiently-

searchable encryption scheme has to be deterministic. Following their ideas, we in-
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troduce a definition for secure private key deterministic encryption and construct a

particular such encryption PH-DSAEP+, which also satisfies reencryption properties.

We use this new encryption scheme for the instantiations of the reroutable encryp-

tion scheme used to submit queries and for the other instantiation used to return the

search result we use standard semantically secure encryption.

The search itself is achieved efficiently by preprocessing the document set into a set

of Bloom filters. Privacy-preserving search is known to require time linear in the total

size of the document set. By using Bloom filters, we can mitigate this cost by paying

it once during the pre-processing generation of the filters. From then on, queries

against an individual document run in constant time. Furthermore, by properly

organizing and querying these filters, we can take advantage of substantial existing

work on bitsliced signatured files that is commonly used in database indexes ([80]).

This organization allows us to further reduce the amount of data in the Bloom filters

that must actually be read and processed by running queries across several Bloom

filters in parallel.

5.1.1 Re-routable encryption

Reroutable encryption is a one-round, three-party computation protocol. One party,

the sender, wishes to send a message to another party, the receiver. However, one

or both of these parties may wish to have their identities protected from each other.

This then requires a third party who is entrusted to choose communication pairs and

protect this information. This third party is still not trusted with the content of the

communication. Thus the sender must have a way to give the third party an ability

to reveal information to various other parties without giving him that information

directly. In addition, the third party may perform some secure computation on the

data, in case the sender wishes to protect certain aspects of it from the receiver as

well.

A useful primitive for our problem is an encryption scheme that allows a party to

send an encrypted message to another party with neither being privy to the identity

of the other. This can be done with a third party acting as an intermediary to choose
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communication links. This party is the only one who knows the identities of both

ends of the communication, but is not privy to the contents of the message. This is

the underlying idea behind the functionalities of F and G introduced in Chapter 2.

The problem is similar proxy encryption ([7]) and universal re-encryption for mixnets

([49]), but in our scenario the sender does not know the destination of its message

and the public key encryption schemes used in these protocols are not appropriate for

us. Additionally, our scheme allows the receiver to obtain partial information about

the sent message; we also want to keep the key of the third party secret from the

sender and the receiver. We now formally define the notion of reroutable encryption.

Definition 8 (Reroutable Encryption). A reroutable encryption scheme consists of

the tuple of algorithms (gen, enc,ENC-TP,TRANS,DEC-R):

• gen(1k, Sender, TP,Receiver) produces three keys (sk, tpk{S,R}, rk) for the sender,

the trusted party, and the receiver.

• enc(sk,m) = c encrypts a message m with the sender’s key.

• TRANS(c, S, sti) = (R, sti+1) identifies the receiver of the message coming from

the sender S based on the inner state of the trusted party sti and computes the

new state of the trusted party.

• ENC-TP(c, tpk{S,R}, sti) = (c, sti+1) transforms the ciphertext c to a message c

for the receiver R.

• DEC-R(c) = m extracts the information that was sent to the receiver from the

trusted party.

The idea behind the reroutable encryption is to allow the third party to control

which are the allowed communication pairs and to transform the message that is

being sent without learning anything about it. In the context of the search problem,

we want the third party to ensure that only authorized users query a given server; it

must also be able to forward answers from the server to the corresponding querier.

Furthermore, all that the server may learn from the message is that which is necessary
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for the search; this may not be the whole ciphertext. This information should be

extractable from the ciphertext by the third party.

Apart from the search functionality, a reroutable encryption scheme will be ap-

plicable in cases when the third party is an intermediary in a protocol for secure

multi-party computation. It is allowed to perform computation only on encrypted

data; it must interact with the data owners to perform any computation that re-

quires manipulation of the real data.

Definition of Security for Reroutable Encryption

There are two main security requirements that the reroutable encryption scheme

should guarantee. The first is the security of the sender’s message with respect to

all parties not including the sender and receiver. The second is the anonymity of

the sender with respect to the receiver. The anonymity of the receiver with respect

to the sender is trivial, given that the protocol does not involve communicating any

information to the sender after he has encrypted the message. We summarize these

two requirements is the following two definitions:

Definition 9 (Message Security). Let S be a security definition using an adversary A

and applicable to a general encryption scheme. Let R = (gen, enc,ENC-TP,TRANS,DEC-R)

be a reroutable encryption scheme. We say that R provides S-message security with

respect to the third party if (gen, enc,DEC-R ◦ ENC-TP) meets S when A is supple-

mented with tpk{S,R}.

This definition is intentionally non-specific. It thus applies to a general case

of reroutable encryption schemes that might meet different definitions of security,

depending on what underlying algorithms are used to implement them. We will

instantiate this definition with a more specific one based on our instantiation of the

reroutable encryption algorithm.

Definition 10 (Sender Anonymity W.r.t. Receiver). Let Q0 and Q1 be two users

with keys q0 and q1 respectively. We say that the reroutable encryption scheme

(gen, enc,ENC-TP,TRANS,DEC-R) with a security parameter k preserves the anonymity
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of the the sender with respect to the receiver if for any polynomial time adversary A

that given ENC-TP(encqb(m)) for b←R {0, 1} outputs a guess b′, the following holds

|Pr[b = b′]−
1

2
| < negl(k).

A reroutable encryption scheme is secure if it meets both of the above definitions.

We will now show one method for constructing a reroutable encryption scheme

from a given of type of encryption schemes that posses the following group property:

Definition 11 (Encryption Group Property). Let Π = (gen, enc, dec) be a private

key encryption scheme. We say that Π has a group property if the keys for encryption

scheme form a group and for any message m the following holds:

enck1(enck2(m)) = enck1·k2(m).

Definition 12 (Simple Re-reroutable Encryption Construction). Let Π = (gen′, enc′, dec′)

be an encryption algorithm with the group property from Definition 11. We construct

a reroutable encryption scheme (gen, enc,ENC-TP,TRANS,DEC-R) in the following

way:

• gen(1k) - Sender and Receiver independently run gen′(1k) and to create sk and

rk, respectively. Sender, Receiver, and TP then run a secure multiparty compu-

tation with sk as input from Sender, rk as input from Receiver, and tpk = sk
rk

be an output for TP.

• enc(sk,m) = enc′(sk,m) = c

• TRANS - a function identifying Sender, Receiver pair

• ENC-TP(tpk, c) = enc′(tpk, c) = c

• DEC-R(rk, c) = dec′(rk, c) = m

We now show that the reroutable encryption scheme created with the above con-

struction from is a secure reroutable encryption.
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Theorem 13. Let Π = (gen′, enc′, dec′) be an encryption scheme with the group

property from Definition 11 and a security definition S. The reroutable encryption

(gen, enc,ENC-TP,TRANS,DEC-R) obtained from Π using Construction 12 provides

S-message security.

Proof. Assume that (gen, enc,DEC-R◦ENC-TP) does not meet the security definition

S. Therefore there exists an adversary A that can obtain information t about a

message m given enc(m). Since enc(m) = enc′(m) it follows that A is an adversary

against Π that manages to learn information t about an encrypted message from its

ciphertext, which is a contradiction with the security property of Π.

Theorem 14. Let Π = (gen′, enc′, dec′) be an encryption scheme with the group

property from Definition 11 and a security definition S. The reroutable encryption

(gen, enc,ENC-TP,TRANS,DEC-R) obtained from Π using Construction 12 ensures

Sender anonymity w.r.t the receiver.

Proof. Let q0 and q1 be the keys of two senders and tp0 = rk
q0

and tp1 = rk
q1

be the

corresponding transformation keys at the third party. Let m be any message. Now

using the group property of Π we have

ENC-TP(encq0(m)) = enctp0(encq0(m)) =

= enc′tp0(enc
′
q0
(m)) = enc′tp0·q0(m) = enc′rk(m)

ENC-TP(encq1(m)) = enctp1(encq1(m)) =

= enc′tp1(enc
′
q1(m)) = enc′tp1·q1(m) = enc′rk(m)

Therefore the server will always get the same ciphertext and cannot guess the user

identity with probability non-negligibly different from 1/2.

Secure Anonymous Database Search

The definition of reroutable encryption (Definition 8) captures all the properties that

we required for the functionalities F and G that we defined presenting the setting for
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secure anonymous search. However, since the set-ups for F and G are not completely

symmetric, we have some differences in the particular instantiations of the six algo-

rithms for the reroutable encryption. The most fundamental difference between them

is the fact that we want to leak as little information as possible about the encrypted

query sent from the user to the server while still sending enough for the proper search

functionality. In the other direction, we want the user to receive the exact answer

that was sent from the server as a query result. We capture these requirements in

the following definition for secure anonymous database search.

Definition 15 (Secure Anonymous Database Search (SADS)). An anonymous secure

search scheme consists of three algorithms (F,G, Search) such that F and G are secure

reroutable encryption schemes and the following hold:

• Given c = ENC-TPF (encF (m)) the server can learn at most h(m) information

about m, where h is a function chosen at the instantiation of the anonymous

secure search protocol.

• The user learns the exact result sent from the server, i.e., DEC-RG(ENC-TPG(encG(m))) =

m.

• Let S be the exact search results for a query m and S ′ = Search(c) be the

result set returned from the server who was given c, produced by ENC-TP in the

reroutable encryption scheme. Then

|S| − |S ′|

|S|
≤ ǫ,

where ǫ is a small, fixed error rate.

5.1.2 Private Key Deterministic Encryption

The properties that we required in Section 2 for the functionality F were information

hiding and a result suitable for searching. In [6] Bellare et al. suggest a deterministic

and efficiently searchable encryption scheme. While this scheme provides optimal
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security properties that allow efficient search on the ciphertexts, its public key ori-

entation — where everybody can have access to the public key — is not appropriate

for the our requirement for flexible authorization, especially because it does not allow

easy revocation of users. We adapt the idea from [6] to a private key setting that we

use to provide unique user keys that can be easily revoked; we also use a single server

key for encryption of the database.

Security Definition

In our notation, x denotes a single message, x denotes a vector of messages with

elements x[i] and y = encpk(x) stands for y[i] = encpk(x[i]) for all i.

Definition 16 (Deterministic Private Key Encryption scheme). A private key en-

cryption key scheme Π = (gen, enc, dec) consists of three polynomial time algorithms:

• gen(1n) = s generates a private key s;

• encs(m) = c encrypts a message m with a key s;

• decs(c) = m is a deterministic algorithm that decrypts the plaintext x from a

ciphertext c.

A private key encryption scheme is deterministic if the encryption algorithm enc is

deterministic.

The security definition for public key deterministic schemes given in [6] captures

the attack model relevant to deterministic schemes; accordingly, we use a similar

definition of security for private key encryption schemes:

Definition 17 (Private Key Encryption Privacy Adversary). A chosen ciphertext

adversary A = (A1, A2) is a pair of polynomial time algorithms that share neither

coins nor state and work in the following way:

• A1 takes as input 1k and return a vector x and some information t.

• A2 takes as input 1k and an encryption of x and tries to compute t.
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Given an encryption scheme that uses random oracles H1, . . . , Hn, we say that A is

a (t, qD, qH1, . . . 1Hn
) adversary if it runs in time t, issues qD decryption queries and

qHi
queries to Hi for 1 ≤ i ≤ n.

We use a characteristic of the adversary introduced in [6] that will be important

in the following relaxed definition of security and the schemes that we will build.

Intuitively it will measures the density of the plaintext domain that will be quantified

with the probability of an adversary choosing a given plaintext.

Definition 18 (Min-entropy). Let A = (A1, A2) be a private key encryption adver-

sary. We say that A has min-entropy µ(n) if

Pr[x[i] = x : (x, t)← A2(1
n)] ≤ 2−µ(n)

for all 1 ≤ i ≤ |x| and all x ∈ {0, 1}∗.

We now state the relaxed definition for security of private key encryption schemes

that we will use thoughout the paper.

Definition 19 (DET-CCA). Let Πdet = (gen, enc, dec) be a private key encryption

scheme and A be an adversary against it. We conduct the following two experiments

for:

DET-EXP
0
πdet,A(n) DET-EXP

1
πdet,A(n)

s← gen(1n) s← gen(1n)

(x1, t1)← A1(1
n) (x0, t0)← A1(1

n); (x1, t1)← A1(1
n)

c← encs(x1) c← encs(x0)

t′ ← Aencs
2 (1n, c) t′ ← Aencs

2 (1n, c)

output











1 if t′ = t1

0 else

output











1 if t′ = t1

0 else

We say that Πdet is DET-CCA secure when the adversary advantage AdvDET−CCAπ,A

against the encryption scheme is negligible where we define
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AdvDET−CCA
πdet,A

=

= Pr[DET-EXP0
Πdet,A(n) = 1]− Pr[DET-EXP1

Πdet,A(n) = 1].

Note: The relaxed definition of security stated above is achievable only when the

adversary has high min-entropy µ(n) = ω(log(k)), which is true for any adversary if

the underlying plaintext domain is dense.

5.1.3 Encrypted Bloom Filter Search

We now show how to instantiate F , G and Search to implement an SADS scheme

according to the problem statement from Section 2.

Querier to Server Reroutable Encryption

In defining F , we have to achieve a balance between the privacy-preserving property

that limits what the server will learn about the submitted query, while at the same

time ensuring that it receives enough information to perform efficient and accurate

searches. Deterministic encryption provides this type of balance. It guarantees DET-

CCA security while allowing search schemes on the ciphertexts that run in sub-linear

time, as do existing non-deterministic encryption schemes. We define F to be a

reroutable encryption scheme (gen, enc,TRANS,ENC-TP,DEC-R) such that:

• gen(1k, Sender, TP,Receiver) produces three keys (sk, tpk{S,R}, rk) for the sender,

the trusted party and the receiver in the scheme. Each party should get only

its key and learn nothing about the keys of the other parties.

• c = enc(sk,m) =PH-DSAEP+sk(m).

• TRANS(c, S, sti) = (R, sti+1). The selection of the receiver is based on either an

explicit user request or a matching rule in the third party that maps a querier to

a server. Selection always includes a check of authorization; if such is missing,
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R =⊥. The state sti+1 will be obtained from sti by recording information which

user has submitted with the query; this will be used later to route the response

from the server correctly.

• ENC-TP(c, tpk{S,R}, sti) =BF(PH-DSAEP+tpk{S,R}
(c)) =BF(c) = {b1, . . . , bi},

where the {b1, . . . , bi} are the Bloom filter indexes for c. We later show the

algorithm for the BF function.

