
Sub-Operating Systems: A New Approach to Application Security

Sotiris Ioannidis Steven M. Bellovin Jonathan M. Smith
sotiris@dsl.cis.upenn.edu smb@research.att.com jms@dsl.cis.upenn.edu

University of Pennsylvania AT&T Labs Research University of Pennsylvania

Abstract

Users regularly exchange apparently innocuous data
files using email and ftp. While the users view these data
as passive, there are situations when they are interpreted
as code by some system application. In that case the data
become “active”. Some examples of such data are Java,
JavaScript and Microsoft Word attachments, each of which
are executed within the security context of the user, allowing
potentially arbitrary machine access. The structure of cur-
rent operating systems and user applications makes solving
this problem challenging.

We propose a new protection mechanism to address ac-
tive content, which applies fine-grained access controls at
the level of individual data objects. All data objects arriving
from remote sources are tagged with a non-removable iden-
tifier. This identifier dictates its permissions and privileges
rather than the file owner’s user ID. Since users possess
many objects, the system provides far more precise access
control policies to be enforced, and at a far finer granularity
than previous designs.

1 Introduction

Most classical work on computer security focuses on op-
erating systems. One of the fundamental tasks of an op-
erating system is resource allocation and control: making
sure that different users have fair access to shared resources,
such as disk space and CPU time, all the while ensuring
that access restrictions are honored. A secure system is one
where these controls are effective in the face of deliberate
attempts at subversion.

The advent of ubiquitous networking has changed all
this. While operating system security is still important,
many of the new threats arise because of network activ-
ity. Often, these threats are data-driven, and within the con-
fines of a single user’s protection boundaries. For example,
pieces of mobile code, run with the permissions of some
user, may attempt to steal or destroy files belonging to that
user.

Naturally, the applications accepting the mobile code at-
tempt to guard against such things. But their record has
at best been mixed. The problem is more acute because
many more network objects can, in some sense, be consid-
ered “code”, even if not intended as such.

Many of the security problems that have occurred have
been due to problems in determining file permissions. Ap-
plications typically resort to pattern-matching, a dangerous
and error-prone technique. For example, CERT Advisory
CA-98.04 describes a problem on a Web server that didn’t
properly check the so-called “short name” when the actual
name of the file did not fit into the legacy 8.3 format. Sim-
ilarly, Advisory CA-2000-15 describes how a Java applet
could open file: URLs, thus reading files from the local
machine. In the first case, the application misunderstood the
operating system’s file name semantics; in the second, the
check was omitted entirely.

Operating systems rarely have such problems. File per-
missions are associated with the file itself; any attempt to
open the file will cause a permission check, regardless of
how the file was accessed. OS security failures typically
occur when a privileged program is tricked into opening a
file; the kernel’s access control mechanism is simple enough
that it is rarely at fault.

In this paper, we describe an architecture, called SubOS,
for fine grain control of data objects. In SubOS data ob-
jects are treated as users (sub-users), with their own priv-
ileges and permissions. Figures 1 and 2 demonstrate the
differences between a regular and a SubOS-enabled operat-
ing system. On a regular operating system user applications
execute with the permissions of the user and have access
to the underlying system identical to that of the user Un-
der SubOS, applications execute with the permissions of the
data object (sub-user) they operate on. This allows for finer
grain control, and therefore greater protection from mali-
cious data objects.

The paper is organized as follows. In Section 2 we dis-
cuss the motivation behind this work. In Sections 3 and
4 we present the design and implementation details of a
SubOS-capable OpenBSD [2] system, and two applications
that benefit from such an architecture. In Section 5 we dis-

A
pp

lic
at

io
ns

ru
nn

in
g

an
 a

pp
le

t
B

ro
w

se
r

.....
C

om
m

an
d

sh
el

l
ex

ec
ut

in
g

a
ga

m
e

W
or

d
pr

oc
es

so
r

vi
ew

in
g

a
fi

le

Operating System

Resources

(CPU, Memory, Disk, Network, etc.)
U

np
ro

te
ct

ed
 S

pa
ce

Pr
ot

ec
te

d
Sp

ac
e

Figure 1. User applications executing on an operat-
ing system maintain the user privileges, allowing them
almost full access to the underlying operating system.

cuss work that is related to SubOS, and finally we conclude
in Section 6.

2 Motivation

A number of trends in computing are fueling the need
for a more flexible, yet stricter security model in operating
systems.

2.1 Information Exchange

With the growth of the Internet, exchange of informa-
tion over wide-area networks has become essential for both
applications and users. Modern applications often fetch
help files and other data over the World Wide Web. In ex-
treme cases, like some versions of the BSD UNIX operating
system, even whole operating systems install and upgrade
themselves over the network. However, the most common
case is electronic mail. Users regularly receive mail from
unknown sources with a number of possibly malicious at-
tachments. The attached documents use vulnerabilities in
the helper applications that are invoked to process them,
which in turn could compromise system security. The need
for connectivity and exchange of information even at this
most basic level is therefore a major threat to security.

It is also the case that seemingly inactive objects like
Web pages or email messages are very much active and
potentially dangerous. One example is JavaScript pro-
grams which are executed within the security context of
the page with which they were down–loaded, and they
have restricted access to other resources within the browser.

A
pp

lic
at

io
ns

ru
nn

in
g

an
 a

pp
le

t
B

ro
w

se
r

.....

C
om

m
an

d
sh

el
l

ex
ec

ut
in

g
a

ga
m

e

W
or

d
pr

oc
es

so
r

vi
ew

in
g

a
fi

le

Resources

U
np

ro
te

ct
ed

 S
pa

ce

Su
bO

S

Su
bO

S

Su
bO

S

(CPU, Memory, Disk, Network, etc.)

Pr
ot

ec
te

d
Sp

ac
e

O
pe

ra
tin

g
Sy

st
em

Figure 2. Under SubOS enabled operating systems
user applications that “touch” possibly malicious ob-
jects no longer maintain the user access rights, and only
get restricted access to the underlying system.

Security flaws exist in certain Web browsers that permit
JavaScript programs to monitor a user’s browser activities
beyond the security context of the page with which the pro-
gram was downloaded (CERT Advisory CA:97.20). It is
obvious that such behavior automatically compromises the
user’s privacy.

Another example is the use of Multi-purpose Internet
Mail Extensions (MIME). The MIME format permits email
to include enhanced text, graphics, and audio in a stan-
dardized and inter–operable manner. Metamail(1) is
a package that implements MIME. Using a configurable
mailcap(4) file, metamail(1) determines how to
treat blocks of electronic mail text based on the content as
described by email headers. A condition exists in meta-
mail(1) in which there is insufficient variable checking
in some support scripts. By carefully crafting appropriate
message headers, a sender can cause the receiver of the
message to execute an arbitrary command if the receiver
processes the message using the mailcap(4) package
(CERT Advisory CA:97.14) [1].

2.2 Application Complexity

But the problem is deeper than obvious forms of mobile
code. Given the increasingly complex environment pre-
sented to many applications, we assert that these applica-
tions have many of the characteristics of operating systems,
and should be implemented as such.

Even simple HTTP requests return a complex object,
wherein the remote side tells the local browser what to do,

up to and including a request to run certain applications.
Print spoolers have to check file access permissions. Email
can be delivered directly to programs. Web servers must run
scripts, often via an interpreter, while denying direct access
to the interpreter and perhaps ensuring that one script does
not access or modify the private data of another script. All
of these applications should worry about resource consump-
tion. And these, of course, are the characteristics of oper-
ating systems. In fact, arbitrating access to various objects
is more or less the definition of what an operating system
does.

However, re–implementing an operating system with
each new application would be extreme. Instead, our goal is
to add sufficient functionality to an existing system so that
applications can rely on the base operating system to carry
out its own particular security policy. That security policy,
in turn, can reflect its own particular needs and its degree of
certainty as to the identity of users.

2.3 Inadequate Operating System Support

The lack of flexibility in modern operating systems is
one of the main reasons security is compromised. The
UNIX operating system, in particular, violates the princi-
ple of least privilege. The principle of least privilege states
that a process should have access to the smallest number of
objects necessary to accomplish a given task. UNIX only
supports two privilege levels: “root” and “any user”.