• DEC-R({b1, . . . , bi}) = {b1, . . . , bi}, in this case the server does not need to

perform any decryption.

In addition we apply the reroutable encryption F on a hashed values of the user’s

query H(m) where H is some hash function; this provides further protection of the

query against the server.

Server to Querier Reroutable Encryption

The primary functionality of G is to protect against the third party learning infor-

mation about the query results, rather than just redirecting them to the appropriate

user. We want to prevent the third party from finding different queries that have

the same result vector and thus be able to guess that the queries are semantically

related. In this case, deterministic encryption will not suffice since the same result

vectors will have the same encryption. However, we can now use non-deterministic

semantically secure encryption since the user will decrypt the message at the end.

Thus G is defined as a reroutable encryption (gen, enc,TRANS,ENC-TP,DEC-R)

where

• gen(1k, Sender, TP,Receiver) produces three keys (sk, tpk{S,R}, rk) for the sender,

the third party, and the receiver in the scheme. Each party should get only its

key and learn nothing about the keys of the other parties.

• c = enc(sk,m) = PH-SAEP+sk(m).

• TRANS(c, S, sti) = (R, sti+1) where the third party has information in its state

sti about the user who sent the query whose reply is returned.
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Figure 5-1: SADS overview.

• ENC-TP(c, tpk{S,R}, sti) = PH-SAEP+tpk{S,R}
(c) = c.

• DEC-R(c) = decPH-SAEP+(c).

Bloom Filters Encrypted Search

We now consider the Search function and show how to optimize its computational

complexity to a constant using Bloom filters. As we mentioned before, we will use

Bloom filters to perform search on ciphertexts produced by PH-DSAEP+. We build

Bloom filters from ciphertexts in the following way:

1. Given the expected number of entries in a Bloom filter and the false positive

rate that we want to achieve, we calculate the optimal size of the Bloom filter

and the number of hash functions that have to be used for each entry. We

require that the size of the Bloom filter should be a power of 2 because of the

specific hash function we are using. The size of the Bloom filters is a secondary

concern to the efficiency and the false positive rate that the structures achieve.

2. Let us now define the function BF that we used in the ENC-TP algorithm

of the reroutable encryption F . If we have a Bloom filter of size 2n bits and

we use k hash functions per entry, we derive the Bloom filter indexes for an

entry m by taking the first k blocks of length n in the binary representation of

PH − DSAEP+
sk(m) where sk is a fixed key. The indexes derived in this way
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are suitable for a Bloom filter since they have pseudorandomness property at

least as good as a hash function, which is the property that determines the false

positive rate of a Bloom filter.

A Bloom filter query has a constant search time and does not depend on the

number of entries in the filter. At the same time, privacy-preserving search algorithm

requires that each entry is touched. This is achieved at the time when the Bloom

filter is built including information for each entry. In other words, the computation

that is dependent on the number of entries to be searched is performed only once at

the time of the filter creation.

Key Generation

The key generation algorithm is not our main focus since general multiparty com-

putation techniques ([44, 75, 77]) can be applied to distribute the appropriate keys.

However, we give here an efficient algorithm that allows the sender (S), the receiver

(R) and the third party (TP) to obtain their keys. The sender and the receiver choose

their keys kS and kR respectively. The sender chooses a random number rS and the

receiver chooses a random number rR; the following messages are exchanged between

the three parties using a public key encryption scheme (gen, enc, dec) in which pkTP

and pkS are public encryption keys for the third party and the sender.

S → TP : kS · rS

R→ TP : kR · rR

R→ S : rR

S → TP : rS · r
−1
R

At the end of the above message exchange the third party can compute:

kTP = (kR · rR) · (kS · rS)
−1 · rS · r

−1
R = (kR) · (kS)

−1.
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Security of The Key Generation Protocol

Our adversarial model includes a single malicious party that does not follow the

protocol. We do not protect against colluding parties; if any two parties collude,

they can find the key of the third one. If the third party colludes with the sender

or the receiver, they can compute from their keys the key of the the non-colluding

party. Collusion between sender and receiver is not possible since these parties want

to protect their data from each other. Accordingly, we show that if any of the parties

is acting maliciously it cannot achieve anything more than producing an invalid third

party key and it cannot learn any secret. Since the third party never sends a message

in the protocol, it cannot affect in any way the information that it receives. Its only

power is to compute its own key incorrectly but this way it cannot learn anything

about the sender and receiver keys. The receiver also does not get any message during

the execution of the protocol; thus it cannot learn anything about the sender’s key.

The receiver sends its random number to the sender; he can misbehave and send

an incorrect value. Sending an incorrect value for kR · rR will have the same effect.

However, since the randomness of the receiver is used together with the randomness

from the sender, the receiver cannot influence the computation of the third party

key in any way other than making it produce an invalid key about which he has no

further information. The sender in the protocol gets just a random number from the

receiver; this also does not reveal anything about the key of the receiver. He has

to send rS · r
−1
R to the third party and he can manipulate this value. However, the

key computed for the third party also depends on the randomness of the receiver via

kR · rR; the only thing that the sender can achieve by sending an incorrect value is

to produce an invalid third party key about which he has no further information.

Sending an incorrect value for kS · rS will have the same effect.

Server Preprocessing Step

The server has to generate Bloom filters for the documents to be used for the search

of the encrypted query. Each Bloom filter will contain the unique stems of the words
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in a document. To obtain the Bloom filter indexes for a stem st, the server computes

PH-DSAEP+sk(H(st)), where sk is the server’s key and H is the hash function that

the users will use when sending their queries. He then uses the first k blocks of n

bits from the resulting digest as indexes for the Bloom filter, where k is the number

of hash functions used for the filter and n is the size of the filter.

Security Proof

Theorem 20. The Encrypted Bloom Filter Search is an SADS scheme according to

Definition 15.

Proof. First we consider F . We will show that F is a secure reroutable encryption

where the receiver can find at most H(m), where H is the hash function that we ap-

plied to the query before sending it. The third party receives the encrypted message

from the user and the encrypted result from the sender. Since obtaining any informa-

tion about the result is at least as hard as obtaining information about the encrypted

query because of the encryption schemes that are used, the power of the third party is

equivalent to the power of that of an adversary against PH-DSAEP+ given tpk{S,R}.

Hence Definition 9 is satisfied. The user anonymity according to Definition 10 follows

from the fact that the third party transforms all messages to encryptions with the

server’s key. Therefore F is secure reroutable encryption. If the third party just

reencrypted what was sent by the user to the key of the server without any further

transformation, the server would be able to decrypt it and get H(m). However, in

practice the server is able to obtain even less information about the query, since he

receives only the set of the Bloom filter indexes which arranged in the appropriate

order given the first bits from the ciphertext.

We need to show that G is a secure reroutable encryption scheme and that the

user gets the exact message that was sent from the server. The view of the third

party consists again of the encrypted message and the encrypted result. However,

the third party has no information about the server’s database; accordingly, learning

information about the query is not useful for learning information about the result.

Thus the power of the third party is equivalent to that of an adversary against PH-
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Corpus Size 1K 5K 10K 50K
Creation time 10m7s 44m51s 1h20m20s 6h39m23s

Table 5.1: Creation times for indexes on various corpus sizes

SAEP+ given the transformation key; thus, Definition 9 is satisfied. Similarly to

F , all results are converted to ciphertexts under the key of the recipient user, which

suffices for Definition 10. It follows that G is secure reroutable encryption. Clearly,

the user gets the exact search result message, since the third party only converts the

message to the user’s key.

Finally, the accuracy of the search results — the third requirement for an SADS

scheme — is guaranteed by the upper bound on the false positive rate obtained from

the Bloom filter parameters.

5.1.4 Performance

Our system was implemented in C++. We ran experiments on a Ubuntu 8.04 Linux

PC with a Pentium 4, 3.4 GHz cpu and 2GB of RAM. Four different corpus sizes (1K,

5K, 10K, 50K) were extracted from the Enron Email Dataset, available at http:

//www.cs.cmu.edu/~enron/. Each document was stemmed using the techniques

provides by the Clair library [64], and the stems were inserted into the Bloom filter

index in the same document order. Bloom filter sizes were computed to give a false

positive rate of 0.1% based on the number of stems we wished to be able to index.

Table 5.1 shows the time taken to create indexes for each of our 4 corpuses. As

we can see time scales roughly linearly with the corpus size as one would expect.

Although expensive, these times are a one-time cost for index creation, and can

further be parallelized if need be. Disk space requirement was very low, reaching only

128 Kb for the largest corpus we indexed. Thus, both time and storage costs are

reasonable for use in real-world applications.

Before running queries, we extracted from the stem set a set of query terms, and

grouped them by document frequency within the set. In each experiment, we ran a
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total of 100 queries and took the average time to completion for each query. If we

had less than 100 terms to query on, we cycled through the existing ones, spacing

out identical queries to minimize artificial cache gains. Figure 5-2 shows the average

time per query plotted against the frequency of the query terms being searched on

for all four corpus sizes. The four frequency groups used were

• 0-Freq - Terms which do not appear anywhere in the corpus

• Low Freq - Terms which appear in 1 or 2 documents

• Med Freq - Terms which appear in 45-55% of the corpus

• High Freq - Terms which appear in all but 1 or 2 of the documents

As we can see, there are minor improvements when running queries on infrequent

terms (in other words, running queries with fewer results). This culminates in a

marked improvement for queries which return no results. This is due to the fact

that the bitslice query operation will not need to fetch later bitslices if portions

of the result vector already reveal from earlier indices that certain documents are

not matches. Once a full block of documents is ruled out, we do not fetch slices
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representing later indices from those documents. This is most pronounced for queries

which have no results.

In this and all of our experiments, larger corpus sizes cause queries to take some-

what longer, since more Bloom filters and hence more slices must be checked. How-

ever, the relatively small time differences compared to the size differences indicates

that the time spent running Bloom queries is extremely small compared to other op-

erations such as the exponentiations required to run our encryptions, which do not

vary with corpus size. Figure 5-3 shows the average time per query plotted against

OR queries with varying numbers of terms in them. As one would expect, the larger

the number of terms being queried, the longer it takes to complete a query. Since each

term maintains a distinct result vector, a large number of terms reduces the prob-

ability that documents can be ruled out early and prevent us from having to fetch

later slices. Figure 5-4 shows the average time per query plotted against OR queries

as a ratio against the amount of time it would take to run these queries individually

and union the results afterwards. As we can see the savings are significant, and grow

more so as the number of terms increases. When running these terms in parallel as an

OR query, a slice fetched remains in memory and can be checked against each query
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local server trans-US Europe
Ping time (ms) 0.227 90.615 110.978

Table 5.2: Ping Latency

quickly. When running them separately, they must be fetched multiple times. As

we can also see, this effect grows less pronounced with larger corpus sizes, since with

smaller corpus sizes there is an increased likelihood that slices will remain cached

from previous runs even while running the queries individually. Figure 5-5 shows the

average time per query while varying the Bloom filter size and keeping the corpus

size fixed at 1K. The Bloom filter sizes were calculated to keep the same 0.1% false

positive rate we were aiming for before while supporting a varying number of terms

to insert into the index per document. As one would expect, with larger Bloom filter

sizes, we see an increase in the time per query; however this is still small in relation

to the increase in size. Again, this is because query time is dwarfed by time spent on

cryptographic operations. In general, query times remained below 100ms per query,

and are acceptably small in relation to what one would expect for network delays.

Table 5.2 shows network delays for different typical distances around the world as a

point of comparison. Furthermore, on long running tests, analysis via gprof revealed
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that 64.9% of time was spent running cryptographic operations. For queries, these

are run by the client and trusted party, not the server which would be the bottleneck

in a system with many queries coming from various sources. This technique should

thus introduce an acceptable overhead that makes this a practical system for real

world use.

5.1.5 Document Retrieval

While the described system provides a means of issuing queries to a database and

determining which records match, we still need a means of retrieving those records

without revealing the results to the server. One way to do this is with private in-

formation retrieval techniques, however these are very expensive, and can be even

more expensive when fetching large numbers of records, or records of individually

great size. We present a system that is much more efficient, at the cost of requiring a

trusted third party, and can be modularly implemented to extend any private search

system that returns handles representing matches.
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Figure 5-6: SADS with Document Retrieval.

Systems both with and without document retrieval have practical use. For exam-

ple, a user may simply wish to establish that a server does have documents of interest

to him, or may wish to determine how many are of interest, or learn about certain

qualities concerning the data held there (subject to the search permissions granted

by the server). Furthermore, even in systems that include document retrieval, sepa-

rating this functionality from query is worthwhile. For example, the server may be

running a paid service, and allow the user to operate in an initial stage wherein he

determines what he wants, and a bargaining stage wherein they negotiate pricing,

before purchasing the actual content.

Document retrieval poses its own challenge, especially when the data is not owned

by the party retrieving it. In this scenario, returning additional data is a privacy leak

for the data owner; at the same time, revealing the matching documents to the owner

is a privacy leak for the retriever. Thus, the strongest security we would want to

aim for would require us to touch the contents of the entire database [24]. This is a

prohibitively expensive cost for applications that aim to work in “real time” over a

large data set. One way to avoid this cost is to relax our security definition and allow

leakage of the retrieval pattern (i.e. whether separate retrieval attempts touched the

same documents). In the case of data outsourcing, this amount of privacy leakage

easily suffices, since the untrusted server just searches for and returns the encrypted

files that he stores to the owner who has the corresponding decryption keys [9,22,30].

This approach, however, is not applicable to the case of data sharing, where leaking

the matching documents to the owner reveals more than the result pattern: he also

knows the content of the documents, from which he can infer information about the
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query.

This problem is similar to that addressed by private information retrieval protocols

(PIR) [25, 43, 61], wherein a server holds a set of items from which a user wishes to

retrieve one without revealing which item he is requesting. It differs slightly in that

we wish to retrieve multiple items (corresponding to the search results). It also differs

in that we require that the selected set be certified and that the user does not learn

content of documents outside of it. There are PIR schemes that address this [43],

but at additional cost. Thus, our problem could be addressed by simply running an

appropriate PIR scheme once for each document result. However, PIR is already quite

expensive for a single document, and running them multiply would only aggravate

this.