To overcome this shortcoming, UNIX can grant tem-
porary privileges, namely setuid(2) (set user id) and
setgid(2) (set group id). These commands allow a pro-
gram’s user to gain the access rights of the program’s owner.
However, special care must be taken any time these primi-
tives are used, and as experience has shown a lack of suffi-
cient caution is often exploited [18].

Another technique used by UNIX is to change the appar-
ent root of the file system using chroot(2). This causes
the root of a file system hierarchy visible to a process to
be replaced by a subdirectory. One such application is the
ftpd(8) daemon; it has full rights in a safe subdirectory,
but it cannot access anything beyond that. This approach,
however, is very limiting, and in the particular example
commands such as ls(1) become unreachable and have
to be replicated.

These mechanisms are inadequate to handle the complex
security needs of today’s applications. This forces a lot of
access control and validity decisions to user–level software
that runs with the full privileges of the invoking user. Ap-
plications such as mailers, Web browsers, word processors,
etc., become responsible for accepting requests, granting
permissions and managing resources. All this is what is tra-
ditionally done by operating systems. These applications,
because of their complexity as well as the lack of flexibility

in the underlying security mechanisms, possess a number of
security holes. Examples of such problems are numerous,
including macros in Microsoft Word, JavaScript, malicious
Postscript and PDF documents, etc.

We wish to offer users flexible security mechanisms that
restrict access to system resources to the absolute minimum
necessary.

3 The SubOS Architecture

SubOS is a process–specific protection mechanism. Un-
der SubOS any application (e.g. ghostscript, Perl, etc.) that
operates on possibly malicious objects (e.g. Postscript files,
Perl scripts, etc.) inherits the identity of that object. Any
further system accesses that application makes are restricted
by that identity, instead of the user identity. We will call
these applications SubOS processes, or sub-processes in the
rest of this paper. The access rights for that object are deter-
mined by a sub-user id that is assigned to it when it is first
accepted by the system. The sub-user id is a similar notion
to the regular UNIX user id’s. In UNIX the user id deter-
mines what resources the user is allowed to have access to,
in SubOS the sub-user id determines what resources the ob-
ject is allowed to have access to. The advantage of using
sub-user id’s is that we can identify individual objects with
an immutable tag, which allows us to bind a set of access
rights to them. This allows for finer grain per-object access
control, as opposed to per-user access control.

The idea becomes clear if we look at the example shown
in Figure 3. Let us assume that our untrusted object is a
postscript file foo.ps. To that object we have associated
a sub–user id, as we will discuss in Section 3.1.1. Foo.ps
initially is an inactive object in the file system. While it
remains inactive it poses no threat to the security of the
system. However the moment gs(1) opens it, and starts
executing its code, foo.ps becomes active, and automati-
cally a possible danger to the system. To contain this threat,
the applications that open untrusted objects, inherit the sub–
user id of that objects, and are hereafter bound to the per-
missions and privileges dictated by that sub–user id.

There is a strong analogy here to the standard UNIX se-
tuid(2) mechanism. When a suitably-marked file is ex-
ecuted, the process acquires the access rights of the owner.
With SubOS, suitably-marked processes acquire the access
rights of the owner of the files that they open. In this case,
of course, the new rights are never greater than those the
process had before.

The advantages of our approach become apparent if we
consider the alternative methods of ensuring that a mali-
cious object does not harm the system. Again using our
postscript example we can execute foo.ps inside a safe
interpreter that will limit its access to the underlying file
system. There are however a number of examples on how

sub−user id

sub−user id

File
foo.ps

Process
gs foo.ps

File

sub−user id
foo.ps

Figure 3. In the left part of the Figure we see an
object, in this case a postscript file foo.ps, with its as-
sociated sub–user id. The moment the ghostscript ap-
plication opens file Foo.ps, it turns into a SubOS process
and it inherits the sub–user id that was associated with
the untrusted object. From now on, this process has the
permissions and privileges associated with this sub–user
id.

relying on safe languages fails [1]. We could execute the
postscript interpreter inside a sandbox using chroot(2),
but this will prohibit it from accessing font files that it might
need. Finally we could read the postscript code and make
sure that it does not include any malicious commands, but
this is impractical. Our method provides transparency to the
user and increased security since every data object has its
access rights bound to its identity, preventing it from harm-
ing the system.

3.1 Implementation

For our development platform we decided to use the
OpenBSD operating system [2]. OpenBSD provides an at-
tractive platform for developing security applications be-
cause of the well-integrated security features and libraries
(an IPsec stack, SSL, KeyNote, etc.). However, there is
nothing inherent in the SubOS architecture that limits us to
UNIX like operating systems, so similar implementations
are possible for operating systems like Microsoft Windows.
The main advantage of our kernel implementation is that the
additional security mechanisms will be largely transparent
to the applications. Specifically, although the applications
may need to be aware of the SubOS structure, they will not
need to worry about access control or program containment.

3.1.1 Data Object Identifiers

As we mentioned earlier in Section 3 , every time the system
accepts an incoming object it associates a sub-user id with

user id

Host Foo

Host Foo
Login

ftp, mail, Object Bar.{ps,html, ...}

Cryptographic TokenPassword

Password UNIX password

User Bar

Web, etc.

sub-user id

Figure 4. In the top part of the Figure we see the reg-
ular process of a user Bar logging in to a UNIX system
Foo and getting a user id. In the same way objects that
enter the system through ftp, mail, etc., “log in” using a
cryptographic token, and are assigned sub-user id’s.

it, depending on the credentials the object carries. The sub-
user id is permanently saved in the Inode of the file that
holds that object, which is now its immutable identity in the
system and specifies what permissions it will have. It has
essentially the same functionality as a UNIX user id. One
can view this as the equivalent of a user logging in to the
system.

Figure 4 shows the equivalence of the two mechanisms.
In the top part of the figure we see the regular process of
a user Bar logging in to a UNIX system Foo and getting
a user id. In the same way, objects that enter the system
through ftp, mail, etc., “log in” and are assigned sub-user
id’s based on their (often cryptographically-verified)source,
as we will see in Sections 3.1.4 and 3.1.5.

Enhancing applications to utilize the functionality of the
SubOS system require either making minor modification to
the application code, or interposing a proxy that assigns
sub-user id’s to objects arriving via proxied services, e.g.
ftp, http, and mail.

3.1.2 Sandboxing

The most basic operation supported by SubOS is the inher-
itance of the sub-process id from an inactive file system ob-
ject to a running process. To accomplish this we extended
the open(2) system call. When it is used on objects that
contain sub–user id’s, it copies the sub–user id to the proc
structure of that process (Figure 3). At that point the process
becomes a SubOS process bound to that sub–user id.

It is crucial that a sub-process can never “escape” its

sub-process status. To enforce this, whenever a sub-
process forks and execs, the identity is inherited by
the child process. To achieve this we extended the
fork(2) and exec(2) system calls to have created
processes inherit that status. Furthermore we modified
the creat(2) system call, so that any files created by
sub–processes have the sub–user id of the creator as-
signed in their Inode. Finally sub-processes are not al-
lowed to execute setuid programs, to enforce this we block
the setuid related (setuid(2), seteuid(2), set-
gid(2), setegid(2)) system calls in the kernel.

It is not clear that that is the right choice. However,
UNIX has traditionally had trouble when setuid programs
invoked other setuid programs. To give just one historical
example, in the days when the mkdir(2) call was imple-
mented by executing a setuid—root program, subsystems
that were themselves setuid had trouble creating directories.

3.1.3 Resource Protection

The SubOS mechanisms must protect the various resources
of the users computer from viruses, Trojan Horses, worms,
etc. In order to do so, it should monitor the creation of
network connection, accesses to the file system, execution
time of processes and allocation of physical memory, that
might result from malicious code in untrusted objects.

By default a SubOS process is not allowed to create net-
work connections. We accomplish this by filtering network
related system calls. It is however possible to set up policies
that will allow certain sub–processes to access the network
by setting up the hosts they are allowed to connect to, the
port, and the protocol to be used.