We address this by constructing a document retrieval scheme that can be used on

top of any other scheme that returns document IDs. Our scheme maintains efficiency

by introducing an intermediary party who stores the encrypted files of the database

and provides the matching ones to the querying party. This party is given limited

trust to perform the search, but he should not be able to decrypt the stored files.

In this case we need to provide the querier with the decryption keys for the result

documents; these are known to the data owner, who must be able to provide the

correct keys obliviously without learning the search results. In Figure 5-7 we present

a protocol that realizes the document retrieval functionality between a data owner

(S) and a client (C) with the help of an intermediary party (P). For the purposed of

this protocol we assume that there is a search functionality EncSearch that returns

the IDs of the documents matching a query from the client. For a query Q we denote

EncSearch(Q) the returned set of document IDs. The database of the server that

is used for the protocol consists of documents D1, . . . , Dn. Our protocol also uses

1-out-of-n oblivious transfer (OT) functionality that allows two parties, one of which

has input an array and the other has input an index in the array, to execute a protocol

such that the latter party learns the array element at the position of his index and the

former learns nothing. There are many existing instantiations of OT protocols, we use

the protocol of [41], which allows best efficiency. The last tool for our constructions
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is an encryption scheme with the following property (defined in more detail in [65],

which also gives an instantiation for such a scheme):

Definition 21 (Encryption Group Property). Let Π = (gen, enc, dec) be a private

key encryption scheme. We say that Π has a group property if enck1(enck2(m)) =

enck1·k2(m) holds for any keys k1, k2 and any message m.

Intuitively, the security of this protocol is based on the secrecy of the permutation

π, known only to P . Because it is not known to S, S cannot correlate the keys k′πi

that are requested by C with the original indices of the matching documents. He

learns only the search pattern of the querying party. We can take two approaches

to mitigate this leakage. The querying party may aggregate requests for decryption

keys to the server for the search results of several queries. Another solution is to

extend the scheme to include additional keys pertaining to no real documents, which

P can add to the sets of requested keys so that S cannot tell how many of the keys he

returns correspond to query results. Step 2 of the re-encryption can be implemented

using protocols for oblivious transfer [3, 29, 60].

5.2 Blind Seer

While SADS is an efficient and effective private search system for smaller sized

databases, it still has a query time that scales linearly with the database size. This

is insufficient for very large database sizes, which generally need to run in sub-linear

time. It also provides no ability for the data owner to control what types of queries

are being issued upon his data. Blind Seer is a database management system provid-

ing query functionality that scales sub-linearly with the number of records, making

it applicable for potentially much larger datasets. It also supports private policy

enforcement, allowing data owners to set rules on what kinds of queries can be run

and enforce them without revealing the nature of the policies, or the queries being

checked against. To do so, it makes use of Bloom filters, as with SADS, but uses Yao

garbled circuit evaluation to check them remotely. The Bloom filters themselves are
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Storage Reencryption (preprocessing phase)

Inputs:

S : D1, . . . , Dn, keys k1, . . . , kn and k′1, . . . , k
′
n;

P : permutation π of length n ;
S, P : (GEN,ENC,DEC) satisfying Definition 21
Outputs:

S : ⊥; P : ENCk′
π(i)

(Di) for 1 ≤ i ≤ n

Protocol:

1. S sends to P ci = ENCki(Di) for 1 ≤ i ≤ n.

2. For each 1 ≤ i ≤ n S and P execute 1-out-of-n OT protocol that allows P to
obtain k′′i = k−1

i · k
′
π(i).

3. For each 1 ≤ i ≤ n P computes ENCk′′i
(ci) = ENCk−1

i
·k′

π(i)
(ENCki(Di)) =

ENCk′
π(i)

(Di).

Document Retrieval

Inputs:

S : keys k′1, . . . k
′
n;

P : permutation π of len n, ENCk′
π(i)

(Di), 1 ≤ i ≤ n;

C : query Q;
S, P, C : search scheme EncSearch that returns IDs of matched documents to P,C.
Outputs:

S : cardinality of the output set EncSearch(Q);
P : IDs of docs matching query Q from EncSearch;
C : the content of the docs matching Q from EncSearch.
Protocol:

1. S, P, C run EncSearch for query Q. Let i1, . . . , iL be the IDs of the matching
documents.

2. P sends Sign(π(i1), . . . , π(iL)) to C together with the encrypted documents
ENCk′

π(i1)
(Di1), . . . , ENCk′

π(iL)
(DiL).

3. C sends Sign(π(i1), . . . , π(iL)) to S.

4. S verifies Sign(π(i1), . . . , π(iL)) and returns k′π(i1), . . . , k
′
π(iL)

.

5. C decrypts ENCk′
π(i1)

(Di1), . . . , ENCk′
π(iL)

(DiL) to obtain the result documents.

Figure 5-7: Protocol for Document Retrieval

stored in a tree structure, allowing a query to find matches without touching all of

the records in the database.
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5.2.1 Participants

Recall, our system consists of four participants: server S, client C, index server IS,

and query checker QC. The server owns a database DB, and provides its encrypted

searchable copy to IS, who obliviously services C’s queries. QC, a logical player who

can be co-located with and may often be an agent of S, privately enforces a policy

over the query. This is needed to ensure control over hidden queries from C. Player

interaction is depicted in Figure 5-8.

Figure 5-8: High-level overview of Blind Seer. There are three different operations
depicted: preprocessing (step 0), database searching (step 1-4) and data modifications
(step 5).

Our approach. We present a high-level overview of our approach and refer the

reader to Section 5.2.2 for technical details. We adhere to the following general ap-

proach of building large secure systems, in which full security is prohibitively costly:

in a large problem, we identify small privacy-critical subproblems, and solve those

securely (their outputs must be of low privacy consequence, and are handled in plain-

text). Then we use the outputs of the subtasks (often only a small portion of them

will need to be evaluated) to complete the overall task efficiently.

We solve the large problem (encrypted search on large DB) by traversing an
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encrypted search tree. This allows the subtasks of privately computing whether a

tree node has a child matching the (arbitrarily complex) query to be designated as

security-critical. Further, unlike the protected input and the internals of this subtask,

its output, obtained in plaintext by IS, reveals little private information, but is criti-

cal in pruning the search tree and achieving efficient sublinear (logarithmic for some

queries) search complexity. Putting it together, our search is performed by traversing

the search tree, where each node decision is made via very efficient secure function

evaluation (SFE).

We use Bloom filters (BF) to store collections of keywords in each tree node.

Bloom filters serve this role well because they support small storage, constant time

access, and invariance of access patterns with respect to different queries and match

outputs. For SFE, we use state-of-the-art Yao’s garbled circuits.

Because of SFE’s privacy guarantee in each tree node, the overall leakage (i.e.

additional information learned by the players) essentially amounts to the traversal

pattern in the encrypted search tree.

We discuss technical details of these and other aspects of the system, such as

encrypted search tree construction, data representation, policy checking, etc., in Sec-

tion 5.2.2. We stress that many of these details are technically involved.

5.2.2 Basic System Design

In this section, we will begin by describing the basic system design supporting only

simple private query. In the next section, we will augment this basic design with more

features.

BF Search Tree

Our key data structure enabling sublinear search is a BF search tree for the database

records. We stress that there is only one global search tree for the entire database. Let

n be the number of database records and T be a balanced b-ary tree of height logb n

(we assume n = bz from some positive integer z for simplicity). In our system, b is set
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to 10. In the search tree, each leaf is associated with each database record, and each

node v is associated with a Bloom filter Bv. The filter Bv contains all the keywords

from the (leaf) records that the node v have (as itself or as its descendants). For

example, if a node contains a record that has Jeff in the fname field, a keyword α =

‘fname:Jeff’ is inserted to Bv. The length ℓv of Bv is determined by the upper bound

of the number of possible keywords, derived from DB schema, so that two nodes of

the same level in the search tree have equal-length Bloom filters. The insertion of

keywords is performed by shrinking the output of the hash functions ζℓv(H(α)) to fit

in the corresponding BF length ℓv. Here, H is the set of hash functions associated

with the root node BF. See Figure 5-9.

BF1,N

BF1,N/10 BF(9N/10)+1,N

BF1

BF1,10

...

BF2 BF10
...

...

BF...

BF...

BF... BF...... BFN-9

BFN-9,N

BFN-8 BFN
...

...

...

...

R1 R2 R10 R... R... R... RN-9 RN-8 RN

BF tree

Records

..
.

...

Let (Ri, . . . , Rn) be the overall database records. The Bloom filter BFa,b contains all the

keywords of records Ra, Ra+1, . . . , Rb.

Figure 5-9: Index structure: Bloom-filter based search tree.

Search using a BF search tree. Consider a simple recursive algorithm Search

below. Let α and β be keywords and r the root of the search tree. Note that

Search(α∧β, r) will output all the leaves (i.e., record locations) containing both key-

words α and β; any ancestor of a leaf has all the keywords that the leaf has, and

therefore there should be a search path from the root to each leaf containing α and

β. This algorithm can be easily extended to searching for any monotone Boolean

formula of keywords.

Search(α∧β, v):

If the BF Bv contains α and β, then
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If v is a leaf, then output {v}.

Otherwise, output
⋃

c: children of v Search(α∧β, c).

Otherwise, output ∅.

Preprocessing

Roughly speaking, in this phase, S gives an encrypted DB to IS. To be more specific,

by executing the following protocols, the two parties encrypt and permute the records,

create a search tree for the permuted records, and prepare record decryption keys.

Encrypting database index/records. In this step, the server first permutes its

DB to hide information of the order of records in the DB and then creates BF-search

tree on this permuted DB; these DB and search tree are encrypted and sent to the

index server.

1. (Shuffle and encrypt the records.) The server generates a key pair (pk , sk)

for a public-key semi-homomorphic (e.g., additively homomorphic) encryption

scheme (Gen,Enc,Dec). Given a database of n records, the server S randomly

shuffles the records. Let (R1, . . . , Rn) be the shuffled records. S then chooses a

random string si, and computes s̃i←Encpk (si) and R̃i = G(si)⊕Ri, where G is

a PRG.

2. (Encrypt the BF search tree.) S constructs a BF search tree T for the permuted

records (R1, . . . , Rn). It then chooses a key k at random for a PRF F . The

Bloom filter Bv in each node v is encrypted as follows: B̃v = Bv ⊕ Fk(v). (This

encryption can be efficiently decrypted inside SFE evaluation by GC.)

3. (Share) Finally, the S sends the (permuted) encrypted records (pk , (s̃1, R̃1), . . . ,

(s̃n, R̃n)) and the encrypted search tree {B̃v : v ∈ T} to the index server. The

client will receive the PRF key k, and the hash functions H = {hi}
η
i=1 used in

the Bloom filter generation.

Preparing record decryption keys. To save the decryption time in the on-line

phase, the index server and the server precompute record decryption keys as follows:
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(Blind the decryption keys) The index server IS chooses a random permutation

ψ : [n]→[n]. For each i ∈ [n], it chooses ri randomly and computes s̃′ψ(i)← s̃i ·

Encpk (ri). Then, it sends (s̃′1, . . . , s̃
′
n) to S. Then, the server decrypts each s̃′i to

obtain the blinded key s′i. Note that it holds s′ψ(i) = siri.

Search

Our system supports any SQL query that can be represented as a monotone Boolean

formula where each variable corresponds to one of the following search conditions:

keyword match, range, and negation. So, without loss of generality, we support non-

monotone formulas as well, modulo possible performance overhead (see how we sup-

port negations below). See Figure 5-10 as an example.

Query: SELECT * FROMmai n WHERE

∧

∧∨

Logic Circuit :

( f name = JEFF OR f name = JOHN) AND zi p = 34301 AND i ncome 200

T1 :f name = JEFF T3 :zi p = 34301

T4 :i ncome 200

Circuit :

=⇒

T2 :f name = JOHN

∧

∧∨

T1
T1 T2 T3 T4

T2 T3 T4

Figure 5-10: High level circuit representation of a query.

Traversing the search tree privately. The search procedure starts with the client

transforming the query into the corresponding Boolean circuit. Then, starting from

the root of the search tree, the client and the index server will compute this circuit

Q via secure computation. If the circuit Q outputs true, the parties visit all the

children of the node, and again evaluate this circuit Q on those nodes recursively,

until they reach leaf nodes; otherwise, the traversal at the node terminates. Note

that evaluation of Q outputs a single bit denoting the search result at that node. It

is fully secure, and reveals no information about individual keywords.
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In order to use secure computation, we need to specify the query circuit and

the inputs of the two parties to it. However, since the main technicalities lie in

constructing circuits for the variables corresponding to search conditions, we will

describe how to construct those sub-circuits only; the circuit for the Boolean formula

on top of the variables is constructed in a standard manner.

Keyword match condition.

We first consider a case where a variable corresponds to a keyword match condition.

For example, in Figure 5-10 the variable T1 indicates whether the Bloom filter Bv in

a given node v contains the keyword α = ‘fname:JEFF’. Consider the Bloom filter

hash values for the keyword α, and let Z denote the positions to be checked, i.e.,

Z := ζℓv(H(α)). If the Bloom filter Bv contains the keyword α, the projected bits

w.r.t. Z should be all set, that is, we need to check

Bv↓Z
?
= 1η. (5.1)

Recall that the index server has an encrypted Bloom filter B̃v = Bv ⊕ Fk(v), and

the client the PRF key k and the hash functions H = {hi}
η
i=1. Therefore, the circuit

to be computed should first decrypt and then check the equation (5.1). That is, the

keyword match circuit looks as follows:

KM((b1, . . . bη), (r1, . . . , rη)) =

η
∧

i=1

(bi⊕ri).

Here, (b1, . . . , bη) is from the encrypted BF and (r1, . . . , rη) from the pseudorandom

mask. That is, to this circuit KM, the index server will feed B̃v ↓Z as the first part

(b1, . . . , bη) of the input, and the client will feed Fk(v)↓Z as the second (r1, . . . , rη).

In order that the two parties may execute secure computation, it is necessary that

the client compute Z and send it (in plaintext) to the index server.

Range/negation condition. Consider the variable T4 in Figure 5-10 for example.

Using the technique from [65], we augment the BF to support inserting a number
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x ∈ Z2n , say with n = 32, and checking if the BF contains a number in a given range.

To insert an integer a in a BF, all the canonical ranges containing a are added in

the filter. A canonical range with level i is [x2i, (x+ 1)2i) for some integer x, so for

each level, there is only one canonical range containing the number a. In particular,

for each i ∈ Zn, compute xi such that a ∈ [xi2
i, (xi+1)2i) and insert ‘r:income:i:xi’

to the Bloom filter.

Given a range query [a, b), we check whether a canonical range inside the given

query belongs to the BF. In particular, for each i ∈ Zn, find, if any, the minimum yi

such that [yi2
i, (yi + 1)2i) ∈ [a, b) and the maximum zi such that [zi2

i, (zi + 1)2i) ∈

[a, b); then check if the BF contains a keyword ‘r:income:i:yi’ or ‘r:income:i:zi’. If

any of the checks succeeds for some i, then output yes; otherwise output no. Therefore,

a circuit for a range query is essentially ORs of keyword match circuits.

For example, consider a range query with Z24 . When inserting a number 9, the

following canonical ranges are inserted: [9, 10), [8, 10), [8, 12), [8, 16). Given a range

query [7, 11), the following canonical ranges are checked: [7, 8), [10, 11), [8, 10). We

have a match [8, 10).

Negation conditions can be easily changed to range conditions; for example, a

condition ‘NOT work hrs = 40’ is equivalent to ‘work hrs ≤ 39 OR work hrs ≥ 41’.

Overall procedure in a node. In summary, we describe the protocol that the client

and the index server execute in a node of the search tree.

1. The client constructs a query circuit corresponding to the given SQL query.

Then, it garbles the circuit and sends the garbled circuit, Yao keys for its input,

and the necessary BF indices.

2. The client and the index server execute OT so that IS obtains Yao keys for its

input (i.e., encrypted BF). Then, the index server evaluates the garbled circuit

and sends the resulting output Yao key to the client.

3. The client decides whether to proceed based on the result.

Record Retrieval. When the client and the index server reach some of the leaf
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nodes in the tree, the client retrieves the associated records. In particular, if com-

puting the query circuit on the ith leaf outputs success, the index server sends

(ψ(i), ri, R̃i) to the client. Then, the client sends ψ(i) to S, and gets back s′ψ(i).

Note that it holds s′ψ(i) := siri. The client C decrypts R̃i using si and obtains the

output record.

5.2.3 Advanced features

We now discuss advanced features such as query policies, and one-case indistinguisha-

bility. We also overview insert/delete/update operations from the server.

Policy Enforcement

The policy enforcement is performed through a three-party protocol among the query

checker QC (holding the policy), the client C (holding the query), and the index server

IS. A policy is represented as a circuit that takes a query as input and outputs accept

or reject. In our system, QC garbles this policy circuit, and IS evaluates the garbled

policy circuit on the client’s query. A key idea here is to have the client and the

query checker share the information of input/output wire key pairs in this garbled

policy circuit; then, the client can later construct a garbled query circuit (used in the

search tree traversal) to be dependent on the output of the policy circuit. Assuming

semi-honest security, this sharing of information can be easily achieved by having the

client choose those key pairs (instead of QC) and send them to QC. The detailed

procedure follows.

Before the tree search procedure described in the previous section begins, the client

C, the query checker QC, and the index server IS execute the following protocol.

1. Let q = (q1, . . . , qm) ∈ {0, 1}
m be a string that encodes a query. The client

generates Yao key pairs Wq = ((w0
1, w

1
1), . . . , (w

0
m, w

1
m)) for the input wires of

the policy circuit, and a key pair Wx = (t0, t1) for the output wire. The client

sends the key pairs Wq and Wx to query checker QC. It also sends the index

server the garbled input q̃ = (wq11 , w
q2
2 , . . . , w

qm
m ).
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2. Let P be the policy circuit. QC generates a garbled circuit P̃ using Wq as input

key pairs, and Wx as the output key pair (QC chooses the other key pairs of P̃

at random). Then, QC sends P̃ to the index server.

3. The index server evaluates the circuit P̃ on q̃ obtaining the output wire key

x̃ = P̃ (q̃). Note that x̃ ∈Wx.

After the execution of this protocol, the original search tree procedure starts as

described before. However, the procedure is slightly changed when evaluating a leaf

node as follows:

1. Let Q′(b, r, x) = Q(b, r) ∧ x be an augmented circuit, where Q is the query

circuit, b and r are the inputs from IS and C respectively, and x is a bit rep-

resenting the output from the policy circuit. The client C generates a garbled

query circuit Q̃′ using wire key pair Wx for the bit x. Then, it sends (Q̃′, r̃) to

the index server, where r̃ is the garbled input of r.

2. After obtaining the input keys b̃ for b from OT with C, the index server IS

evaluates Q̃′(b̃, r̃, x̃) and sends the resulting output key to the client. Recall

that it has already evaluated the garbled policy circuit P̃ (q̃) and obtained x̃.

3. The client checks the received key and decides to accept or reject.

Regarding privacy, the client learns nothing about the policy, since it never sees

the garbled policy circuit. The index server obtains the topology of the policy circuit

(from the garbled policy circuit).

Note that the garbled policy circuit is evaluated only once, before the search tree

execution starts. Therefore, the policy checking mechanism introduces only a small

overhead. It is also worth observing that, so far, we have not assumed any restriction

on the policy to be evaluated. Since Yao-based computation can compute any function

represented as a circuit, in principle, we could enforce any policy computable in a

reasonable time (as long as it depends only on the query).
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One-case Indistinguishability

So far, in our system the index server learns how many records the client retrieved from

the query. In many use cases, this leakage should be insignificant to the index server,

in particular, when the number of returned results is expected to be, say, more than

a hundred. However, there do exist some use cases in which this leakage is critical.

For example, suppose that a government agent queries the passenger database of an

airline company looking for persons of interest (POI). We assume that the probability

that there is indeed a POI is small, and the airline or the index server discovering that

a query resulted in a match may cause panic. Motivated from the above scenario, we

consider a security notion which we call one-case indistinguishability.

Motivation. Consider a triple (q,D0, r) where q is a query, and D0 is a database

with the query q resulting in no record, but r satisfies q. Let D1 be a database that

is the same as D0 except that a record is randomly chosen and replaced with r. Let

view0 (resp. view1) denote the view of IS when the client runs a query q with the

database D0 (resp., D1).

A natural start would be to require that for any such (q,D0, r), the difference

between the two distributions view0 and view1 should be small ǫ (in the computa-

tional sense), which we call ǫ zero-one indistinguishability. However, it does not seem

possible to achieve negligible difference ǫ without suffering significant performance

degradation (in fact, our system satisfies this notion for a tunable small constant

ǫ). Unfortunately, this definition does not provide a good security guarantee when

the difference ǫ is non-negligible, in particular, for the scenario of finding POIs. For

example, let Π be a database system with perfect privacy and Π′ be the same as Π

except that when it is 1-case (i.e., a query with one result record), the client sends the

index server the message “the 1-case occurred” with non-negligible probability. It is

easy to see that Π′ satisfies the definition with some non-negligible ǫ, but it is clearly

a bad and dangerous system.

One-case indistinguishability. Observe that in the use case of finding POIs,

we don’t particularly worry about “the 0-case”, that is, it is acceptable if the airline
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company sometimes knows that a query definitely resulted in no returned record.

Motivated by this observation, this definition intuitively requires that if the a-priori

probability of a 1-case is δ, then a-posteriori probability of a 1-case is at most (1+ǫ)δ.

For example, for ǫ = 1, the probability could grow from δ to 2δ, but never more

than that, no matter what random choices were made. Moreover, if the a-priori

probability was tiny, the a-posteriori probability remains tiny even if unlucky random

choices were made. In particular, consider (q,D0, r) and D1 as before. Now consider

a distribution E that outputs (b, v) where b ∈ {0, 1} chosen with Pr[b = 1] = δ, and

v is the view of the index server when the query q is run on Db. The system satisfies

ǫ one-case indistinguishability if for any (q,D0, r), δ and v, it holds

Pr
E
[b = 1|v] ≤ (1 + ǫ)δ.

Augmenting the design. To achieve these indistinguishability notions, we change

the design such that the client chooses a small random number of paths leading to

randomly selected leaves. In particular, let D be the probability distribution on the

number of random paths defined as follows:

Distribution D: For 1 ≤ x ≤ α− 1, PrD[x] = 1/α.

For x ≥ α, PrD[x] = (1/α) · 1/2x−α+1.

Here, α is a tunable parameter. The client chooses x←D, and then it also chooses x

random indices (j1, . . . , jx)← [n]x. When handling the query, the client superimposes

the basic search procedure above with these random paths. Our system is 1/α zero-

one indistinguishable and ǫ one-case indistinguishable with ǫ = 1. Intuitively, the

leakage to the index server is the tree traversal pattern, and these additional random

paths make the 0-case look like 1-case with a reasonably good probability.

If we slightly relax the definition and ignore views taking place with a tiny prob-

ability, say 2−20, we can even achieve both 1-case and 0-case indistinguishability at

the same time; the probability of the number x of fake paths is now 1/2|x−α|+2 with
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a parametrized center α, say α = 20 (except when x = 0, i.e., Pr[x = 0] = 1/2α+1).

Against the server. One-case indistinguishability against the server is easily

achieved by generating a sufficient number of dummy record decryption keys in the

preprocessing phase; the index server will let the client know the (permuted) positions

of the dummy keys. When zero records are returned from a query, the client asks for

a dummy decryption key from the server. For brevity, we omit the details here, and

exclude this feature in the security analysis.

Delete, Insert, and Update from the Server

Our system supports a basic form of dynamic deletion, insertion, and update of a

record which is only available to the server. If it would like to delete a record Ri, then

the server sends i to the index server, which will mark the encrypted correspondent

as deleted. For newly inserted (encrypted) records, the index server keeps a separate

list for them with no permutation involved. In addition, it also keeps a temporary

list of their Bloom filters. During search, the temporary list is also scanned linearly,

after the tree. When the length of the temporary Bloom filter list reaches a certain

threshold, all the current data is re-indexed and a new Bloom filter tree is constructed.

The frequency of rebuilding the tree is of course related to the frequency of the

modifications and also the threshold we choose for the temporary list’s size. Our

tree building takes one hour/100M records. Finally, update is simply handled by

atomically issuing a delete and an insert command.

We note that updates is not our core contribution; we implement and report it

here, but don’t focus on its design and performance. A more scalable update system

would use a BF tree rather than a list; its implementation is a simple modification to

our system.

5.2.4 Security Analysis

We consider static security against a semi-honest adversary that controls at most

one participant. We first describe an ideal functionality Fdb parameterized with a
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Functionality Fdb

Parameter: Leakage profile.

Init: Given input (D,P ) from S, do the following:

1. Store the database records D and the policy P . Let n be the number records
in D. Shuffle D and let (R1, . . . , Rn) be the shuffled records. Choose a ran-
dom permutation π : [n]→[n]. Construct a BF-search tree for (R1, . . . , Rn)
using the hash functions H.

2. To handle the client’s queries, it chooses hash functions H = {hi :
{0, 1}∗→[ℓ]}ηi=1 for Bloom filters with parameters (η, ℓ) to maintain false
positive rate of 10−6.

3. Finally, return a DONEinit and the leakage to all parties.

Query: Given input q from C, do the following:

1. Check if q is allowed by P . If the check fails, then disallow the query by
setting y = ∅. Otherwise, for each i ∈ [n], let Bi ∈ {0, 1}

ℓ′ be the Bloom
filter associated with the ith leaf in the BF tree. For i = 1, . . . , n, check if
the query passes according to the filter Bi; if so, add (i, Ri) to the result set
Y .

2. Return Y to C and return a DONEquery message and leakage to all parties.

Figure 5-11: The Ideal Functionality Fdb

leakage profile in Figure 5-11, and then show that our system securely realizes the

functionality where the leakage is essentially the search tree traversal pattern and the

pattern of accessed BF indices.

For the sake of simplicity, we only consider security where there are no insert/delete/update

operations,1and unify the server and the query checker into one entity. We also assume

that all the records have the same length.

We use the DDH assumption (for ElGamal encryption and Naor-Pinkas OT), and

our protocols are in the random oracle model (for Naor-Pinkas OT and OT extension).

We also use PRGs and PRFs, and those primitives are implemented with AES.

1As access patterns are revealed, additional information for inserted/deleted/updated records is
leaked. For example, C or IS may learn whether a returned record was recently inserted; they also
may get advantage in estimating whether the query matched a recently deleted record. We stress
that this additional leakage can be removed by re-running the setup of the search structure.
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5.2.5 Security of Our System

With empty leakage profile, the ideal functionality Fdb in Figure 5-11 captures the

privacy requirement of a database management system in which each query is handled

deterministically. The client obtains only the query results, but nothing more. The

index server and the server learn nothing. Realizing such a functionality incurs a

performance hit. Our system realizes the functionality Fdb with the leakage profile

described below. The security of our system can be proved from the security of the

secure computation component, and is deferred to the full version.

Leakage in Init. Since the server has all the input, the leakage to S is none. The

leakage to C is n, that is, the total number of records. The leakage to IS is n and

|R1|.

Leakage to S in each query. We first consider the leakage to the server. The

server is involved only when the record is retrieved. Let ((i1, Ri1), . . . , (ij , Rij)) be

the query results. Then, the leakage to the server is (π(i1), π(i2), . . . , π(ij)).

Leakage to C in each query. The leakage to the client is the BF-search tree

traversal paths, that is, all the nodes v in which the query passes according to the

filter Bv.

Leakage to IS in each query. The leakage to the index server is a little more than

that to the client. In particular, the nodes in the faked paths that the client generates

due to one-case indistinguishability are added to the tree search pattern. Also, the

topology of the query circuit and of the policy circuit is leaked to IS as well. Finally,

the BF indices are also revealed to IS (although not the BF content), but assuming

that the hash functions are random, those indices reveal little information about the

query. However, based on this, after observing multiple queries, IS can infer some

correlations a C’s queries’ keywords.

5.2.6 Discussion

Leakage to the server. We could wholly remove the leakage to the server by

modifying the protocol as follows:
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Remove the decryption key preparation (and blinded keys) in the prepro-

cessing; instead, the client receives the secret key sk from the server. The

client (as the receiver) and the index server (as the sender) execute obliv-

ious transfer at each leaf of the search tree. The choice bit of the client is

whether the output of the query circuit is success. The two messages of

the index server is the encrypted record and a string of zeros.