A practical implementation would require considerable
attention to policies, including wild cards for port numbers,
network masks for the host, etc. It might also be desirable
to include certain known-safe local host/port combinations.
For example, we may wish to permit open access to a local
DNS proxy, for safe name resolution. On the other hand,
wide-open access to a real name server might permit the
controlled process to map local domains, which may be un-
desirable.

In order for the SubOS to restrict file system accesses
we introduce the notion of a view. The view refers to the
permissions a sub-process has to parts of the directory tree.
Sub-processes don’t use the permission bits that are nor-
mally used by processes (user, group, other). Rather, they
have their own permissions that are defined in a configura-
tion file, maintained by the user or administrator. This is
very much like chroot(2) but more like pruning the di-
rectory tree of the file system than setting a new root.

The extended permission bits are added in lists in the
inodes of the files specified in the configuration file. Ev-
ery time the kernel identifies a file system access originating

from a sub–process, it traverses the list in the corresponding
inode in order to locate the permissions that apply to the
sub-user id of that sub-process. It then uses those permis-
sion bits, instead of the normal bits set for user, group or
other, to determine whether to allow the access or not. If
there are no permissions set for that sub-process the request
is denied by default.

Finally execution time as well as memory allocation
should also be monitored. This way, malicious objects
(such as Java applets that run under a Web browser) will
not hamper the smooth operation of the system. Our cur-
rent working prototype lacks the appropriate controls for
this type of enforcement, we are however in the process
of implementing the necessary controls for the next ver-
sion of our system. There are a number of things that need
to be considered. Most importantly access to the set-
priority(2) or setrlimit(2) system calls should
be restricted, prohibiting sub-processes from executing at
a higher priority than the parent process and limiting the
amount of system resources they can allocate. Additionally,
there must be a bound to the number of times a sub-process
is allowed to fork in order to prevent possible process pol-
lution in the system. Finally we need to add a form of ac-
counting to monitor the amount of resources all the spawned
sub-processes consume.

3.1.4 Sub-Users

In order for a SubOS to be effective, different sub-user ids
must be assigned to different protection domains. Just how
this is done depends on the the application, on how the file
arrived on the local system, and on any credentials it carries.

For emailed files, the sender’s identity is used to se-
lect the sub-user id, naturally, such mail should be digitally
signed. Mail from a previously-unknown user, or mail that
cannot be assigned with enough confidence to a particular
sender, receives a new sub-user id.

For Web browsers, finer-grained protection is desirable.
Each site visited is assigned its own sub-user id, thus pre-
venting one site from interfering with another’s content.
This could, for example, have prevented the “Frame Spoof”
bug in Internet Explorer (MS98-020) [1].

3.1.5 Accessing Multiple Objects

So far we have assumed that sub-processes will operate on
only one object at a time. However it is possible for a sub-
process to open multiple objects, each with its own sub-user
id. When a sub-process opens another object containing a
sub-user id it also inherits that new id, and the new per-
missions would depend on a combination of the individual
permission as dictated by the system policy.

This is easily accomplished in the case of CPU and mem-
ory allocation; the new sub-process will have the minimum

of the two for allocated memory and CPU time. In the case
of network and file system access, any request is denied un-
less it is allowed by the permissions of all inherited sub-user
id’s.

4 SubOS Applications

To demonstrate the functionality of our SubOS enabled
operating system we identified two applications that are
most commonly targeted by hostile objects. Mailers and
Web browsers are often attacked by a number of malicious
attachments, and would therefore benefit from our security
architecture.

4.1 A Secure Mailer

To test the functionality of our current prototype we
modified a mailer, mh(1), to take advantage of the SubOS
architecture. To do this we extended mh(1) to imple-
ment a login–like mechanism. Depending on the source of
the message—ideally, this should be cryptographically ver-
ified, though we have not yet implemented that portion—
mh(1) will attach a sub–user id to that file when it saves
it. Mh(1) assigns sub–user id’s using a file, similar to the
UNIX /etc/passwd, that matches e–mail addresses to
id’s.