However, we believe that it is important for the server to be able to upper-bound the

number of retrieved records. Without such control, misconfiguration on the query

checker side may allow overly general queries to be executed, causing too many rows

to be returned to the client; in contrast, in our approach, S releases record decryption

keys at the end, and therefore it is easy to enforce the sanity check of the total number

of returned records. Moreover, if S has a commercial DB, it may be convenient to

implement payment mechanism in association with key release by S.

OR queries. For OR queries passing the policy, our system leaks extremely small

information. In particular, the leakage to the client is minimal, as the tree traversal

pattern can be reconstructed from the returned records. As a consequence, if the

client retrieves only document ids, the client learns nothing about the results for

individual terms in his query. The leakage to the index server is similar. We believe

that the topology of the SQL formula and the policy circuit reveals small information

about the query and the policy. If desired, we can even hide those information using

universal circuits [55] with a circuit size blow-up of a logarithmic multiplicative factor.

AND queries. For AND queries, the tree traversal pattern consists of two kinds

of paths. The first are, of course, the paths reaching the leaves (query results). The

second stop at some internal nodes due to our BF approach2; although the leakage

from this pattern reveals more information about which node don’t contain a given

keyword, we still believe this leakage is acceptable in many use cases.

2For example, consider a query q that looks for two keywords, say, q = α∧β. Let v be some node
and c1, . . . , cb be the children of v in the search tree. If c1 contains only α, and c2 contains only β,
then v will contain both α and β, and so the node v will pass the query; however, neither c1 nor c2
would.
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We stress that the second leakage is related to the fact that a large linear running

time seems to be inherent for some AND queries, irrespective of privacy, but depend-

ing only on the underlying database (see Section 5.2.11 for more detail). Therefore,

if we aim at running most AND queries in sublinear time, the running time will

inherently leak information on the underlying DB.

5.2.7 Implementation

We built a prototype of the proposed system to evaluate its practicality in terms of

performance. The prototype was developed from scratch in C++ (a more than a year

effort, almost two years including designing) and consists of about 10KLOC. In this

section, we describe several interesting parts of the implementation that are mostly

related to the scalability of the system.

Crypto building blocks. We developed custom implementations for all the cryp-

tographic building blocks previously described. More specifically, we used the GNU

Multiple Precision (GMP) library to implement oblivious transfers, garbled circuits

and the semi-homomorphic key management protocol. The choice of GMP was mostly

based on thread-safety. As for AES-based PRF, we used the OpenSSL implementa-

tion because it takes advantage of the AES-NI hardware instructions, thus delivering

better performance.

Parallelization. The current implementation of Blind Seer supports parallel prepro-

cessing and per-query threading when searching. For all the multi-threading features

we used Intel’s Threading Building Blocks (TBB) library. To enable multi-threaded

execution of the preprocessing phase we created a 3-stage pipeline. The first stage

is single-threaded and it is responsible for reading the input data. The second stage

handles record preprocessing. This stage is executed in parallel by a pool of threads.

Finally, the last stage is again single-threaded and is responsible for handling the en-

crypted records. Concurrently supporting multiple queries was straightforward as all

the data structures are read-only. To avoid accessing the Bloom filter tree while it is

being updated by a modification command, we added a global writer lock (which does
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not block reads). Since we only currently support parallelization on a one-thread-per-

query basis, it only benefits query throughput, not latency. However, long-running

queries involve a large amount of interaction between querier and server that is inde-

pendent and thus amenable to parallelization. The improvement we see in throughput

is a good indicator for how much we could improve latency of slow queries by applying

parallelization to these interactions.

Bloom filter tree. This is the main index structure of our system which grows

by the number of records and the supported features (e.g., range). For this reason,

the space efficiency of the Bloom filter tree is directly related to the scalability of

the system. In the current version of our system we have implemented two space

optimizations: one on the representation of the tree and another on the size of Bloom

filter in each tree node.

Firstly, we avoided storing pointers for the tree representation, which would result

in wasting almost 1G of memory for 100M records. This is achieved by using a flat

array with fixed size allocations per record.

Secondly, we observed that naively calculating the number of items stored in

the inner nodes by summing the items of their children is inefficient. For example,

consider the case of storing the ‘Sex’ field in the database, which has only two possible

values. Each Bloom filter in the bottom layer of the tree (leaves) will store either

the value sex:male or sex:female. However, their parent nodes will keep space for 10

items, although the Sex field can have only two possible values. Thus, we estimate

the number of items that need to be stored in a given level as the minimum between

the cardinality of the field and the number of leaf-nodes of the current subtree. This

optimization alone reduced the total space of the tree by more than 50% for the

database we used in our evaluation.

Keyword search and stemming. Although we focus on supporting database

search on structured data, our underlying system works with collections of keywords.

Thus, it can trivially handle other forms of data, like keyword search over text docu-

ments, or even keyword search on text fields of a database. We actually do support

the latter – in our system we provide this functionality using the special operator
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CONTAINED_IN(column, keyword). Also, we support stemming over keyword search by

using the Porter stemming algorithm [1].

5.2.8 Evaluation

In this section, we evaluate our system. We first evaluate our system as a compari-

son with MySQL as a baseline, to establish what the performance cost of providing

private search is. We then generalize the performance expectations of our system by

performing a theoretical analysis based on the type of queries.

Dataset. The dataset we use in all of our tests for the first part of the evaluation is

a generated dataset using learned probability distributions from the US census data

and text excerpts from “The Call of the Wild”, by Jack London. Each record in our

generated database contains personal information generated with similar distributions

to the census. It also contains a globally unique ID, four fields of random text excerpts

ranging from 10−2000 bytes from “The Call of the Wild”, and a “fingerprint” payload

of random data ranging from 50000 to 90000 bytes. The payload is neither searchable

nor compressible, and is included to emulate reasonable data transfer costs for real-

world database applications. The census data fields are used to enable various types

of single-term queries such as term matching and range queries, and the text excerpts

for keyword search queries.

Testbed. Our tests were run on a four-computer testbed that Lincoln Labs set up

and programmed for the purpose of testing our system and comparing it to MySQL.

Each server was configured with two Intel Xeon 2.66 Ghz X5650 processors, 96GB

RAM (12x8 GB, 1066 MHz, Dual Ranked LV RDIMMs), and an embedded Broadcom

1GB Ethernet NICS with TOE. Two servers were equipped with a 50TB RAID5 array,

and one with a 20TB array. These were used to run the owner and index server.

MySQL was configured to build separate indices for each field. DB queries were not

known in advance for MySQL or for our system.

5.2.9 Querying Performance
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Figure 5-12: Comparison with MySQL for single-term queries that have a single result
(first four bar groups) and 2 to 10 results (last four bar groups). The search terms
are either strings (str) or integers (int) and the returned result is either the id or the
whole record (star).

Single term queries with a small result set. Figure 5-12 shows a comparison

of single term queries against MySQL. We expect the run time for both our system

and MySQL to depend primarily on the number of results returned. The first four

pairs show average and standard deviation for query time on queries with exactly

one result in the entire database, and the latter four for queries with a few (2-10)

results. Queries are further grouped into those which are run on integer fields (int)

and string fields (str), and those which return only record ids (id) and those which

return full record content (star). For each group, we executed 200 different queries

to avoid caching effects in MySQL.

As we can see, for single result set queries, our system is very consistent. Unlike

with MySQL, the type of query has no effect on performance, since all types are

stored and queried the same way in the underlying Bloom filter representation. Also,

the average time is dominated by the average number of results, which is slightly

larger for integer terms. Unexpectedly, there is also no performance difference for

returning record ids versus full records. This is likely because for a single record, the

performance is dominated by other factors like circuit evaluation, tree traversal and

key handling, rather than record transfer time. Overall, aside from some bad-case

scenarios, we are generally less than 2× slower.

Variation in performance of our system is much larger when returning a few re-
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Figure 5-13: Comparison of the scaling factor with respect to the result set size, using
single-term queries. Both MySQL and Blind Seer scale linearly, however, Blind Seer’s
constant factor is 15× worse (mostly due to increased network communication).

sults. This is because the amount of tree traversal that occurs depends on how much

branching must occur. This differs from single result set queries, where each tree

traversal is a single path. With the larger result sets, we can also begin to see in-

creased query time for full records as opposed to record ids, although it remains a

small portion of the overall run time.

Scaling with result set size. Figure 5-13 expands on both systems’ performance

scaling with the number of results returned. This experiment is also run with single

term queries, but on a larger range of return result set sizes. As one would expect,

the growth is fairly linear for both systems, although our constant factor is almost

15× worse. This indicates that for queries with a small result set, the run time is

dominated by additive constant factors like connection setup for which we are not

much slower than MySQL. However, the multiplicative constant factors involved in

our interactive protocol are much larger, and grow to dominate run time for longer

running queries. This overhead is mostly due to increased network communication

because of the interactiveness of the search protocol. Although this is inherent, we

believe that there is room for implementation optimizations that could lower this

constant factor.

Boolean queries. Figure 5-14 shows our performance on various Boolean queries.

The first three groups show average query time for 2-term AND queries. In each

89



and�1�1 and�1�100 and�1�10K dnf�mon dnf�neg

T
o

ta
l 
q

u
e

ry
 t

im
e

 (
s
e

c
)

0

1

10

100

1000

MySQL

BlindSeer

Figure 5-14: Boolean queries having a few results (< 10). The first three are two-term
AND queries where one of the terms has a single result and the other varies from 1
to 10K results. The fourth group includes monotonic DNF queries with 4-9 terms,
the last includes 5-term DNF queries with negations.

case, one term occurs only once in the database, resulting in the overall Boolean

AND having only one match in the database. However, the second term increases

up to 10000 results in the database. As we can see, our query performance does not

suffer; as long as at least one term in a Boolean is infrequent we will perform well.

The next two groups are more complex Boolean queries issued in disjunctive normal

form, the latter including negations. The first one includes queries with 4-9 terms,

and the second one, with 5 terms. These incur a larger cost, as the number of a

results is larger and possibly a bigger part of the tree is explored. As we can see,

MySQL incurs a proportionally similar cost.

We note that the relatively large variation shown in the graph is due to the

different queries used in our test. Variation is much smaller when we run the same

query multiple times.

Parallelization. We have implemented a basic form of parallelization in our system,

which enables it to execute multiple queries concurrently. As there are no critical

sections or concurrent modifications of shared data structures during querying, we

saw the expected linear speedup when issuing many queries up to a point where

the CPU might not be the bottleneck anymore. In our 16-core system, we achieved

approximately factor 6x improvement due to this crude parallelization.

Discussion. We note several observations on our system, performance, bottlenecks,
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etc.

Firstly, we note that our experiments are run on a fast local network. A natural

question is how this would be translated into the higher-latency lower bandwidth set-

ting. Firstly, there will be performance degradation proportional to bandwidth reduc-

tion, with the following exception. We could use the slightly more computationally-

expensive, but much less communication intensive GESS protocol of [52] or its re-

cent extension sliced-GESS [53], instead of Yao’s GC. In reduced-bandwidth settings,

where bandwidth is the bottleneck, sliced-GESS is about 3x more efficient than most

efficient Yao’s GC. Further, we can easily scale up parallelization factor to mitigate

latency increases. Looking at this in a contrapositive manner, improving network

bandwidth and latency would make CPU the bottleneck.

All search structures in our system are RAM-resident. Only the record payloads

are stored on disk. Thus, disk should not be a bottleneck in natural scenarios.

5.2.10 Other Operations

Although querying is the main operation of our system, we also include some results

of other operations. First, we start with the performance of the setup phase (prepro-

cessing). Blind Seer took roughly two days to index and encrypt the 10TB data. As

mentioned before, this phase is executed in parallel and is computationally efficient

enough to be IO-bounded in our testbed. We note that the corresponding setup of

MySQL took even longer.

Policy enforcement was another feature for which we wanted to measure overhead.

However, in our current implementation, it cannot be disabled (instead, we use a

dummy policy). We experimentally measured the overhead of enforcing the dummy

policy versus more complex ones, but there was no noticeable difference. We plan to

add the functionality to totally disable policy enforcement – because it is an optional

feature – and measure its true performance overhead. Our expectation is that it will

be minimal.

Finally, we performed several measurements for the supported modification com-

mands: insert, update and delete. All of them execute in constant time in the order
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of a few hundred microseconds. The more expensive part though is the periodic

re-indexing of the data that merges the temporary Bloom filter list in the tree (see

Section 5.2.3). In our current prototype, we estimated this procedure to take around

17 minutes, while avoiding re-reading the entire database. This can be achieved by

letting the server store some intermediate indexing data during the initial setup and

reusing it later when constructing the Bloom filter tree.

5.2.11 Theoretical Performance Analysis

In this section, we discuss the system performance for various queries by analyzing

the number of visited nodes in the search tree. Let α1, . . . , αk be k single term queries,

and for each i ∈ [k], let ri be the number of returned records for the query αi, and n

be the total number of records.

OR queries. Our system shows great performance with OR queries. In particular,

consider a query α1 ∨ · · · ∨ αk. The number of visited nodes in the search tree is at

most r log10 n, where r = r1 + . . .+ rk is the number of returned records. Therefore,

performance scales with the size of the result set, just like single term queries.

AND queries. The performance depends on the best constituent term. For the

AND query α1∧ · · · ∧αk, the number of visited nodes in the search tree is at most

min(r1, . . . , rk)·log10 n. Note that the actual number of returned records may be much

smaller than ris. In the worst case, it may even be 0; consider a database where a half

of the records contain α (but not β) and the other half β (but not α). The running

time for the query α∧β in this case will probably be linear in n. However, we stress

that this seems to be inherent, even without any security. Indeed, without setting up

an index, every algorithm currently known runs in linear time to process this query.

This can be partially addressed by setting up an index, in our case by using a BF.

For example, for AND queries on two columns, for each record with value a for column

A, and value b for column B, the following keywords are added: A:a, B:b, AB:a.b.

With this approach, the indexed AND queries become equivalent to single term

queries. However, this cannot be fully generalized, as space grows exponentially
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in the number of search columns.

Complex queries. The performance of CNF queries can be analyzed by viewing

them as AND queries where each disjunct (i.e, OR query) is treated as a single term

query. In general, any other complex Boolean query can be converted to CNF and

then analyzed in a similar manner. In other words, performance scales with the

number of results returned by the best disjunct when the query is represented in

CNF. Note that we do not actually need to convert our queries to this form

(nor know anything about the data, in particular, which are high- or low-entropy

terms) in order to achieve this performance (this aspect is even better than MySQL).

Computation and Communication. Both computational and communication re-

sources required for our protocol are proportional to the query complexities described

above.

False Positives. As our system is built on Bloom filters, false positives are possible.

In our experiments, we set each BF false positive rate to 10−6. Assuming the worst-

case scenario for us, where the DB is such that many of the search paths do reach and

query the BFs at the leaves, this gives 10−6 false positive probability for each term of

the query. Of course, the false positive is a tunable parameter of our system.
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Chapter 6

Anonymous Publish-Subscribe

While prior to this work there have been many different kinds of anonymous com-

munication systems, they have all worked on an address basis, and generally serve

unicast applications. Users must choose a single recipient for their messages, and the

system would relay those messages while protecting one or both identities. These

include messaging systems and relays such as mixnets [21,42] and onion routing net-

works [67] (discussed in Chapter 3), and publishing systems like FreeHaven [35] and

FreeNet [28]. Anonymous relays allow users to send addressed messages while protect-

ing their identities from the recipients and against all third parties. They may also

allow users to create pseudonymous "addresses" that they can announce, whereby

others may contact them without knowing who their true identities. Anonymous

publishing systems allow users to store and advertise documents online that can then

be freely accessed by the public without revealing the identity of the authors. They

may also protect the identities of readers who are either accessing these documents

or using search protocols that allow them to find documents of interest to them.

In the area of non-anonymous communication systems, one model for communi-

cation is publish-subscribe. In the publish-subscribe model, messages can be pub-

lished to topics, rather than addressed to recipients. These are then multicast to

the entire set of recipients that have previously subscribed to those topics. These

topics can be anything from a set of specific match strings to ranged attributes on a

multi-dimensional array. These types of messaging systems are typically implemented
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using a third party who manages subscriptions and acts as a relay between publishers

and subscribers, though distributed systems have been implemented which allow for

greater scalability.

This paradigm adds a different kind of flexibility in that senders and recipients

are decoupled and can operate without even knowing of each other’s existence. This

can be a more suitable mode of operation for many kinds of systems. For example, a

chat or newsgroup application is more cleanly implemented where the speaker does

not have to obtain and maintain an enumerated list of all people who are interested

in what he has to say. In a normal addressing system, he would have to be aware of

all the people he means to send messages to. In a publish-subscribe system, he only

needs to publish his message on a topic, and all interested readers can subscribe to

those topics without either party knowing of the other. Any system where addressing

is preferably based upon the nature of the content rather than knowledge of the

recipient can benefit from a publish-subscribe architecture.

In this chapter, we construct two systems to achieve anonymous publish-subscribe,

meeting the requirements described in Chapter 2. They support a push publish-

subscribe architecture: messages will be delivered to recipients without needing to

be polled or requested on an individual basis. It also supports publication topics as

string matches, integer ranges, and multi-attribute ranges mapping integer values to

multiple labels.

Anonymous communication systems are of clear value for protecting sensitive

data or interests. Although there are some systems that claim to provide anonymous

publish/subscribe, neither the difficulty of identifying publishers nor the efficiency of

the system is thoroughly analyzed. This is unfortunate, since the publish-subscribe

paradigm is a natural match for anonymous communication. In many scenarios which

require anonymous communication, there are two separate problems: how to establish

relationships between sender and receiver when neither knows the other’s identity, and

then how to anonymously deliver their messages. Many anonymous communication

systems do not address the first problem of how to establish anonymous relationships

where meaningful communication should occur; this is left as outside the scope of the
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system. But by its very nature, publish-subscribe aims to support communication

based on content rather than by identity, and users need not concern themselves with

the details of finding the entities they aim to communicate with anonymously. It thus

naturally solves this issue.

Such a system could for example allow for newsgroups and real-time chat appli-

cations that discuss sensitive topics like medical conditions or radical political move-

ments such as discussions between members of Falun Gong or Arab Spring. Since in

a group discussion a user is already sending messages without requiring awareness of

the recipients, it is a natural step to provide a guarantee that this identity remain

anonymous.

These applications could not be efficiently met by existing anonymous commu-

nication systems, which do not support any form of multi-cast and work based on

known-recipient addressing. Nor could they be met by anonymous publishing systems,

which work on a pull-basis rather than a push-basis. This makes them unsuitable for

real-time applications. Publish-subscribe systems naturally provide flexibility that is

likely to be useful for any type of anonymous communication need, since they do not

require assumptions about participant identity by other participants.

6.1 Central server routing

Our first solution will be based off of a central server that handles the logic of matching

publications to subscriptions and routing. To guarantee anonymity from this server,

and from other participants, both publishers and subscribers will connect to it through

an obfuscating proxy, which is trusted not to collaborate with the server. There are

thus four types of entities:

• Server: Stores subscriptions, matches publications, and routes messages. It

should not be able to read message content, subject content, or identify senders

or recipients.

• Publisher: Sends messages into the system.
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• Subscriber: Sends subscriptions and receives matching messages from the sys-

tem.

• Proxy: Entry point for communication between the server and publishers or

subscribers. It is responsible for all contact with these entities, and for obscuring

their identities from the server.

Trust is separated between the proxy and the server. The proxy will be able to

see the identities of senders and recipients of messages, but will not be able to see

the content of the messages being sent or the subjects they are being sent upon.

The server will be able to see a deterministic encryption of this information, but will

not know who is sending or receiving the messages. Although these deterministic

encryptions can be matched to each other, since all origin points look identical to the

server, he cannot link publishers. This separation of trust ensures to the user that no

single entity can monitor his behavior.

To achieve this separation of information, we make use of a protocol called re-

routable encryption [65]. This protocol allows for a sender and a receiver, each

with unique symmetric encryption keys, and a third router entity. It provides a fast

multi-party computation between the three parties, resulting in the router receiving

a transformation key which then allows him to transform messages encrypted by the

sender into messages encrypted by the receiver’s key without being able to see or

compute the cleartext on his own. This protocol allows us to efficiently realize the

separation of trust between the server and proxy. These transformation keys will

be generated between the server, proxy, and client (publisher or subscriber) once

to introduce each participant to the system. Owning transformation keys allows

the proxy to relay messages to and from the server without seeing their content

or revealing the other communicating party without the expensive overhead of an

obfuscating mixnet.

We also make use of Bloom filters [8] to manage and match large quantities of

publications and subscriptions on the server end while obscuring topic content from

the server. Bloom Filters allow matching against sets that can store any number
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of elements with a boundable false positive rate that can be reduced by increasing

Bloom Filter size relative to the number of terms stored.

The server will store an index of all subscriptions on a per-subscriber basis as

a Bloom Filter index. Each subscriber is represented as one Bloom Filter storing

all of his subscriptions. The exact nature of the subscriptions can be anything sup-

ported by Bloom Filters (exact topic keywords, ranges using our range-query protocol,

multi-dimensional ranges, etc.) In our system, the subscribers will be pseudonymous

from the server’s point of view. If subscribers wish to prevent linkage between their

subscriptions, they can do so by creating a pseudonym per subscription.

The proxies will use re-routable encryption to deliver messages from source to des-

tination: deterministic for communication of subjects from publisher to server, and

non-deterministic for communication of messages from publisher to server to sub-

scriber. The proxy contains a transformation key from the server key to and from

the key of each subscriber. This key must be computed between the user, proxy, and

server once to join each new user into the system. The proxy maintains this mapping

using the same pseudonyms used by the Bloom Filter index held on the message

server. The server maintains its own encryption key kr. To subscribe to a subject,

a user generates his own key ku, engages in secure multiparty computation with the

proxy and server that results in the server learning transformation key k r
u
. He then

deterministically encrypts his subject subscription under ku and sends it to the proxy,

who transforms it to encryption under kr and forwards it to the server where it is

stored, along with a pseudonym that the proxy would understand to correspond to

the user. We are now ready for publishers to send messages to subscribers. The

system and message path is thus laid out as in Fig. 6-1.

A publisher generates a message m, and encrypts it non-deterministically under

ku. He determines a subject s, and encrypts it deterministically under ku. These are

both transformed by the proxy to be encrypted under kr before being forwarded to the

server. The server checks s under deterministic encryption by kr against his BF index.
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Figure 6-1: Centralized anonymous publish-subscribe system

He then re-randomizes the random component of m encrypted by kr and sends it to

the proxy, along with all the BF match identities. For each corresponding recipient

u′, the proxy transforms m to encryption under ku′, and forwards the message to the

corresponding users.

6.1.1 Security Analysis

That our system achieves completeness and non-excessiveness is easy to see: since

Bloom Filters promise a zero false negative rate all messages will be properly routed

to their appropriate destinations. By adjusting the Bloom Filter parameters, the

amount of excess publications created by false positives can be made arbitrarily small.

We aim to protect the identity of the participants from the server, and the content

of the messages and subjects from the proxy. This is under the assumption that the

proxy and server do not collaborate with each other, and that the proxy does not

collaborate with other publishers or subscribers. The server and proxy are trusted to

be honest-but-curious; that is they will obey the protocols, but may attempt to learn

more than they should from the results.

Claim 22. Our system achieves trusted-party publisher anonymity.

Let us assume that there were a full collaboration of all other meaningful entities
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except for the proxy, who we will treat as a trusted party. The receiver sees only

a delivered message which is entirely agnostic to its origin. Similarly, the server

sees only the message and topic delivered by the proxy after transforming them to

encryption under his own key. These would look identical regardless of which user

originated the publication. Thus even if the adversary consisted of the server, the

receiver, and any number of dishonest publishers, their combined view of any given

message looks identical regardless of which honest user sent it. Therefore, they cannot

gain an advantage in identifying the user.

Claim 23. Our system achieves both trusted-party topic subscriber anonymity and

trusted-party subscription anonymity.

Again, we can assume collaboration between the server and any number of pub-

lishers publishing on a given topic. The subscription is delivered to the server by the

proxy after transforming the encryption to his own key. This would look identical

regardless of which user is subscribing to the topic. Thus for a given topic, he will

see only a set of subscriptions which do not give any information that distinguishes

between subscribers. In the reverse, given a subscriber, the subscriptions seen by the

server do not look different whether or not he is the origin. Thus the server cannot

gain any information that would help distinguish between subscribers given a topic,

or identify topics given a subscriber.

The proxy is privy to both of these identities, and is thus treated as the trusted

third party. However, he cannot see what content is being delivered or what topic it

is being published to. This is given under the same assumptions as the underlying

re-routable encryption scheme.

Owing to the use of Bloom Filters to match publications and subscriptions, there is

an existing false positive rate. However, since the system is used for open subscription,

this is a non-issue from a security standpoint. The recipient can simply ignore any

messages he is not interested in. As we mentioned before, this system is only secure

if the proxy cannot act as a user. If he is able to, then he can use transformation

keys to transform anything encrypted by the server’s key into his own key, and thus

100



read messages that are routed through him, breaking the security of the system.

6.2 Spanning tree routing

Our second solution will route messages to all subscribers using per-subscriber span-

ning tree structures. This will be accomplished by providing an overlay network of

the nodes, and then representing each spanning tree within the routing tables of the

nodes in the overlay.

The list of nodes in the network will be registered in a global directory, which

can be either a single server, or a DHT for greater scalability. Nodes will then use

Bloom Filter indexes as routing tables to forward messages by checking their subjects

against the indexes. A destination will be represented as a single Bloom Filter, storing

subjects as elements in the filter. Subscriptions live as elements in these filters. We

can thus support routing based on topic for any type of topic that can be represented

in a Bloom Filter (i.e. exact strings, ranges, etc.). In order to prevent cycles, each

message will carry a header with a Bloom Filter storing unique labels that nodes can

check to see if they have already forwarded the same message. These will be randomly

generated and updated on regular intervals.

All that remains now is to set the routing Bloom Filters such that all published

messages will be received by all interested subscribers. To do this, each subscriber

will construct a unique spanning tree of the network, rooted on himself. We as-

sume the existence of an underlying anonymous communication network that allows

both sending a message while protecting the identity of the sender, and providing a

pseudonymous address by which other users can route messages to a recipient who

wishes to protect their true identity. In our implementation, we use Tor [67] to pro-

vide these functionalities. Although Tor has many known limitations, it is efficient

and used often in the real world.

A subscriber will then anonymously instruct all nodes in the network to add a

routing entry for that subject to their parent in his uniquely constructed tree. Thus,

any message anywhere in the network, when routed on this subject, will find its way
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to every subscriber that is interested. Although expensive for subscription, this is

fast for publication, and so is well suited for systems where publications dominate

subscriptions in terms of network load. Unsubscription is a little trickier, and is not

handled by our current implementation. We could handle this in the future either

by allowing Bloom Filters to expire and requiring subscriptions to be updated on a

regular basis, or by using counting Bloom Filters which will allow deletion of entries.

• Subscribe(u, t): User u looks up the node from directory D. As a constant

parameter of the system, he assumes a routing chain length of r. He then

constructs a random, balanced spanning tree of depth r using all nodes in the

network with himself as the root. For each node in the tree, he anonymously

contacts that node, and instructs it to route all messages with subject t to their

parent in the tree. This is done more efficiently by forwarding instructions for

each node through their parents with layered encryption in the same manner as

an onion routing network. Thus, we multicast the subscription along the same

structure as the tree itself.

• Publish(m, t): The sender picks a random origin point in the network, and uses

the underlying anonymous communication network to send his message to that

node. That node routes his message to the nodes indicated by looking up the

subject on its own Bloom Filter index. All other nodes will forward the message

in similar fashion, except first checking their loop-detection label, then inserting

it into the header of the message.

The system and message path is thus laid out as in Fig. 6-2.

In the absence of false positives within the routing Bloom Filters, the common

case is that for each publication, there will be a randomly selected path of length r

from the initial node the publisher selects to each subscriber. If the number of nodes

is significantly larger than the number of subscribers for a single topic, then in all

likelihood, the initial node will have to multiply the message for each end subscriber.
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Figure 6-2: Spanning tree anonymous publish-subscribe system

However, this is still a benefit over the central server solution, since the central server

solution uses a single node to multiply all traffic within the system, whereas with the

spanning tree solution, each publication will use a different randomly selected initial

point. This will better distribute load when there are a large number of publications

going out simultaneously.

6.2.1 Efficiency comparison

We now compare the efficiency of our protocols for n receivers, and a tree depth of

k, and a load involving p simultaneous publishers.