Any helper application that is invoked—often
automatically—to process the message, will inherit
the sub-user identity. If the message contains active,
malicious code, its effects will be contained by the limited
permissions assigned to that sub-user id, protecting the rest
of the system.

4.2 A Secure Browser

In our architecture we address the two security weak-
nesses of Web browsers:

� Helper applications running with the user’s privileges.

� Web pages that carry active content that is interpreted
by the browser.

To address the problems we will use the mechanism pro-
vided by the SubOS-capable operating system, as well as a
modular Web browser architecture. The implementation is
sketched here; a more complete description is in [16]. We
divided the Web browser into three parts, according to its
functionality. The first part is responsible for downloading
objects over the network, the second is responsible for dis-
playing the content, and the last is a set of helper applica-
tions/interpreters used to process the content of the down-
loaded objects. The design is presented in Figure 4.2

Browser DisplayBrowser Log−in Daemon

. Browser Interpreter Browser Interpreter

Figure 5. The Web browser is comprised of three
parts. The first part is responsible for downloading ob-
jects from the net and assigning sub-user id’s to them.
The second provides the user interface of the browser.
Finally the third is a set of processes that interprets the
active code that is carried by the incoming objects.

4.2.1 Secure Browser Components

Every object that is downloaded by the browser log-in dae-
mon is assigned a sub-user id, which is bound to some
permissions, and is then stored in the file system, simi-
larly to Section 4.1. Objects that carry certificates, such as
pages downloaded from Web sites that use https, may be
given more permissions than are unauthenticated objects.
For example an authenticated object might get access to
/home/foobar, network access and unlimited resources,
whereas an unauthenticated object might only be granted
access to /tmp with no access to the network and limited
memory and cpu time allocation. The display process pro-
vides the user interface of the our Web browser. It can make
requests to the log-in daemon to download files; it is also re-
sponsible for spawning interpreters to handle the incoming
objects, and display HTML.

Any active code is executed within the context of the in-
terpreters. They handle inline scripts like JavaScript, as well
as other types of active code, such as Postscript and Perl.
Since the objects they interpret are bound by their sub-user
id, which was assigned to them when they first entered the
system, they cannot cause any damage.

5 Related Work

The area of operating system security is a field that has
received a great deal of attention, and has been researched
extensively. However, the ever-increasing demand and need
for communication and openness has put new strains on op-
erating systems. Communication environments like the In-
ternet require us to solve a whole new set of problems that

researchers have just recently started to address. In this sec-
tion we focus our attention to work that is directly related to
ours.

There are several methods for intrusion prevention in op-
erating systems, ranging from type-safe languages [20, 22,
30, 14, 13], fault isolation [28] and code verification [25], to
operating system-specific permission mechanisms [21, 26],
system call interposition [12, 4, 3, 5] and system call inter-
ception [6, 10, 11, 7, 29, 24].

Capabilities and access control lists are the most com-
mon mechanisms operating systems use for access control.
Such mechanisms expand the UNIX security model and are
implemented in several popular operating systems, such as
Solaris and Windows NT [8, 9]. However they offer no pro-
tection for the user against programs owned by the user,
which may contain errors, Trojan Horses, or viruses.

The Flask system [26] extends the idea of capabilities
and access cotrol lists by the more generic notion of the se-
curity policy. The Flask micro kernel system relies on a se-
curity server for policy decisions and on an object server for
enforcement. Every object in the system has an associated
security identifier very similar to our notion of a sub-user
id. Requests coming from objects are bound by the per-
missions associated with their security identifier. However
Flask does not address the threat SubOS is trying to protect
against, namely passive objects becoming active and then
executing with the permissions of the running process. As
a minor issue, we have demonstrated that our prototype can
be easily implemented as part of a widely used, commod-
ity operating system, as opposed to an experimental micro
kernel.

The traditional Orange Book-style systems offer protec-
tion against violation of security levels by malicious pro-
grams. But there is no barrier to attacks on files at the cur-
rent security level, nor to attacks at that security level over
the network. For example, a Top Secret worm can would
still be able to spread, though it would only be able to infect
other Top Secret-rated systems.