The primary tradeoffs are between the longest path, which affects the latency of

message delivery, and the bottleneck branching point, which determines how scalable

the protocol is. The central server solution will have a fixed longest path of four

hops (from publisher, to proxy, to server, to proxy, to subscriber). So for low-load

situations, we can expect the latency to be O(1). Conversely, the spanning tree

solution’s path will scale with the depth of the spanning trees selected, and so has a

worse O(k) behavior. However, spanning tree depth is simply chosen to add layers

of indirection and does not need to scale with the size of the system. So while the

spanning tree has worse latency, it is boundable.

Both solutions involve a single point of multicast for each publication in the ex-

pected case. For the central server solution, this is the server. For the spanning tree
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solution, if the subscribers are not a significant portion of the total userbase, then

likely each has a unique path from the publisher, making the publisher the point of

multicast. However, in the central server solution, all published messages share the

same point, whereas in the spanning tree solution each has a unique one. Thus the

central server solution faces a load of θ(kp) on the server, whereas the spanning tree

solution faces a load no greater than θ(k) on any one node. Clearly, the spanning

tree solution can handle multiple publisher load scaling better.

6.2.2 Security analysis

Our system provides Completeness and Non-excessiveness under the honest-but-

curious model, that is when all parties perform the protocol correctly but may try

to learn more than they should. If all nodes are forwarding correctly, messages are

guaranteed to be routed to all interested subscribers, with a boundable false positive

rate on loop detection.

Claim 24. Assuming the security of the underlying anonymous communication sys-

tem, our system achieves complete publisher anonymity.

The message itself does not contain any information unique to the publisher. From

the perspective of the initial receiving node, any message it receives is only visible

as an output of the underlying anonymous communication system. Thus, if it can

identify the origin, then that implies a failure of that system. From then on, clearly

no other node in the network can do better in terms of identifying the publisher.

Claim 25. Assuming our underlying TOR system is secure against identification

attacks, our system achieves topic subscriber anonymity.

For any given topic in the system, every node will have one or more nodes which it

is expected to route matching messages towards. And if TOR protects the identities of

its senders, then the subscription process itself will not reveal the subscriber identity.

Thus, no node can distinguish between a neighbor who is an interested party, and

a neighbor who is merely forwarding towards one. In order to identify a node as an
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endpoint, an adversary would need to identify a publication originating from one of

the leaves of its subscription tree, and then compromise all of the nodes on the path

from publisher to subscriber, a requirement as stringent as for an adversary of TOR.

A more complicated issue is denial of service attacks. An attacker who was himself

a subscriber could refuse delivery of messages to nodes he is intended to forward

towards. However, since it is the subscribers who choose the routing tree that leads

to them, an attacker would not be able to fully block a particular subscriber from

receiving messages, nor fully block a publisher from disseminating them. Nor would

he have any control over which particular publisher-subscriber relationships he could

interfere with. Furthermore, if subscriptions are updated on a regular basis, his sphere

of influence would be steadily changing. A system of checks wherein a subscriber

occasionally publishes test messages and begins them at different points in the network

could be implemented to specifically identify malicious nodes, however this remains

to be further developed.

6.3 Performance

We implemented and tested both our central server and splay-tree based systems to

observe scaling issues both in subscription and publication. Unfortunately, to our

knowledge, there exist no other anonymous publish-subscribe systems to compare to,

so we show only to demonstrate usability in comparison to normal network transac-

tions, and to demonstrate efficiency differences between the two. To obtain a large

number of nodes for scalability testing, we used the PlanetLab network [27]. Each

participating node has at minimum 4x 2.4Ghz Intel cores, 4 GByte ram, and 500GB

disk space. Nodes are distributed around the globe to provide a simulation of inter-

net traffic. For our experiments, we used nodes with varying geographic locations

contained within the US.

Figure 6-3 shows time to add subscriptions for a varying number of subscribers

for the central server and spanning tree solutions. This was done for a system with

a total of 500 participating nodes. Measurements for the central server solution were
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Figure 6-3: Subscription cost

taken using a one server and two proxy arrangement (one proxy for publishers and

one for subscribers). This was measured from a start time when the subscription

requests are queued into the systems, to the time when the last subscriber completes

their request. Time scales roughly linearly for the central server system, because it is

bottlenecked by the single point of connection and later subscriptions must wait for

earlier ones to complete. The spanning tree solution performs worse at lower numbers

of subscribers, due to its more involved protocol. However, it scales much better for

larger numbers of subscribers as they can be handled concurrently. The growth is not

entirely smooth, as the tree generation for each of the subscribers is random, and can

cause more or less requests to be bottlenecked by various nodes depending on what

kinds of overlap results.

Figure 6-4: Publication cost
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Figure 6-4 shows time to deliver a publication. This was measured by observing a

single node which subscribes to the same topic it is publishing on, and recording the

time taken to receive its own message. Messages chosen were small text strings. This

was measured from start time when the publisher initiated the publication to time

when the last subscriber reported reception of the message. Again, time taken scales

linearly with the number of subscribing nodes, again bottle-necking on the server

which must duplicate the message once for each subscriber. In this test, only one

publication is issued into the system at a time. Because of this, the spanning tree

solution scales with similar behavior to the central server solution, but with a large

constant overhead for the multiple hop message transmissions.

Figure 6-5: Publication cost in active system

Figure 6-5 shows the same measurements taken with increasing numbers of si-

multaneous publications issued into the system. The number of subscribers is kept

constant at 50. The X axis shows the number of participating publishers, with each

sending a publication at the same time. The Y axis shows the time taken for a single

node which we are monitoring to receive a single publication it has itself sent into

the system. In this case, we see that the spanning tree solution steadily outperforms

the central server solution, demonstrating a greater ability to distribute the load in

an active system with multiple publishers and subscribers.
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Chapter 7

Identity Management

Master secret based identity systems allow users to obtain anonymous certificates from

a central certificate authority. They can then use these certificates to register anony-

mously in various organizations and obtain pseudonymous membership credentials.

The credentials issued are unforgeable and the anonymity they provide, conditional,

i.e., misbehaving users are identified. Unfortunately, when applied in real world sys-

tems, previous anonymous credential systems have been lacking in many “real world”

issues.

First of all, no efficiency optimization has been applied. User registration, creden-

tial issue procedures require a respectable amount of exponentiations, which in large

scale systems would cause a serious bottleneck. In most credential systems there are

no scalable credential blacklistability operations. In the large extent of identity theft

cases, nowadays, credential blacklistability is a necessity when it comes to real time

systems. Another issue is that, currently, there is no variety in organization regis-

tration policies. This becomes particularly important in “real world” systems as i.e.,

banks will probably require a lot more information to register a user than an online

subscription service. However, the most important deficiency of current credential

systems is the the lack of any sense of secret information update procedure. Master

secrets may be compromised or stolen and, previously, there was no efficient way for

a user to transfer his old registrations and credentials to his new account, while the

attacker can make use of the old secret.
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We will take in consideration all of these matters and design a privacy preserving

and master secret-based identity management system, where every individual can

generate a single master secret, with which he can

• demonstrate multiple times unlinkably and anonymously,

• use to register to organizations along with other credentials depending on each

organization’s policy

• change, when compromised; master secret update is done recursively for all the

registrations a user has made through his previous master secret.

• recover, when lost or destroyed.

We need to emphasize on the fact that our system is deployable, i.e.,

• we make “real world” assumptions for our adversary’s powers,

• we take in consideration “real world” settings for the various organizations

• it is computationally efficient.

7.1 System Architecture

7.1.1 Entities

The entities in our system are specified by our system’s application. First of all,

we identify users, who are the citizens of a country; they may be self-employed or

employees of one or more companies, maintain — depending on their financial status

— one or more bank accounts, receive and perform payments, use internet for online

purchases and information retrieval, while taxed accordingly. Banks, Employers, Tax

Authority TA, can, thus, be added to the set of our system’s entities. All valid users

and organizations of a country are registered to that country’s registration authority

RA. RA maintains information regarding each U’s identification, i.e., U’s birthday,

birthplace, parents and may issue one or more certificates regarding U’s identification

attributes.
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7.1.2 Operations

Based on our system’s use, the main operations supported are the following:

1. Generate Master Identity, where Ugenerates his single master secret identity, i.e.,

MsU .

2. Register, where U registers to RA and validates MsU .

3. ShowMS, where U demonstrates knowledge of his RA-validated MsU ; in our sys-

tem, this procedure is extended to include ShowMSAttribute operations, where

U proves that his MsU has a particular attribute.

4. ObtainMembership, where U and Organization org collaborate for U to become a

member of org. Depending on the type of org, ObtainMembership prerequisites

may vary.

5. UpdateMS, where U and RA collaborate for U to obtain a new MsU ; all past U’s

registrations through his ex-MsU are also be updated.

6. RecoverMS, where the U-authorized people collaborate to recover MsU ; this

procedure only takes place in case of emergency.

7.1.3 Requirements

Our system, as mentioned before, is privacy preserving. In the context of an identity

management system, privacy can be interpreted as the combination of unlinkability

and anonymity, namely no one should be able to link a particular system activity

to a different one as having originated by the same individual (unlinkability) or to a

particular identity (anonymity). It is critical that privacy provisions are conditional:

a misbehaving party will have both his identity and entire activity revealed.

Another fundamental requirement of our system is deployability. Deployability

requires that we take in consideration the current settings of various organizations

realized in our protocols: (a) their functionality and how “misbehavior” is defined in

110



them, i.e., under what conditions should their members be considered as malicious,

(b) their participation, since we have to optimize our protocols’ efficiency accordingly.

Master secret credential unforgeability and forward secrecy are two more of our

requirements. In particular, we require that no credential can be created without

the participation of the authorized authorities, such that the MSShow operation ac-

cepts(unforgeability). Forward Secrecy requires that no past activities of a particular

individual are traced through the UpdateMS or RecoverMS procedures.

7.2 System Design

1. RA Registration (user U- RA interaction)

1. U → RA: identification credentials, i.e., id, birth certificates, etc.

2. U: generates MsU .

3. U ↔ RA:

• validate MsU in a blind way towards RA.

• issue two types of credentials for U:

– perm-type of credentials, which can only be demonstrated to an orga-

nization once and are meant for users to obtain membership to these

organizations. perm-type of credentials may be realized as accountable

ecash coins ([50]).

– cred -type of credentials, whose possession can be proven multiple

times in ZK fashion to any service; these credentials are not transfer-

able and may be implemented as plain ecash coins.

4. U: generates a recovery encryption key pair: (ekU, dkU). U then encrypts and

stores the serials of the perm-type of credentials and some info (serials if ecash

-type) for the cred -type ones to his RA-account. So, U creates

RegInfoU = {MsU , perm-serials, cred -serials, date}ekU
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5. U→ RA: RegInfoU

6. U ↔ RA: (for integrity purposes) exchange proofs of the final form of the en-

crypted value:

SighiRA(RegInfoU||date) and Sighi
U
(RegInfoU||date)

7. U shares in a shared secret fashion his MsU and dkU.

2. Organization Registration(user U – Organization orgi interaction) It takes

place between an Organization orgi and a user U for the latter to obtain membership

in orgi. Depending on its membership pre-requisites, orgi may require for a perm or

cred type of credentials or even U’s identity. (In fact, we assume that perm-credentials

have the form of accountable ecash introduced in [50]1. cred -credentials may have

the form of a plain ecash scheme.)

1. U↔ orgi:

• U spends a credential to orgi. If there is a restriction regarding how many

registrations a user should maintain in orgi, perm-credential should be used;

otherwise, cred -credential may be used. Let S
perm/cred

U→orgi
be credential’s serial.

S
perm/cred

U→orgi
is stored in U’s IDC and orgi’s database Dorgi .

• perform GS.Join or AnonCred.PseudoGen procedures or any other organi-

zation membership procedure. U obtains secret membership information

MemSec
orgi
U

and orgi the corresponding public information MemPub
orgi
U

.

From now on, we will assume that U is known to orgi as PU− orgi
.

2. U:

• creates the recovery orgi-related encryption key pair: (ek
orgi
U

, dk
orgi
U

)

1In accountable ecash, if the same ecoin is double spent or two ecoins are spent to the same
merchant, they reveal the identity of the coin’s owner.
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• computes

ǫdk
PU− orgi

= encdkUekUdk
orgi
U

• generates secret and computes Horgi(secret), and

ǫsec
PU− orgi

= encsecretek
orgi
U

,

signPU− orgi
sec = Sig

Horgi
PU− orgi

(secret),

where Horgi is an orgi-specific hash.

3. U→ orgi: RecData = {ǫdk
PU− orgi

, ǫsec
PU− orgi

, signPU− orgi
sec}. Notice that U

is the only one knowing the secret.

4. orgi: creates U’s entry in his Dorgi, where he stores the following:

Entry
orgi
U

= {S
perm/cred

U→orgi
,MemPub

orgi
U

,RecData}.

3. Proof of membership in orgi This is the case where U proves his orgi-membership

in an anonymous and unlinkable way to a verifier. Both, U and verifier should make

sure that he has updated orgi’s public information.

4. Compromise case - Credential Blacklisting It involves two phases:

1. U-RA interaction

2. U-orgi interaction

1. U– RAinteraction

1. U→ RA: birth certificate, U-identification, loss declaration.

2. U: recovers his MsUand dkU in a shared secret way.
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3. U↔ RA:

• U recovers his serials from RA through dkU and RegInfoU.

• issue a new IDC validating a new MsU .

• issue one time use revocation credentials, rev-credentials;

2. U– orgi interaction Assuming that somehow (we will deal with it later on) U knows

with which serial he registered to which organization, the following series of procedures

takes place:

• U contacts org and shows the rev-credential from the RA. (rev-credential is also

unlinkable to U’s identity, nevertheless only U can demonstrate possession of

it). U shows the serial, which he used to register to orgi.

• orgi looks in its database, and sends ǫsec
PU− orgi

to U

• U uses the recovered dkU to decrypt his secret and demonstrates its knowledge

to orgi. A malicious user cannot pass this test.

• orgi blacklists all the credentials issued for the MemPub
org
U

— probably using a

technique similar to [19] — and both parties collaborate to change U’s account

details using MsU ’.

After phase 1, the credential-serials are only visible to U. Revealing the serials

to the RA would enable the latter with the collaboration of all organizations to trace

U’s activities. On the other hand, there is no guarantee that U is not lying for his

numbers. We need to find a way so that no user is DoS-ed and that traceability of

U’s past activities in not done. We will discuss the following section.

User Registrations’ Recovery It includes two phases:

1. Recovery preparation stage, which takes place at the orgi–U registration proce-

dure:
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• U→ orgi: ǫ
ser

U− orgi
= encS

perm/cred

U→orgi
ekUHserial, where Hserial is a serial-number

specific hash.

• orgi:

– computes ǫorgorgi
= encorgiF(S

perm/cred

U→orgi
).

– logins anonymously but authoritatively in RA.

– uploads

ǫser
U− orgi

, ǫorgorgi.

2. User Bloom filtering phase, which takes place after the IDC loss declaration

phase. In particular,

• U logins anonymously to RA.

• U shows rev-credential.

• U computes [ǫser
PU− orgi

and searches through bloom filters the uploaded

serials.

• U decrypts the corresponding ǫorgorgi
to get the name of the orgi.

• U ↔ orgi: U validation phase, through RecData.
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Chapter 8

Private, Distributed, and Searchable

Content Providers

Although there is existing work on anonymous content providing, existing systems do

not provide as comprehensive protection as might be desired. Systems like FreeNet

and FreeHaven allow users to publish documents without revealing their identities,

however they do not hide the identities of those who search for and retrieve their

content. Although the receiver can protect their own identities by using other means

of anonymous communication as a precursor to contacting the FreeNet or FreeHaven

network, the queries themselves are still not protected. This can still be a leakage of

sensitive information, even if the identity of the querier is protected. For example, if

someone had an innovative idea and wanted to search for patents on related concepts,

they might be concerned that the query terms themselves would leak his idea to other

parties.

Let’s say that a number of support groups for people with various sensitive medical

conditions wanted to be able to share literature about an ongoing series of current

developments relating to their specific issues. This is the type of application that

existing anonymous document sharing systems were designed for. However, it may

be the case that simply being able to seek specific documents anonymously is not

sufficient; since the articles and events are ongoing and specialized, users would need

to be able to privately search for articles of interest, and those queries themselves
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would be considered sensitive, since the types of things a person looks for form a

profile about them and which conditions they may have. Thus we discuss a system

that addresses this scenario, where both the identities of providers and the identities

of the queriers are anonymous, and both the content and the queries are private. The

system thus needs to be able to scale to large numbers of users, even if the number

of users interested in specific articles was limited. Furthermore, as these are sensitive

topics and established subcommunities, they may need to contend with undesirables

causing trouble or antagonizing legitimate users. Thus a good revokable anonymous

credential system would be needed to regulate these problems.

We will aim to provide a more comprehensive system that protects the identities of

all parties involved, and also hides the content of the queries from the data providers.

To do this, we will extend our earlier work in Chapter 3 on private database search.

Private database search already encapsulates the query protection we aim to provide:

the data owner does not see the types of queries that it is processing, and the querier

does not learn anything about the database except the results of their queries. To

achieve our goals, we merely need to extend this system to handle multiple parties (on

both ends: queriers and data owners), and to protect the identities of those parties.

To do so, we will instrument the SADS system, using our anonymous publish-

subscribe systems to route messages between multiple queriers and multiple servers

anonymously. The SADS system at its core meets our requirements of protecting

query and data privacy, and it presents no complications with scaling up the number of

users or servers. However, it does not by default protect the identities of participants

when doing so.

To accomplish this, anonymous publish-subscribe routing can fill this role per-

fectly. To do so, we invert the concepts of publishing and subscribing. Instead of

having users subscribe to topics that interest them, we will instead have them publish

queries for terms they want to search for. Conversely, data owners will have ongoing

subscriptions for all terms they are able to meet. Thus, queries which they may be

able to satisfy will automatically be routed to them. We will use this paradigm as a

sort of ’handshake’ to connect querier to data owner. The querier will pair this pub-
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lished handshake with a Hidden Service (as provided by anonymous communication

systems like TOR [67]). Once its handshake finds suitable data owners, the remain-

der of the SADS protocol can be carried out via the anonymous circuit established

through the hidden circuit.

8.1 System Architecture

Our solution combines the SADS private search system described in Chapter 4 with

the Anonymous Publish-Subscribe spanning tree routing system described in Chapter

5. It thus operates with the following entities:

• Querier: There will be many queriers in the system. They will broadcast

queries, and expect to receive in return handles corresponding to matching doc-

uments in the system. These handles correspond to a data owner and record

index for that owner’s database, however may not be used to identify that

owner.

• Owner: There will be many owners in the system. Each contains a database

of records they wish to make available, along with search terms corresponding

to those records. They will register these terms in the system, which will then

deliver them queries that match those terms. They will answer these queries

via anonymous communication with the queriers.

• Router: These nodes form the spanning tree relay network used by the Publish-

Subscribe system described in Chapter 5. As with in that system, they do not

require a great amount of trust, so long as compromised nodes comprise a small

subset of the system, since the queries will be routed through a large number

of them.

• Query-Proxy: These nodes are analogous to the TP nodes used by the SADS

system in Chapter 4. They will be used during anonymous query resolution

between Querier and Owner, and it is assumed that each party trusts them not
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to maliciously collaborate with the other. These should thus be chosen publicly

from a trusted set of entities.

These entities will then support the following operations:

• Register(Q): User Q wishes to be able to issue queries. To do so, he generates

a re-routable encryption key for his own use.

• Provide(O, d): Where d is a set of n records r1, ..., rn, data owner O makes the

full set of records available for search in the system. He will do so by executing

the server preprocessing step of the SADS system, generating a Re-routable

Encryption key. He then computes a union of all terms across the records in d

and executes a subscribe on the publish-subscribe network of every term in d.

• Locate(Q, t): Where Q is a querier interested in querying for term t. Q will

then set up a hidden service with identifier hQ. He will then publish a message

with hq on topic t. Each owner O that has provided a record containing t will

receive this message. They will then anonymously contact Q through his hidden

service, choose a Query-Proxy TP from the list of publicly trusted entities, and

run the RatioKeyGeneration protocol of SADS with Q and TP . Q will now

have a list of m data owners O1, ...Om who have records of interest to him.

• Query(Q, O, t): Given a successful result of the Locate call, Q now has complete

parameters for the SADS protocol set with each resulting data owner. He may

then issue a SADS query and retrieve appropriate documents from one or more

of his choice.

The basic approach is to use Publish-Subscribe to locate content providers that

have records of interest to a querier. To do so, we simply reverse the intuitions of

publishing and subscribing. In normal applications, users would "subscribe" to topics

they are interested in, and other users would "publish" messages on topics they have

relevant content about. However, to create a persistent search system, we can instead

have content providers subscribe to topics they have relevant content for, allowing
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them to continually monitor the system for relevant queries. Queriers instead publish

their interest in various topics, knowing their interest will reach all providers with

content of interest. By using an anonymous publish-subscribe system, we can thus

establish connections between queriers and providers with relevant content while pro-

tecting the identities of both. And by using hidden services, we can then allow them

to create circuits for communication while continuing to remain anonymous towards

each other. The SADS protocol can be run over such an anonymous communication

network, so long as we have global trusted parties to participate. The trust require-

ments for these parties does not change from what it was in SADS: they should not

collaborate with either the querier or the provider.

Considering our hypothetical system providing support groups for medical condi-

tions, the users themselves would be acting both as queriers and data owners, as they

exchanged articles and support discussion. Since we do not need to trust all routers,

only a subset of them, the users themselves could also volunteer to act as routers,

much in the same way TOR networks operate on an assumption that the majority of

participating nodes can be trusted. The query-proxies involve a higher assumption

of trust, and would be best provided by a commonly trusted organization, such as a

medical or therapy organization.

One downside to this approach is that we cannot support more complex queries,

only single term. Even though both the underlying SADS system and the underlying

publish-subscribe system support boolean and ranged queries, because of our inversion

of publish-subscribe we cannot make full use of this functionality. There isn’t a simple

way to publish a query such that a boolean logic on subscriptions would receive it.

This remains as a direction of future work.

Our solution thus aggregates providing of content into a single Provide call. Fur-

ther provision in the future can be handled by setting up additional providers. Query-

ing and retrieval, on the other hand is separated into a Locate call and many Query

calls across multiple providers.

The system and query path is laid out as in Fig. 8-1.
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Figure 8-1: Anonymous and private content provider system

8.2 Security Analysis

We now discuss the anonymity and privacy provided by such a system. Our system

is constructed from an underlying set of systems, and thus its security incorporates

assumptions depending on what instantiations were used for those blocks. We have

cited or invented systems demonstrating that each of these blocks can be built under

a reasonable set of security assumptions throughout this work, and the choice of what

subsystem to use for each of these requirements decides under what assumptions our

system will remain secure.

Claim 26. Assuming the security of the underlying anonymous communication sys-

tem, anonymous publish-subscribe system, and SADS system, our system achieves

complete provider anonymity.

The Provide protocol involves only a localized setup of the SADS system and sub-

scription to several terms under an anonymous publish-subscribe system. Since the
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SADS setup is local, it is impossible for it to reveal the identity of the provider. An

underlying anonymous publish-subscribe system guarantees subscriber anonymity, so

assuming the security of the underlying system, the subscription phase will not reveal

the identity of the provider either. The Locate protocol involves an anonymous publi-

cation by the querier, which is also guaranteed not to reveal the receiving subscribers.

The provider then contacts the querier through a hidden service, which the underly-

ing anonymous communication system guarantees will not reveal the identity of the

initiator of the circuit. Finally, the Query protocol is a straightforward execution of

SADS querying, which also does not reveal identity.

Claim 27. Assuming the security of the underlying anonymous communication sys-

tem, anonymous publish-subscribe system, and SADS system, and that the trusted

party does not collaborate with any providers, our system achieves complete querier

anonymity.

As the querier does not participate in Provide protocol, this phase can not reveal

their identity. The Locate protocol involves an anonymous publication by the querier,

which is also guaranteed not to reveal his identity. The provider then contacts the

querier through a hidden service, which the underlying anonymous communication

system guarantees will not reveal the identity of the owner of the hidden service.

Finally, the Query protocol is a straightforward execution of SADS querying, which

also does not reveal identity so long as the trusted party behaves honestly.

Claim 28. Assuming the security of the underlying anonymous communication sys-

tem, anonymous spanning tree publish-subscribe system, and SADS system, and that

the trusted party does not collaborate with any providers, our system achieves query

privacy.

A query goes through two phases: Locate and Query. As the second is identical

to a standard SADS query, it provides privacy protection equal to SADS. The Locate

phase will deliver to the data owner a publication of the querier’s hidden service

identifier Hq. This publication contains the message, which is a uniquely chosen

hidden service ID that has no relation to the query content, and a topic. The topic
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is stored as a set of bloom filter indices corresponding to the encrypted query term,

and thus equivalent to what the owner would see in a SADS query. Our system thus

protects query privacy as securely as SADS.

Claim 29. Assuming the security of the underlying SADS system, our system achieves

content privacy.

A query goes through two phases: Locate and Query. As the second is identical

to a standard SADS query, it provides privacy protection equal to SADS. The Locate

phase does not deliver any content to the querier, the only information learned is

whether or not a database has matching records, which is within the SADS definition

of content privacy. Our system thus protects content privacy as securely as SADS.

8.3 Performance

We implemented our systems to test its performance. Unfortunately, to our knowl-

edge, there exist no other distributed private search systems for comparison. We

instead merely present performance numbers to demonstrate that it is practical for

real-time use. We expect this to be used in scenarios where there are many users

distributed globally. However, although there may be many total users in the system,

specific topics are bounded to smaller sub-communities (within dozens or hundreds),

and the number of users with results relevant to a specific query is a specific target

subset of that group.

To obtain a large number of nodes for scalability testing, we used the PlanetLab

network [27]. Each participating node has at minimum 4x 2.4Ghz Intel cores, 4

GByte ram, and 500GB disk space. Nodes are distributed around the globe to provide

a simulation of internet traffic. For our experiments, we used nodes with varying

geographic locations contained within the US.

Figure 8-2 shows time to issue a query, plotted against the number of providers

with matching content. The system was instantiated with multiple providers, each

of which had a database of 10000 records and an average of 100 matching records
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Figure 8-2: Query time(ms) against number of providers with results

from that set. As we can see, there is an expected linear growth with the number

of providers, since the querier must independently contact each of them. At this

time, we have not implemented parallel execution of these queries, so it is likely that

performance can be further improved. We can also see that search times for small

numbers of providers, which is also indicative of time to receive first results from

a long ongoing search, are reasonable for real-time search, being limited to a few

seconds. This does not include document transfer time.

Figure 8-3: Boolean query time(ms) against false positive providers

Figure 8-3 shows time to run 2-term AND queries. While the system does not

support boolean queries in the Locate phase, we can simply use a single term, and

then run normal SADS boolean queries on the resulting list of providers. Since it is

an AND query, this will have false positives, but no false negatives. We conversely
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could not use this method to handle OR queries, since a single term would not find

all matching providers. The system was instantiated with 5 matching providers, and

plotted against the number of "extra" providers which have the single term but do

not meet the full boolean query. As we can see, the performance hit is very minor,

which is as expected since SADS handles zero result queries very efficiently.
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Chapter 9

Conclusion

Systems that enable private and anonymous online interactions are an area of growing

interest. Whereas there has been a large amount of work on anonymous communi-

cation and distribution of information, much of it either does not address the issue

of how to establish relationships for communication and distribution, and/or comes

with prohibitively expensive performance costs.

In this work, we have addressed these issues with new systems that make fewer

assumptions about prior relationships between the participants, and using efficient

data structures and algorithms to create systems that are practical for real-time use.

Our work in private database search allows users to privately and anonymously de-

termine if information they are interested in exists and how to get it. Furthermore,

our work with anonymous publish-subscribe systems enables communication under a

different paradigm that does not assume users know who they wish to communicate

with. This is a natural improvement for anonymous communication. And we showed

how anonymous credential systems can be created in an efficient and real-world de-

ployable manner. Such systems are of value to other anonymous systems that need

to provide different access levels and policies for multiple anonymous users. By com-

bining these systems, we created systems that can create search between multiple

anonymous parties.

Furthermore, by using efficient building blocks, we created systems that provide

these functions with performance that is reasonable for real-time usage.
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