Reeds and McIlroy’s unique implementation of the Or-
ange Book’s security policies [23] bears a strong conceptual
resemblance to the SubOS scheme. Rather than assigning a
process or a file fixed access rights or labels, these “float” in
response to the program’s execution. A process that opens a
file marked Top Secret acquires a Top Secret label; any files
that it writes are also marked Top Secret. Permissions are
thus data-driven, as in SubOS.

A different approach relies on the notion of call interpo-
sition. Systems like [12, 4, 3, 5] operate at user level and
confine applications by filtering access to system calls. To
accomplish this they rely on ptrace(2), the /proc file
system, and special shared libraries. Another category of
systems [6, 10, 11, 7, 29, 24], goes a step further. They
intercept system calls inside the kernel, and use policy en-

gines to decide whether to permit the call or not. Our system
differs in a major point. We view every object as a separate
user, each with its own sub-user id and access rights to the
system resources. This sub-user id is attached to every in-
coming object when it is accepted by the system, and stays
with it throughout it’s life, making it impossible for mali-
cious objects to escape.

In [17] the authors identify the dangers of active con-
tent and the need to contain it. They authenticate incoming
objects and grant them access rights. These access rights
identify which interpreters are allowed to operate on the ob-
jects. Furthermore these interpreters are also “sanitized” so
that they don’t include any unsafe calls. Our system offers
much finer access control, enforced by the operating system
kernel.

The methods that we mentioned so far rely on the op-
erating system to provide with some sort of mechanism to
enforce security. There are, however, approaches that rely
on safe languages, [20, 27, 19, 15] the most common ex-
ample being Java [22, 13]. In Java applets, all accesses to
unsafe operations must be approved by the security man-
ager. The default restrictions prevent accesses to the disk
and network connections to computers other than the server
the applet was down-loaded from. Our system is not only
restricted to a limited set of type safe languages. We can
secure any process running on the system that has touched
some untrusted object.

Code verification is another technique for ensuring secu-
rity. This approach uses proof-carrying code [25] to demon-
strate the secur ity properties of the object. This means that
the object needs to carry with it a formal proof of its prop-
erties; this proof can be used by the system that accepts it
to ensure that it is not malicious. Code verification is very
limiting since it is hard to create such proofs. Furthermore,
it does not scale well; imagine creating a formal proof for
every Web page.

6 Conclusions

We have designed and implemented an object-specific
protection mechanism to contain untrusted data. We restrict
the environment that such objects can operate in, and the
resources they can access, by extending the UNIX security
model to assign sub-user id’s to them and then treating them
like regular users. The implementation is part of the ker-
nel of the operating system, since that is the only natural
and secure place for security mechanisms to enforce poli-
cies. SubOS is a working prototype implemented as part
of the OpenBSD operating system. Finally, we have shown
how SubOS relates to other security mechanisms and how
it strengthens operating system security.

Acknowledgements

This work was supported by AT&T, by the DoD Uni-
versity Research Initiative (URI) program administered by
the Office of Naval Research under Grant N00014-01-
1-0795, and DARPA under Contracts F39502-99-1-0512-
MOD P0001 and F30602-01-2-0537.

References

[1] CERT Advisories. http://www.cert.org/advisories/.

[2] The OpenBSD Operating System. http://www.openbsd.org/.

[3] A. Acharya and M. Raje. Mapbox: Using parameterized
behavior classes to confine applications. In Proceedings of
the 2000 USENIX Security Symposium, pages 1–17, Denver,
CO, August 2000.

[4] A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A con-
fined execution environment for internet computations, De-
cember 1998.

[5] R. Balzer and N. Goldman. Mediating connectors: A non-
bypassable process wrapping technology. In Proceeding of
the 19th IEEE International Conference on Distributed Com-
puting Systems, June 1999.

[6] A. Berman, V. Bourassa, and E. Selberg. TRON: Process-
Specific File Protection for the UNIX Operating System.
In Proceedings of the USENIX 1995 Technical Conference,
New Orleans, Louisiana, January 1995.

[7] C. Cowan, S. Beattie, C. Pu, P. Wagle, and V. Gligor. SubDo-
main: Parsimonious Security for Server Appliances. In Pro-
ceedings of the 14th USENIX System Administration Confer-
ence (LISA 2000), Mar. 2000.

[8] H. Custer. Inside Windows NT. Microsoft Press, 1993.

[9] H. Custer. Inside the Windows NT File System. Microsoft
Press, 1994.

[10] T. Fraser, L. Badger, and M. Feldman. Hardening COTS
Software with Generic Software Wrappers. In Proceedings
of the IEEE Symposium on Security and Privacy, Oakland,
CA, May 1999.

[11] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Ander-
son. SLIC: An Extensibility System for Commodity Oper-
ating Systems. In Proceedings of the 1998 USENIX Annual
Technical Conference, pages 39–52, June 1998.

[12] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
Secure Environment for Untrusted Helper Applications. In
Procedings of the 1996 USENIX Annual Technical Confer-
ence, 1996.

[13] L. Gong. Inside Java 2 Platform Security. Addison-Wesley,
1999.

[14] J. Gosling, B. Joy, and G. Steele. The Java Language Speci-
fication. Addison Wesley, Reading, 1996.

[15] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-
tles. PLAN: A Programming Language for Active Networks.
Technical Report MS-CIS-98-25, Department of Computer
and Information Science, University of Pennsylvania, Febru-
ary 1998.

[16] S. Ioannidis and S. M. Bellovin. Building a Secure Browser.
In Proceedings of the Annual USENIX Technical Conference,
Freenix Track, June 2001.

[17] T. Jaeger, A. D. Rubin, and A. Prakash. Building systems
that flexibly control downloaded executable content. In Pro-
ceedings of the 1996 USENIX Security Symposium, pages
131–148, San Jose, Ca., 1996.

[18] R. Kaplan. SUID and SGID Based Attacks on UNIX: a Look
at One Form of the Use and Abuse of Privileges. Computer
Security Journal, 9(1):73–7, 1993.

[19] X. Leroy. Le système Caml Special Light: modules et com-
pilation efficace en Caml. Research report 2721, INRIA,
November 1995.

[20] J. Y. Levy, L. Demailly, J. K. Ousterhout, and B. B. Welch.
The Safe-Tcl Security Model. In USENIX 1998 Annual Tech-
nical Conference, New Orleans, Louisiana, June 1998.

[21] D. Mazieres and M. F. Kaashoek. Secure Applications Need
Flexible Operating Systems. In The 6th Workshop on Hot
Topics in Operating Systems, May 1997.

[22] G. McGraw and E. W. Felten. Java Security: hostile applets,
holes and antidotes. Wiley, New York, NY, 1997.

[23] M. D. McIlroy and J. A. Reeds. Multilevel security in
the unix tradition. Software Practice and Experience,
22(8):673–694, 1992.

[24] T. Mitchem, R. Lu, and R. O’Brien. Using Kernel Hypervi-
sors to Secure Applications. In Proceedings of the Annual
Computer Security Applications Conference, Dec. 1997.

[25] G. C. Necula and P. Lee. Safe, Untrusted Agents using Proof-
Carrying Code. In Lecture Notes in Computer Science, Spe-
cial Issue on Mobile Agents, October 1997.

[26] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ander-
son, and J. Lepreau. The flask security architecture: System
support for diverse security policies. In Proceedings of the
2000 USENIX Security Symposium, pages 123–139, Denver,
CO, August 2000.

[27] J. Tardo and L. Valente. Mobile Agent Security and Tele-
script. In Proceedings of the 41st IEEE Computer Society
Conference (COMPCON), pages 58–63, February 1996.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient Software–Based Fault Isolation. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles,
pages 203–216, December 1993.

[29] K. M. Walker, D. F. Stern, L. Badger, K. A. Oosendorp, M. J.
Petkac, and D. L. Sherman. Confining root programs with
domain and type enforcement. In Proceedings of the 1996
USENIX Security Symposium, pages 21–36, July 1996.

[30] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Ex-
tensible Security Architectures for Java. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles,
October 1997.

